
Rounding and Chaining LLL:
Finding Faster Small Roots of Univariate Polynomial

Congruences

J. Bi, J-S. Coron, J-C. Faugère, P. Nguyen,
G. Renault, R. Zeitoun

Public Key Cryptography 2014
26-28 March, 2014 - Buenos Aires, Argentina

1 Coppersmith’s Method

2 Speeding up Coppersmith’s Algorithm by Rounding

3 Speeding up Exhaustive Search by Chaining

PKC 2014 2 / 27

Core Ideas of Rounding and Chaining

Rounding:

• The problem: a
f−→ b

+ Rather consider a/c instead of a.

Chaining:

• The problem: a1
f−→ b1, a2

f−→ b2, a3
f−→ b3, . . .

+ Rather do a1
f−→ b1, f ′(b1)

f−→ b2, f ′(b2)
f−→ b3, . . .

+ Rounding and Chaining can also be combined.

PKC 2014 3 / 27

Coppersmith’s Theorem

The Problem (Univariate Modular Case):

• Input:
• A polynomial f (x) = xδ + aδ−1xδ−1 + · · ·+ a1x + a0.
• N an integer of unknown factorization.

• Find:
• All integers x0 such that f (x0) ≡ 0 mod N.

PKC 2014 4 / 27

Coppersmith’s Theorem

The Problem (Univariate Modular Case):

• Input:
• A polynomial f (x) = xδ + aδ−1xδ−1 + · · ·+ a1x + a0.
• N an integer of unknown factorization.

• Find:
• All integers x0 such that f (x0) ≡ 0 mod N.

Coppersmith’s Method (1996)

• Find small integer roots.

PKC 2014 4 / 27

Coppersmith’s Theorem

The Problem (Univariate Modular Case):

• Input:
• A polynomial f (x) = xδ + aδ−1xδ−1 + · · ·+ a1x + a0.
• N an integer of unknown factorization.

• Find:
• All integers x0 such that f (x0) ≡ 0 mod N.

Coppersmith’s Theorem for the Univariate Modular case

• The solutions x0 can be found in time poly (log N, δ) if:

|x0| < N1/δ .

PKC 2014 4 / 27

Coppersmith’s Theorem

The Problem (Univariate Modular Case):

• Input:
• A polynomial f (x) = xδ + aδ−1xδ−1 + · · ·+ a1x + a0.
• N an integer of unknown factorization.

• Find:
• All integers x0 such that f (x0) ≡ 0 mod N.

The problem is easy without the modulo N.

+ Find a polynomial g such that g(x0) = 0 over Z.

PKC 2014 4 / 27

Applications in cryptology

Cryptanalysis of RSA

• Factoring with high bits known. Coppersmith, 1996.

• Security proof of RSA-OAEP. Shoup, 2001.

• Equivalence: factoring / computing d . Coron, May, 2007.

• Stereotyped messages. Coppersmith, 1996.

• RSA Pseudorandom Generator Fischlin, Schnorr, 2000.

• Affine Padding. Coppersmith, Franklin, Patarin, Reiter, 1996.

• Polynomially related messages (Hastad). Coppersmith, 1997.

• Finding smooth numbers and Factoring. Boneh, 2001.

• Coppersmith in the wild. Bernstein et al., 2013.

PKC 2014 5 / 27

About Coppersmith’s Method

Euclidean Lattices
Find a new small polynomial equation + LLL Reduction.

A matter of Bound
Coppersmith’s bound |x0| < N1/δ + Exhaustive search.

In practice

• The LLL-reduction can be costly.
• The exhaustive search can be prohibitive.

PKC 2014 6 / 27

About Coppersmith’s Method

Euclidean Lattices
Find a new small polynomial equation + LLL Reduction.

A matter of Bound
Coppersmith’s bound |x0| < N1/δ + Exhaustive search.

In practice

• The LLL-reduction can be costly.
• The exhaustive search can be prohibitive.

PKC 2014 6 / 27

Rounding and Chaining LLL

Our Approach

• Use structure to improve Coppersmith’s method.

Two Speedups: Rounding and Chaining

• Asymptotical speed-up of LLL-reduction: δ−2 log9 N → log7 N

• Heuristic speed-up of the exhaustive search.

Core Ideas of Rounding and Chaining

• Rounding: Apply LLL on a matrix with smaller coefficients
+ Divide all coefficients in Coppersmith’s matrix.

• Chaining: Reuse previous computation
+ Apply a small transformation on the last reduced matrix.

Timings for a typical instance (dlog2(N)e = 2048 and δ = 3)

• Original method: 4 years.
• Our new method: 2.6 days.

PKC 2014 7 / 27

Rounding and Chaining LLL

Our Approach

• Use structure to improve Coppersmith’s method.

Two Speedups: Rounding and Chaining

• Asymptotical speed-up of LLL-reduction: δ−2 log9 N → log7 N

• Heuristic speed-up of the exhaustive search.

Timings for a typical instance (dlog2(N)e = 2048 and δ = 3)

• Original method: 4 years.
• Our new method: 2.6 days.

PKC 2014 7 / 27

Coppersmith’s Method (Howgrave-Graham)

The problem: find all small integers x0 s.t. f (x0) ≡ 0 mod N.

The idea: find a small polynomial g s.t. g(x0) = 0 over Z.

How to find the polynomial g:

Family of
Polynomials

(with parameter h)

 B

  BR

LLL g

• g(x0) ≡ 0 mod Nh−1

• g(x0) < Nh−1

}
⇒ g(x0) = 0 over Z.

PKC 2014 8 / 27

Complexity / Practical Results of
Coppersmith’s Method

State-of-the-art Analysis

• Complexity using L2: O(log9(N)/δ2) .

In practice, for dlog2(N)e = 1024 and δ = 2

Upper bound for x0 2492 2496 2500 2503 2504 2505 ... 2512

Lattice Dimension n = hδ + 1 29 35 51 71 77 87 ... NA
Size of elements in B (bits) 15360 18432 26624 36864 39936 45056 ... NA
Time for LLL (seconds) 10.6 35.2 355 2338 4432 11426 ... NA

Remark: All tests were performed using Magma V2.19-5.

[L2] An LLL Algorithm with Quadratic Complexity. P. Q. Nguyen and D. Stehlé, SIAM J. of Computing, 2009.

PKC 2014 9 / 27

Using Structure: A First Result

State-of-the-art Analysis

• Complexity using L2: O(log9(N)/δ2) .

New Preliminary Result Using Structure [1]

• Complexity using L2: O(log8(N)/δ) .

[1] An Upper Bound on the Average Number of Iterations of the LLL Algorithm. Hervé Daudé, Brigitte Vallée, 1994.

PKC 2014 10 / 27

Speeding up Coppersmith’s Algorithm by Rounding

+ Use Coppersmith’s matrix structure.

PKC 2014 11 / 27

Speeding up Coppersmith’s Algorithm by
Rounding

The idea: Perform computations with most significant bits

 A 6 6 B

 ⇒

 A
c 6 6 B

c



PKC 2014 12 / 27

Speeding up Coppersmith’s Algorithm by
Rounding

B =



Nh−1

XNh−1

. . .
Xδ−1Nh−1

a0Nh−2 . . . XδNh−2

a0XNh−2 . . . Xδ+1Nh−2

. . .
. . .

a0Xδ−1Nh−2 . . . X2δ−1Nh−2

.
. . .

aδ0 Xδ(h−1)

aδ0 X Xδ(h−1)+1

. . .
. . .

aδ0 Xδ−1 Xδh−1



Largest

Smallest

+ Since X < N
1
δ , all diagonal elements lie between Nh−2 and Nh.

PKC 2014 13 / 27

Speeding up Coppersmith’s Algorithm by
Rounding

First step of rounding method

• Size-reduce B so that subdiagonal coefficients are smaller
than diagonal coefficients.

B = Size-Reduce(B) =



b1
< b1 b2
< b1 < b2 b3
< b1 < b2 < b3

. . .
. . .

< b1 < b2 < b3 . . . bn



PKC 2014 14 / 27

Speeding up Coppersmith’s Algorithm by Rounding

Second step of the rounding method

• Create a new rounded matrix bB/cc.
• Apply LLL on bB/cc

: first vector of unimodular matrix is x.
• Compute v = xB and solve v over Z.

 B

  bB/cc
/c

 T

,
 bB/ccR

LLL

 T

×
 bB/cc

LLL x

(x) ×

 B

 = (v)

PKC 2014 15 / 27

Speeding up Coppersmith’s Algorithm by Rounding

Second step of the rounding method

• Create a new rounded matrix bB/cc.
• Apply LLL on bB/cc

: first vector of unimodular matrix is x.
• Compute v = xB and solve v over Z.

 B

  bB/cc
/c

 T

,
 bB/ccR

LLL

 T

×
 bB/cc

LLL

x

(x) ×

 B

 = (v)

PKC 2014 15 / 27

Speeding up Coppersmith’s Algorithm by Rounding

Second step of the rounding method

• Create a new rounded matrix bB/cc.
• Apply LLL on bB/cc: first vector of unimodular matrix is x.
• Compute v = xB and solve v over Z.

 B

  bB/cc
/c

 T

,
 bB/ccR

LLL

 T

×
 bB/cc

LLL x

(x) ×

 B

 = (v)

PKC 2014 15 / 27

Complexity of Rounding Method

Theorem: Rounding Method

• Complexity using L2: O(log7 N) .

Remainder on Coppersmith’s method complexity:

• State-of-the-art complexity: O(log9(N)/δ2) .

• New preliminary complexity: O(log8(N)/δ) .

PKC 2014 16 / 27

Timings with Rounding Improvement

In practice, for dlog2(N)e = 1024 and δ = 2

Upper bound for x0 2492 2496 2500 2503 2504 2505 . . . 2512

Lattice Dimension 29 35 51 71 77 87 . . . NA

Size of elements in B (bits) 15360 18432 26624 36864 39936 45056 ... NA
Size of elements in bB/cc 2131 2127 2119 2119 2120 2123 ... NA

Original LLL (seconds) 10.6 35.2 355 2338 4432 11426 . . . NA
Rounding LLL (seconds) 1.6 3.5 18.8 94 150 436 . . . NA

+ Dim 77: Speed-up of ≈ 30.

PKC 2014 17 / 27

Speeding up Exhaustive Search by Chaining

+ Use hidden algebraic structure.

PKC 2014 18 / 27

Exhaustive Search

Performing exhaustive search

• Split the variable x into α and x ′.

x α x ′

• The new variable is x ′.
• Perform an exhaustive search on α.

PKC 2014 19 / 27

Exhaustive Search

α = 0 α = 1 α = 2 . . . α = 255 B0

 B1

 B2

 . . .
 B255

Coppersmith
Matrices

. . .
 BR

0

  BR
1

  BR
2

 . . .
 BR

255

LLL-Reduced
Matrices

∅ ∅ x ′0 . . . ∅

Costly Costly Costly Costly

^ ^ ^ ^

PKC 2014 20 / 27

Exhaustive Search

α = 0 α = 1 α = 2 . . . α = 255 B0

 B1

 B2

 . . .
 B255

Coppersmith
Matrices

. . .
 BR

0

  BR
1

  BR
2

 . . .
 BR

255

LLL-Reduced
Matrices

∅ ∅ x ′0 . . . ∅

Costly Costly Costly Costly

^ ^ ^ ^

PKC 2014 20 / 27

A New Exhaustive Search Scheme

α = 0 α = 1 α = 2 . . . B0



 BR
0

LLL-Reduced
Matrices

 B1


× P

 BR
1



 B2


× P

 BR
2



. . .

PKC 2014 21 / 27

Transformation P is the Pascal Matrix

Proposition

The matrix BR
i · P is a basis for the case α = i + 1, where

P =


1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
.
.
.

. . .


is the Lower Triangular Pascal Matrix.

Consequence on BR
i · P

• Vectors in BR
i · P are close to the ones of BR

i .

PKC 2014 22 / 27

Combining Chaining and Rounding

α = 0 α = 1 α = 2 . . . B0



 BR
0



 B1


× P

 BR
1



 B2


× P

 BR
2



. . .

LLL-Reduced
Matrices

∅ ∅ x ′0

PKC 2014 23 / 27

Combining Chaining and Rounding

Chaining and Rounding Method

• Create a new rounded matrix bB1/cc.
• Apply LLL on matrix bB1/cc: Get T1 and bB1/ccR.
• Compute BR

1 = T1 × B1.

 B1

  bB1/cc

/c
 T1

×
 bB1/cc

LLL

 T1

×
 B1

 =

 BR
1


PKC 2014 24 / 27

Complexity of Rounding+Chaining Method

Heuristic: Rounding+Chaining Method

• Complexity using L2: O(log7 N) .

Remark: Same complexity as for Rounding Method alone.

PKC 2014 25 / 27

Timings with Rounding and Chaining
Improvements

In practice, for dlog2(N)e = 1024 and δ = 2

Upper bound for x0 2492 2496 2500 2503 2504 2505 . . . 2512

Lattice Dimension 29 35 51 71 77 87 . . . NA

Original LLL (sec.) 10.6 35.2 355 2338 4432 11426 . . . NA
Rounding LLL (sec.) 1.6 3.5 18.8 94 150 436 . . . NA
Rounding + Chaining (sec.) 0.04 0.12 1.4 9.9 15.1 46.5 . . . NA

+ Dim 77: Speed-up of ≈ 300.

PKC 2014 26 / 27

Conclusion/Perspectives

Conclusion

• This work reduces:
• the complexity of performing LLL on Coppersmith matrix,
• the time of exhaustive search to reach Coppersmith bound.

• It allows to reach Coppersmith’s bound.
• It is easy to implement.

Perspectives

• Generalization to the multivariate case (approximate gcd).
• Refine complexity for Chaining + Rounding method.

PKC 2014 27 / 27

Conclusion/Perspectives

Conclusion

• This work reduces:
• the complexity of performing LLL on Coppersmith matrix,
• the time of exhaustive search to reach Coppersmith bound.

• It allows to reach Coppersmith’s bound.
• It is easy to implement.

Perspectives

• Generalization to the multivariate case (approximate gcd).
• Refine complexity for Chaining + Rounding method.

PKC 2014 27 / 27

	Coppersmith's Method
	Speeding up Coppersmith's Algorithm by Rounding
	Speeding up Exhaustive Search by Chaining

