Traceable Group Encryption

Benoît Libert¹

Moti Yung² Marc Joye¹ Thomas Peters³

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

¹Technicolor (France) ²Google Inc. and Columbia University (USA) ³ UCL Crypto Group (Belgium)

> March 28, 2014 **Buenos** Aires

Outline

Group Encryption

- Background and motivations
- Related Work

2 Model and Syntax of Traceable Group Encryption

3 A Non-Interactive TGE Scheme in the Standard Model

- Ingredients
- Outline of the scheme
- Underlying assumptions

Kiayias-Tsiounis-Yung (Asiacrypt'07): encryption analogue of group signatures.

- Involves a group manager (GM) and an opening authority (OA).
- Sender CCA2-encrypts a message for a (certified) group member who remains anonymous in the CCA2-sense ...
- ... and generates a proof that
 - the ciphertext is valid and intended for some certified group member
 - the OA will be able to identify the receiver
 - the plaintext is a witness satisfying some relation

- Applications:
 - Sender can encrypt emails to anonymous organization members while appending proofs that the content is not a spam/malware
 - Verifiable encryption of messages/keys to anonymous TTP

ex.: International escrow system where users may prefer hiding their preferred TTP

- Oblivious retriever storage: server temporarily stores encrypted data for anonymous retrievers
 - ex.: Asynchronous transfers of encrypted credentials / datasets via the cloud
- Group signatures with *ad-hoc* opening, hierarchical group signatures

- Related work:
 - Kiayias-Tsiounis-Yung (Asiacrypt'07):
 - Modular design from key-private public key encryption, digital signatures, extractable commitments and ZK proofs
 - Efficient construction from Paillier; Proofs require either interaction or the ROM
 - Qin *et al.* (Inscrypt'08): related primitive with better efficiency in the ROM under interactive assumptions
 - Cathalo-Libert-Yung (Asiacrypt'09): construction with non-interactive proofs in the standard model
 - Izabachène-Pointcheval-Vergnaud (Latincrypt'10): individual users' traceability; removal of subliminal channels
 - El Aimani-Joye (ACNS'13): optimized constructions with interactive or non-interactive proofs

- Almost all previous constructions require to open all ciphertexts to find those encrypted for a *specific group member*
 - Damaging to the privacy of well-behaved users
 - Tracing is an inherently sequential operation
- Exception: Izabachène-Pointcheval-Vergnaud (Latincrypt'10) gives individual traceability, but without explicit opening and only with IND-CPA security
 - \Rightarrow Explicitly "opening" one ciphertext in a population of *n* users requires O(n) operations
- Need for a mechanism, akin to traceable signatures (Kiayias-Tsiounis-Yung, Eurocrypt'04), allowing to individually trace users
- **This paper**: primitive named Traceable Group Encryption, encryption analogue of traceable signatures

Traceable Group Encryption

Properties:

- Encryption analogue of traceable signatures (Kiayias-Tsiounis-Yung, Eurocrypt'04)
- Opening authority can release a user-specific trapdoor allowing to trace all ciphertexts encrypted for that user
 - Honest users' privacy is not affected
 - Tracing operations can be delegated to clerks, running in parallel
- Users can claim their own ciphertexts and disclaim other ciphertexts

Our Contribution: precise modeling, construction in the standard model

• • • • • • • • • • • • •

Model of Traceable Group Encryption

• Involve a non-interactive (i.e., 2-round) join protocol

- Users generate their key pair on their own; no proof of knowledge of sk_i and no rewind in security proofs
- Made possible using structure-preserving signatures (Abe *et al.*, Crypto'10)

< □ > < ^[] >

Model of Traceable Group Encryption

Model of Traceable Group Encryption

Additional functionalities of Traceable Group Encryption

• Implicit tracing mechanism:

• Claiming capability: using sk_i and a ciphertext ψ , user U_i can generate a claim / disclaimer τ

D 1 1	
B. LIDert (rechnicolor

Image: A mathematical states and a mathem

Security Model

- Message security: CCA2-security of honest receivers against colluding dishonest GM and OA
- Anonymity (a.k.a. key privacy): CCA2-anonymity of ciphertexts
 - Preserved against dishonest GM
 - Subsumes the CCA2-key privacy of the receiver's encryption scheme
 - ... and the IND-CCA2 security of the OA's encryption scheme
- Soundness: no coalition of OA with dishonest groups members can
 - Produce a ciphertext ψ with a valid proof π such that $Open(\psi, sk_{OA}) = \bot$
 - Output a ciphertext-proof pair whose opening disagrees with the implicit tracing mechanism
- Claiming Soundness: users cannot disclaim their own ciphertexts or "hijack" other users' ciphertexts

Our Construction: Ingredients

- Assumes a common reference string (like [KTY07, CLY09, EAJ13])
- Uses Groth-Sahai proof systems (Eurocrypt'08) and the Linear assumption
- Uses structure-preserving signatures (Abe *et al.*, Crypto'10) as membership certificates
- ... and CCA2-secure public key encryption schemes:
 - The Libert-Yung DLIN-based CCA2-secure cryptosystem (TCC'12): anonymity and built-in proofs of ciphertext validty
 - Kiltz's tag-based encryption scheme (publicly verifiable ciphertext validity)

イロト 不得下 イヨト イヨト

Our Construction: Outline

• Users' keys are of the form

 $\mathsf{pk} = (X_1, X_2, \Gamma_1, \Gamma_2) = (g_1^{x_1} g^{x_0}, g_2^{x_2} g^{x_0}, g^{\gamma_1}, g^{\gamma_2}) \in \mathbb{G}^4$

- GM holds a key pair $(sk_{\text{GM}}, pk_{\text{GM}})$ for a structure-preserving signature which allows certifying $pk = (X_1, X_2, \Gamma_1, \Gamma_2)$
- During the Join protocol, user sends a verifiable encryption Φ_{venc} of $trace_i = g^{\gamma_1 \gamma_2}$ under pk_{OA} , where $(g, \Gamma_1, \Gamma_2, g^{\gamma_1 \gamma_2})$ is a Diffie-Hellman tuple
- Each TGE ciphertext carries a traceability component

 $(T_1, T_2, T_3) = (g^{\delta}, \Gamma_1^{\delta/\omega}, \Gamma_2^{\omega})$

such that $trace_i = g^{\gamma_1 \gamma_2}$ solves the CDH instance (T_1, T_2, T_3)

• Ciphertext must include $T_4 = (\Lambda_0^{VK} \cdot \Lambda_1)^{\delta}$, where (SK, VK) allows one-time signing the whole ciphertext

Our Construction: Outline

• Each TGE ciphertext contains a traceability component

$$(T_1, T_2, T_3) = \left(g^{\delta}, \ \Gamma_1^{\delta/\omega}, \ \Gamma_2^{\omega}\right)$$

such that $trace_i = g^{\gamma_1 \gamma_2}$ allows testing $e(T_1, g^{\gamma_1 \gamma_2}) = e(T_2, T_3)$

• Using $(\gamma_1, \gamma_2) \in \mathbb{Z}_p^2$, user can claim $(T_1, T_2, T_3) = (g^{\delta}, \Gamma_1^{\delta/\omega}, \Gamma_2^{\omega})$ by computing $T_1^{\gamma_1} = \Gamma_1^{\delta}$ such that $e(T_1^{\gamma_1}, \Gamma_2) = e(T_2, T_3)$

... and proving knowledge of g^{1/γ_1} using a Groth-Sahai CRS "bound" to the ciphertext (cf. Malkin-Teranishi-Vahlis-Yung, TCC'11)

• Disclaiming proceeds similary

TGE Scheme for the Diffie-Hellman relation

A scheme for the Diffie-Hellman relation $\mathcal{R} = \{((X, Y), W) | e(g, W) = e(X, Y)\}.$

- Encryption phase:
 - Sender encrypts W under pk_i using a CCA2-anonymous encryption scheme
 - ... and pk_i under pk_{OA} using a CCA2-secure system
- Proof generation:
 - Compute commitments to pk_i and cert_{pki}
 - Prove that (i) commitments contain a valid pair (pk_i, cert_{pki}); (ii) pk_i is the key encrypted under pk_{OA}; (iii) consistency with traceability components
 - Prove that W satisfies \mathcal{R}

Our Construction: Security

Relies on the hardness of the following problem:

• The *q*-SFP Problem: given $(g_z, h_z, g_r, h_r, a, \tilde{a}, b, \tilde{b}) \in \mathbb{G}^8$ and tuples $\{(z_j, r_j, s_j, t_j, u_j, v_j, w_j)\}_{j=1}^q$ s.t. $e(a, \tilde{a}) = e(g_z, z_j) \cdot e(g_r, r_j) \cdot e(s_j, t_j)$ $e(b, \tilde{b}) = e(h_z, z_j) \cdot e(h_r, u_j) \cdot e(v_j, w_j),$

find a new such tuple $(z^*, r^*, s^*, t^*, u^*, v^*, w^*)$ with $z^* \neq 1_{\mathbb{G}}$

- The **Decision Linear** problem: given $(g, g_1, g_2, g_1^a, g_2^b, Z)$, decide if $Z = g^{a+b}$ or $Z \in_R \mathbb{G}$
- The Decision 3-party Diffie-Hellman assumption: given (g, g^a, g^b, g^c, η) decide if η = g^{abc} or η ∈_R G

Summary

Contributions:

- Security model for Traceable Group Encryption
- Efficient non-interactive construction in the standard model Ciphertexts and proofs fit within 2.18kB and 9.38kB at the 128-bit security level

Open problems:

- Practical construction with shorter proofs
- Improve the efficiency for general pairing-product equation

4 D N 4 B N 4 B N 4

Thanks!

2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶