Generalizing Homomorphic MACs for Arithmetic Circuits

Dario Catalano

Università di Catania Italy

Rosario Gennaro

CUNY USA

Dario Fiore

IMDEA Software Institute Spain

Luca Nizzardo*

Università di Milano-Bicocca Italy *work done while visiting CUNY

Outline

- Motivation
- Homomorphic MACs
 - Definition
 - Previous work
- Our results
- Summary & Open problems

□ How can the client be sure that P is executed on the company's data?

- □ How can the client be sure that P is executed on the company's data?
- Trivial solution: the cloud sends all the authenticated inputs.

- □ How can the client be sure that P is executed on the company's data?
- □ **Trivial solution**: the cloud sends all the authenticated inputs.

TOO INEFFICIENT

- □ How can the client be sure that P is executed on the company's data?
- Trivial solution: the cloud sends all the authenticated inputs.

TOO INEFFICIENT

Main Goals

Integrity
 Untrusted cloud must not be able to send incorrect y

Efficiency

Client's communication and storage must be minimized

An approach to solve the problem: Homomorphic Message Authenticators [GW13]

Main Goals

Integrity

Untrusted cloud must not be able to send incorrect *y*

□ Efficiency

Client's communication and storage must be minimized

An approach to solve the problem: Homomorphic Message Authenticators [GW13]

proves that "y is the output of P on authenticated data"

Main Goals

Integrity

Untrusted cloud must not be able to send incorrect *y*

Efficiency

Client's communication and storage must be minimized

An approach to solve the problem: Homomorphic Message Authenticators [GW13]

 \mathbf{Q} proves that "y is the output of \mathbf{P} on authenticated data"

[GW13]

5

 \neg **KeyGen(\lambda)** \rightarrow (sk,ek) // private key sk, public evaluation key ek

GW13]

- \neg **KeyGen(\lambda)** \rightarrow (sk,ek) // private key sk, public evaluation key ek
- $\neg Auth(sk,v,\tau) \rightarrow \sigma$ which authenticates value v w.r.t. label τ
 - Idea of labels: uniquely "remember" the outsourced data

```
$665.41 ~ "Jan, 3<sup>rd</sup>, 2012, Google stock price"
$668.28 ~ "Jan, 4<sup>th</sup>, 2012, Google stock price"
$659.01 ~ "Jan, 5<sup>th</sup>, 2012, Google stock price"
```


GW13

- \neg **KeyGen(\lambda)** \rightarrow (sk, ek) // private key sk, public evaluation key ek
- $\neg Auth(sk, v, \tau) \rightarrow \sigma$ which authenticates value v w.r.t. label τ
 - Idea of labels: uniquely "remember" the outsourced data

```
$665.41 - "Jan, 3<sup>rd</sup>, 2012, Google stock price"
$668.28 - "Jan, 4<sup>th</sup>, 2012, Google stock price"
$659.01 - "Jan, 5<sup>th</sup>, 2012, Google stock price"
```


- □ Eval(ek, P, $\sigma_1, ..., \sigma_n$) → σ new tag authenticating "output of labeled program P"
 - \Box A labeled program P is a circuit f with a label τ on each input wire
 - \bullet e.g., P computes the yearly average stock price for some days each day labeled by some $\pmb{\tau}_i$

[GW13]

- □ KeyGen(λ) \rightarrow (sk, ek) // private key sk, public evaluation key ek
- $\neg Auth(sk, v, \tau) \rightarrow \sigma$ which authenticates value v w.r.t. label τ
 - Idea of labels: uniquely "remember" the outsourced data

```
$665.41 - "Jan, 3", 2012, Google stock price"
$668.28 - "Jan, 4", 2012, Google stock price"
$659.01 - "Jan, 5", 2012, Google stock price"
```


- □ Eval(ek, P, $\sigma_1, ..., \sigma_n$) → σ new tag authenticating "output of labeled program P"
 - \Box A labeled program P is a circuit f with a label τ on each input wire
 - e.g., P computes the yearly average stock price for some days each day labeled by some au_i
- $\neg Ver(sk, P, v, \sigma)$ checks whether v is output of $P=(f, \tau_1, ..., \tau_n)$ on values authenticated with labels $\tau_1, ..., \tau_n$

GW13

- □ KeyGen(λ) \rightarrow (sk, ek) // private key sk, public evaluation key ek
- $\neg Auth(sk,v,\tau) \rightarrow \sigma$ which authenticates value v w.r.t. label τ
 - Idea of labels: uniquely "remember" the outsourced data

```
$665.41 - "Jan, 3<sup>rd</sup>, 2012, Google stock price"
$668.28 - "Jan, 4<sup>th</sup>, 2012, Google stock price"
$659.01 - "Jan, 5<sup>th</sup>, 2012, Google stock price"
```

- □ Eval(ek, P, σ_1 , ..., σ_n) → σ new tag authenticating "output of labeled program P"
 - \Box A labeled program P is a circuit f with a label τ on each input wire
 - e.g., P computes the yearly average stock price for some days each day labeled by some au_i
- $\neg Ver(sk, P, v, \sigma)$ checks whether v is output of $P=(f, \tau_1, ..., \tau_n)$ on values authenticated with labels $\tau_1, ..., \tau_n$

Properties of Homomorphic MACs

- □Security: ...in 2 slides
- Succinctness: size of tags (returned by Eval) does not depend on the number of inputs of the computation
- Composition: authenticated outputs can be further used as inputs to other circuits

Unforgeability against chosen-message attacks Basic idea: nobody, without sk, can create a "valid" MAC

Unforgeability against chosen-message attacks Basic idea: nobody, without sk, can create a "valid" MAC

Unforgeability against chosen-message attacks Basic idea: nobody, without *sk*, can create a "valid" MAC

Unforgeability against chosen-message attacks

Basic idea: nobody, without sk, can create a "valid" MAC

Unforgeability against chosen-message attacks

Basic idea: nobody, without sk, can create a "valid" MAC

□ Adversary wins if it makes a verification query ($\mathbf{P}, v^*, \sigma^*$) such that, for $\mathbf{P} = (\mathbf{f}, \tau_1, \ldots, \tau_n)$: $\mathbf{Ver}(sk, \mathbf{P}, v^*, \sigma^*) = \mathbf{accept}$ and

Unforgeability against chosen-message attacks

Basic idea: nobody, without sk, can create a "valid" MAC

 \square Adversary wins if it makes a verification query (P, v^*, σ^*) such that, for

$$P=(f, \tau_1, ..., \tau_n)$$
: $Ver(sk, P, v^*, \sigma^*) = accept$ and

Type-1: ∃ τ_j that has never been queried, and τ_j "does contribute" to

Unforgeability against chosen-message attacks

Basic idea: nobody, without sk, can create a "valid" MAC

 \square Adversary wins if it makes a verification query (P, v^*, σ^*) such that, for

$$P=(f, \tau_1, ..., \tau_n)$$
: $Ver(sk, P, v^*, \sigma^*) = accept$ and

- **Type-1:** ∃ τ_j that has never been queried, and τ_j "does contribute" to
- **Type-2:** all labels have been queried and $v^* \neq \mathbf{f}(v_1, ..., v_n)$

Realizations: Previous Work

Realizations: Previous Work

- □ **Homomorphic Signatures** [JMSW02] (more flexible public verification)
 - □Many realizations for linear functions [BFKW09, GKKR10, CFW11, AL11, CFW12, Freeman12, ALP13, ...]
 - □Beyond linear: only one scheme [BF11] for constant-degree polynomials

Realizations: Previous Work

- □ **Homomorphic Signatures** [JMSW02] (more flexible public verification)
 - □Many realizations for linear functions [BFKW09, GKKR10, CFW11, AL11, CFW12, Freeman12, ALP13, ...]
 - □Beyond linear: only one scheme [BF11] for constant-degree polynomials
- □ **Homomorphic MACs** (beyond linear):

Realizations: Previous Work

- □ **Homomorphic Signatures** [JMSW02] (more flexible public verification)
 - □Many realizations for linear functions [BFKW09, GKKR10, CFW11, AL11, CFW12, Freeman12, ALP13, ...]
 - □Beyond linear: only one scheme [BF11] for constant-degree polynomials
- □ **Homomorphic MACs** (beyond linear):

	Assumption	Security	Computations	Size of tags	Comp.
[GW13]	FHE	no verif. queries	Arbitrary	O(1)	

Realizations: Previous Work

- □ **Homomorphic Signatures** [JMSW02] (more flexible public verification)
 - □Many realizations for linear functions [BFKW09, GKKR10, CFW11, AL11, CFW12, Freeman12, ALP13, ...]
 - □Beyond linear: only one scheme [BF11] for constant-degree polynomials
- Homomorphic MACs (beyond linear):

	Assumption	Security	Computations	Size of tags	Comp.
[GW13]	FHE	no verif. queries	Arbitrary	O(1)	
[CF13] (1)	OWF	full	degree-d arithmetic circuits, d=O(1)	O(d)	

Realizations: Previous Work

- □ **Homomorphic Signatures** [JMSW02] (more flexible public verification)
 - □Many realizations for linear functions [BFKW09, GKKR10, CFW11, AL11, CFW12, Freeman12, ALP13, ...]
 - □Beyond linear: only one scheme [BF11] for constant-degree polynomials
- Homomorphic MACs (beyond linear):

	Assumption	Security	Computations	Size of tags	Comp.
[GW13]	FHE	no verif. queries	Arbitrary	O(1)	
[CF13] (1)	OWF	full	degree-d arithmetic circuits, d=O(1)	O(d)	
[CF13] (2)	d-DHI	full	degree-D arithmetic circuits for D=poly(k)	O(1)	X

	Assumption	Security	Computations	Size of tags	Comp.
[GW13]	FHE	no ver. queries	Arbitrary	O(1)	
[CF13] (1)	OWF	full	degree-d arithmetic circuits, d=O(1)	O(d)	
[CF13] (2)	d-DHI	full	degree-D arithmetic circuits for D=poly(k)	O(1)	X
This work	Encoding w/ limited malleability	full	degree-D arithmetic circuits for D=poly(k)	O(1)	
This work	(D,k)-MDHI on multilinear maps	full	degree-(D+k) arithmetic circuits	O(k²)	(k)

	Assumption	Security	Computations	Size of tags	Comp.
[GW13]	FHE	no ver. queries	Arbitrary	O(1)	
[CF13] (1)	OWF	Basic ic	degree-d arithmetic lea: additively homom	orphic but not	
[CF13] (2)	d-DHI	multiplicative homomorphic (similar to [BCIOP13]). Possible instantiations: Paillier, BV11.			X
This work	Encoding w/ limited malleability	full	degree-D arithmetic circuits for D=poly(k)	O(1)	
This work	(D,k)-MDHI on multilinear maps	full	degree-(D+k) arithmetic circuits	O(k²)	(k)

	Assumption	Security	Computations	Size of tags	Comp.	
[GW13]	FHE	no ver. queries	Arbitrary	O(1)		
[CF13] (1)	OWF	full	degree-d arithmetic circuits, d=O(1)	O(d)		
[CF13] (2)	d-DHI	l Vi	We use graded k-linear maps [GGH13, CLT13] and support composition circuits			
This work	Encoding w/ limited malleability	bounde	ortion circuits (X		
This work	(D,k)-MDHI on multilinear maps	full	degree-(D+k) arithmetic circuits	O(k²)	(k)	

	Assumption	Security	Computations	Size of tags	Comp.
[GW13]	FHE	no ver. queries	Arbitrary	O(1)	
[CF13] (1)	OWF	full	degree-d arithmetic circuits, d=O(1)	O(d)	
[CF13] (2)	d-DHI	l Vi	degree-D arithmetic graded k-linear maps and support compos	-	of X
This work	Encoding w/ limited malleability	_ A	d degree k. D=poly(k)	This Talk	X
This work	(D K)-MDHI	full	degree-(D+k) arithmetic circuits	O(k²)	(k)

Graded k-Linear maps

 \Box **Gen**(1 $^{\lambda}$, k) generates k groups of prime order p

$$G_1, G_2, ..., G_k$$

with a collection of bilinear maps

$$e_{ij}$$
: $G_i \times G_j \rightarrow G_{i+j}$: $e_{ij}(g_i^a, g_j^b) = g_{i+j}^{ab}$

- □ Notation: $g \in G_1$, $g_i = e(g,...,g)$ i times
- "Approximate" realizations via graded encodings [GGH13, CLT13]

□ KeyGen(1^{λ} , D, k):

- □Generate leveled k-linear groups of prime order p, e_{ii} : $G_i \times G_i \rightarrow G_{i+1}$
- ■Take random generator g in G_1 , sample $x, a \leftarrow Z_p$,
- ■Compute $g^{x \hat{i}}$, $g^{ax \hat{i}}$, for i=1...D
- ■Sample a seed K of a PRF $\mathbf{F}_{\mathbf{K}}$: $\{0,1\}^* \rightarrow \mathbf{Z}_p$
- $\square sk = (K, g, x, a), ek = (g^a, \{g^{x^i}, g^{ax^i}\}_i)$

□ KeyGen(1^{λ} , D, k):

- □Generate leveled k-linear groups of prime order p, e_{ii} : $G_i \times G_i \rightarrow G_{i+1}$
- □Take random generator g in G_1 , sample $x, a \leftarrow Z_p$,
- ■Compute $g^{x \hat{i}}$, $g^{ax \hat{i}}$, for i=1...D
- ■Sample a seed K of a PRF $\mathbf{F}_{\mathbf{K}}$: $\{0,1\}^* \rightarrow \mathbf{Z}_p$
- $\square sk = (K, g, x, a), ek = (g^a, \{g^{x^i}, g^{ax^i}\}_i)$
- $\square \text{Auth}(sk, v, \tau)$: the tag is a degree-1 polynomial $y(X) \in \mathbb{Z}_p[X]$ s.t.

$$y(0) = v$$
 and $y(x) = r_{\tau} = F_{\kappa}(\tau)$

□ KeyGen(1^{λ} , D, k):

- □Generate leveled k-linear groups of prime order p, e_{ij} : $G_i \times G_j \rightarrow G_{i+j}$
- □Take random generator g in G_1 , sample $x, a \leftarrow Z_p$,
- ■Compute $g^{x \hat{i}}$, $g^{ax \hat{i}}$, for i=1...D
- ■Sample a seed K of a PRF $\mathbf{F}_{\mathbf{K}}$: $\{0,1\}^* \rightarrow \mathbf{Z}_p$
- $\square sk = (K, g, x, a), ek = (g^a, \{g^{x^i}, g^{ax^i}\}_i)$
- $\square \text{Auth}(sk, v, \tau)$: the tag is a degree-1 polynomial $y(X) \in \mathbb{Z}_p[X]$ s.t.

$$y(0) = v$$
 and $y(x) = r_{\tau} = F_{\kappa}(\tau)$

□ Eval(ek,f): compute $y(X) \leftarrow f(y_1(X), ..., y_n(X))$ over $Z_p[X], |y(X)| \le D$

- □ KeyGen(1^{λ} , D, k):
 - □Generate leveled k-linear groups of prime order p, e_{ii} : $G_i \times G_i \rightarrow G_{i+1}$
 - Take random generator g in G_1 , sample $x, a \leftarrow Z_p$,
 - ■Compute $g^{x \hat{i}}$, $g^{ax \hat{i}}$, for i=1...D
 - ■Sample a seed K of a PRF $\mathbf{F}_{\mathbf{K}}$: $\{0,1\}^* \rightarrow \mathbf{Z}_p$
 - $\square sk = (K, g, x, a), ek = (g^a, \{g^{x^i}, g^{ax^i}\}_i)$
- $\neg \text{Auth}(sk, v, \tau)$: the tag is a degree-1 polynomial $y(X) \in \mathbb{Z}_p[X]$ s.t.

$$y(0) = v$$
 and $y(x) = r_{\tau} = F_{\kappa}(\tau)$

- □ Eval(ek,f): compute $y(X) \leftarrow f(y_1(X), ..., y_n(X))$ over $Z_p[X], |y(X)| \le D$
- \square Compress(ek, y(X)): $\Lambda \leftarrow \prod_{i=1}^{d} (\mathbf{g}^{x^i})^{yi} = \mathbf{g}^{y(x)-y(0)}$
 - □ Similarly, compute $\Gamma \leftarrow g^{a[y(x)-y(0)]} = \Lambda^a$. Output $\sigma = (y(0), \Lambda, \Gamma)$

```
□ CompositionEval(ek, \phi, \sigma_1 = (v_1, \Lambda_1, \Gamma_1), \sigma_2 = (v_2, \Lambda_2, \Gamma_2)) \rightarrow \sigma = (v, \Lambda, \Gamma) (simplified description for \phi single gate and elements in G_1)
```

```
□ CompositionEval(ek, \phi, \sigma_1 = (v_1, \Lambda_1, \Gamma_1), \sigma_2 = (v_2, \Lambda_2, \Gamma_2)) \rightarrow \sigma = (v, \Lambda, \Gamma) (simplified description for \phi single gate and elements in G_1) □ Addition: v = v_1 + v_2, \Lambda = \Lambda_1 \Lambda_2, \Gamma = \Gamma_1 \Gamma_2
```

```
 \begin{tabular}{ll} \hline \textbf{CompositionEval}(ek, \ \varphi, \ \sigma_1 = (v_1, \Lambda_1, \ \Gamma_1), \ \sigma_2 = (v_2, \ \Lambda_2, \ \Gamma_2) \ ) \rightarrow \sigma = (v, \ \Lambda, \ \Gamma) \\ & \text{ (simplified description for } \varphi \text{ single gate and elements in } \mathbf{G}_1) \\ \hline \textbf{DAddition: } v = v_1 + v_2, \quad \Lambda = \Lambda_1 \ \Lambda_2, \quad \Gamma = \Gamma_1 \ \Gamma_2 \\ \hline \textbf{DMultiplication: } v = v_1 v_2, \\ \hline \Lambda_1 = \mathbf{e}(\Lambda_1, \Gamma_2) \ \mathbf{e}(\Lambda_1, \ \mathbf{g}^a)^{v_2} \ \mathbf{e}(\mathbf{g}^a, \Lambda_2)^{v_1} \ = \ \mathbf{g_2}^{a[y(x) - v]} \\ \hline \Gamma_2 = \mathbf{e}(\Gamma_1, \Gamma_2) \ \mathbf{e}(\Gamma_1, \ \mathbf{g}^a)^{v_2} \ \mathbf{e}(\mathbf{g}^a, \Gamma_2)^{v_1} \ = \ \mathbf{g_2}^{a^2[y(x) - v]} \\ \hline \end{tabular}
```

```
 \begin{tabular}{ll} \hline \textbf{CompositionEval}(ek, \ \varphi, \ \sigma_1 = (v_1, \Lambda_1, \ \Gamma_1), \ \sigma_2 = (v_2, \ \Lambda_2, \ \Gamma_2) \ ) \rightarrow \sigma = (v, \ \Lambda, \ \Gamma) \\ & \text{ (simplified description for } \varphi \text{ single gate and elements in } \mathbf{G}_1) \\ \hline \textbf{BAddition: } v = v_1 + v_2, \quad \Lambda = \Lambda_1 \ \Lambda_2, \quad \Gamma = \Gamma_1 \ \Gamma_2 \\ \hline \textbf{BMultiplication: } v = v_1 v_2, \\ \hline \Lambda_1 = \mathbf{e}(\Lambda_1, \Gamma_2) \ \mathbf{e}(\Lambda_1, \ \mathbf{g}^a)^{v_2} \ \mathbf{e}(\mathbf{g}^a, \Lambda_2)^{v_1} \ = \ \mathbf{g}_2^{\ a[y(x) \ - \ v]} \\ \hline \Gamma_2 = \mathbf{e}(\Gamma_1, \Gamma_2) \ \ \mathbf{e}(\Gamma_1, \ \mathbf{g}^a)^{v_2} \ \mathbf{e}(\mathbf{g}^a, \Gamma_2)^{v_1} \ = \ \mathbf{g}_2^{\ a^2[y(x) \ - \ v]} \\ \hline \end{tabular}
```

■Basic idea: use the graded maps to compute $\phi(\Lambda_1, ..., \Lambda_n) \to \Lambda$, with deg $(\phi) \le k$

 $\neg \operatorname{Ver}(sk, P, v, \sigma) \rightarrow 0/1 \qquad \operatorname{Let} P = (\mathbf{f}, \tau_1, \dots, \tau_n) \text{ and } \sigma = (v, \Lambda, \Gamma)$

■Basic idea: use the graded maps to compute $\phi(\Lambda_1, ..., \Lambda_n) \rightarrow \Lambda$, with deg $(\phi) \leq k$

$$\neg \operatorname{Ver}(\underline{sk}, \mathbf{P}, v, \sigma) \rightarrow 0/1 \qquad \operatorname{Let} \mathbf{P} = (\mathbf{f}, \tau_1, \dots, \tau_n) \text{ and } \sigma = (v, \Lambda, \Gamma)$$

□ Derive $r_i \leftarrow F_K(\tau_i)$ i=1...n and compute $r \leftarrow f(r_1, ..., r_n)$

```
□ CompositionEval(ek, \phi, \sigma_1=(v_1, \Lambda_1, \Gamma_1), \sigma_2=(v_2, \Lambda_2, \Gamma_2) ) \rightarrow \sigma=(v, \Lambda, \Gamma) (simplified description for \phi single gate and elements in G_1)
□ Addition: v = v_1 + v_2, \Lambda = \Lambda_1 \Lambda_2, \Gamma = \Gamma_1 \Gamma_2
□ Multiplication: v = v_1 v_2,
\Lambda_1 = e(\Lambda_1, \Gamma_2) \ e(\Lambda_1, \ g^a)^{v_2} \ e(g^a, \Lambda_2)^{v_1} = g_2^{a[y(x) - v]}
\Gamma_2 = e(\Gamma_1, \Gamma_2) \ e(\Gamma_1, \ g^a)^{v_2} \ e(g^a, \Gamma_2)^{v_1} = g_2^{a^2[y(x) - v]}
□ Basic idea: use the graded maps to compute \phi(\Lambda_1, ..., \Lambda_n) \rightarrow \Lambda, with \deg(\phi) \leq k
```

- $\neg \operatorname{Ver}(\underline{sk}, \mathbf{P}, v, \sigma) \rightarrow 0/1 \qquad \operatorname{Let} \mathbf{P} = (\mathbf{f}, \tau_1, \dots, \tau_n) \text{ and } \sigma = (v, \Lambda, \Gamma)$
 - □ Derive $r_i \leftarrow F_{\kappa}(\tau_i)$ i=1...n and compute $r \leftarrow f(r_1, ..., r_n)$
 - Verify the invariant $\Lambda = g_d^{a \hat{} (d-1)[r v]}$

```
 \Box \text{CompositionEval}(\underline{ek}, \, \varphi, \, \sigma_1 = (v_1, \Lambda_1, \, \Gamma_1), \, \sigma_2 = (v_2, \, \Lambda_2, \, \Gamma_2) ) \rightarrow \sigma = (v_1, \, \Lambda_1, \, \Gamma_1) 
                            (simplified description for \phi single gate and elements in G_1)
     DMultiplication: <math>v = v_1 v_2,
                        \Lambda_1 = e(\Lambda_1, \Gamma_2) e(\Lambda_1, \mathbf{g}^a)^{v_2} e(\mathbf{g}^a, \Lambda_2)^{v_1} = \mathbf{g}_2^{a[y(x) - v]}
                       \Gamma_{2} = e(\Gamma_{1}, \Gamma_{2}) e(\Gamma_{1}, \mathbf{g}^{a})^{v_{2}} e(\mathbf{g}^{a}, \Gamma_{2})^{v_{1}} = \mathbf{g}_{2}^{a^{2}[y(x) - v]}
    ■Basic idea: use the graded maps to compute \phi(\Lambda_1, ..., \Lambda_n) \to \Lambda, with deg(\phi) \le k
\neg \operatorname{Ver}(sk, P, v, \sigma) \rightarrow 0/1 \qquad \operatorname{Let} P = (\mathbf{f}, \tau_1, \dots, \tau_n) \text{ and } \sigma = (v, \Lambda, \Gamma)
    □ Derive r_i \leftarrow F_{\kappa}(\tau_i) i=1...n and compute r \leftarrow f(r_1, ..., r_n)
    ■ Verify the invariant \Lambda = g_d^{a \hat{\phantom{a}} (d-1)[r - v]}
```

Correctness

```
□ CompositionEval(ek, \phi, \sigma_1=(v_1, \Lambda_1, \Gamma_1), \sigma_2=(v_2, \Lambda_2, \Gamma_2) ) → \sigma=(v_1, \Lambda_1, \Gamma_2) (simplified description for \phi single gate and elements in G_1)
□ Addition: v = v_1 + v_2, \Lambda = \Lambda_1 \Lambda_2, \Gamma = \Gamma_1 \Gamma_2
□ Multiplication: v = v_1 v_2,
\Lambda_1 = e(\Lambda_1, \Gamma_2) e(\Lambda_1, g^a)^{v_2} e(g^a, \Lambda_2)^{v_1} = g_2^{a[y(x) - v]}
\Gamma_2 = e(\Gamma_1, \Gamma_2) e(\Gamma_1, g^a)^{v_2} e(g^a, \Gamma_2)^{v_1} = g_2^{a^2[y(x) - v]}
```

- ■Basic idea: use the graded maps to compute $\phi(\Lambda_1, ..., \Lambda_n) \rightarrow \Lambda$, with deg $(\phi) \leq k$
- $\neg \operatorname{Ver}(\underline{sk}, \, \mathbf{P}, \, \underline{v}, \, \underline{\sigma}) \rightarrow 0/1 \qquad \operatorname{Let} \, \mathbf{P} = (\mathbf{f}, \, \underline{\tau}_1, \, \dots, \, \underline{\tau}_n) \text{ and } \underline{\sigma} = (\underline{v}, \, \underline{\Lambda}, \, \underline{\Gamma})$
 - □ Derive $r_i \leftarrow F_K(\tau_i)$ i=1...n and compute $r \leftarrow f(r_1, ..., r_n)$
 - Verify the invariant $\Lambda = g_d^{a \hat{} (d-1)[r v]}$
- Correctness

$$y(x) = f(y_1(x), ..., y_n(x)) = f(r_1, ..., r_n) = r$$

```
 \Box \text{CompositionEval}(\underline{ek}, \, \varphi, \, \sigma_1 = (v_1, \Lambda_1, \, \Gamma_1), \, \sigma_2 = (v_2, \, \Lambda_2, \, \Gamma_2) ) \rightarrow \sigma = (v_1, \, \Lambda_1, \, \Gamma_1) 
                           (simplified description for \phi single gate and elements in G_1)
    DMultiplication: <math>v = v_1 v_2,
                        \Lambda_1 = e(\Lambda_1, \Gamma_2) e(\Lambda_1, \mathbf{g}^a)^{v_2} e(\mathbf{g}^a, \Lambda_2)^{v_1} = \mathbf{g}_2^{a[y(x) - v]}
                       \Gamma_{2} = e(\Gamma_{1}, \Gamma_{2}) e(\Gamma_{1}, \mathbf{g}^{a})^{v_{2}} e(\mathbf{g}^{a}, \Gamma_{2})^{v_{1}} = \mathbf{g}_{2}^{a^{2}[y(x) - v]}
    ■Basic idea: use the graded maps to compute \phi(\Lambda_1, ..., \Lambda_n) \to \Lambda, with deg(\phi) \le k
```

- $\neg \operatorname{Ver}(sk, P, v, \sigma) \rightarrow 0/1 \qquad \operatorname{Let} P = (\mathbf{f}, \tau_1, \dots, \tau_n) \text{ and } \sigma = (v, \Lambda, \Gamma)$
 - □ Derive $r_i \leftarrow F_{\kappa}(\tau_i)$ i=1...n and compute $r \leftarrow f(r_1, ..., r_n)$
 - Verify the invariant $\Lambda = g_d^{a \hat{} (d-1)[r v]}$
- Correctness

$$y(x) = f(y_1(x), ..., y_n(x)) = f(r_1, ..., r_n) = r$$

Homomorphic properties of the graded maps

Result

- \square Security under the (D, k)-MDHI assumption
 - □Given (g, g^x , ..., $g^{x^{\wedge}D}$) in G_1 , hard to compute $g_k^{x^{\wedge}(Dk+1)}$ in G_k
 - It can be shown hard in the generic multilinear group model, by extending the Uber assumption of [BBG05]
- **Theorem**. If the (D,k)-MDHI assumption holds and \mathbf{F} is a PRF, then the scheme is a secure homomorphic MAC with tags of size $O(k^2)$ and supports arithmetic circuits of degree ≤D and composition circuits of degree ≤k.

Comparison to other approaches

- Another approach to solve the problem is to leverage SNARKs
 - The homomorphic signature is a SNARK proof about the existence of valid signatures on the inputs
- However, by following this approach:
 - composition is achieved via recursive composition of proofs (proofs about validity of other proofs) [BCCT13]
 - function independence achieved via universal circuits
- Overall, less natural approach and likely to require nonfalsifiable (knowledge) assumptions [GW11]
- In contrast, our solutions can be based on falsifiable assumptions

Conclusions & Open Problems

- We proposed new homomorphic MAC schemes
 - Based on encoding w/limited malleability
 - Multilinear maps trading succinctness vs. composition
- Main open questions:
 - Can we achieve Fully Homomorphic MACs with unbounded verification queries?
 - How about Fully-Homomorphic Signatures?

Conclusions & Open Problems

- We proposed new homomorphic MAC schemes
 - Based on encoding w/limited malleability
 - Multilinear maps trading succinctness vs. composition
- Main open questions:
 - Can we achieve Fully Homomorphic MACs with unbounded verification queries?
 - How about Fully-Homomorphic Signatures?

Interesting observation: if we assume ideal compact k-linear maps with k<p exponential, our scheme is homomorphic for all circuits of bounded depth and secure against unbounded verification queries.

Thanks