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An approach to solve the problem:
Homomorphic Message Authenticators [GW13]

FEEATY W W »
ﬂfﬁ’.mn Vyy Vyy ey U,

ERE 273
REE 227
FEE A,
sk
w proves that “y is the output of P on authenticated data”
Main Goals

O Integrit 0 Efficienc
Cloud cannot forge MACs. IQI << size of kinput values.
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-
oSecurity: ...in 2 slides

oSuccinctness: size of tags (returned by Eval) does
not depend on the number of inputs of the
computation

nComposition: authenticated outputs can be further
used as inputs to other circuits
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0At gate level: for every pair of authenticated inputs,
obtain an authenticated output

(’Uz, ) (’029 )

Very useful property if one wants to merge
partially authenticated computations,
e.g., for parallelization (MapReduce)

(f(’l)1,’vg,’l)3,’v4), )
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Unforgeability against chosen-message attacks
Basic idea: nobody, without sk, can create a “valid” MAC

{Each T; can be

T; 4U; |
| queried onlyonce |
@ @ =AUth(8k,‘L"7;,’Ui)
ﬁ & P
sk b=Ver(sk,P,v,0)

oAdversary wins if it makes a verification query (P,v*,o") such that, for
P=(f,z,, ..., ©,): Ver(sk,P,v*,0")=accept and

OType-1: 37, that has never been queried, and z; “does contribute” to

f
oType-2: all labels have been queried and v*#f(v ,...,v )
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I
nGen(1X, k) generates k groups of prime order p

Gy, Gy, ..., G
owith a collection of bilinear maps
eij: G X G—=Giy;:  €5(9i% 9;)=0i,;*
oNotation: ge<G, , gi=e(g,..., g) i times

0“Approximate” realizations via graded
encodings [GGH13, CLT13]
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oSecurity under the (D, k)-MDHI assumption

oGiven (g, g%, ..., 9" P) in G;, hard to compute g, = (Pk+1)
in G,

alt can be shown hard in the generic multilinear group
model, by extending the Uber assumption of [BBGOS5]

o0Theorem. If the (D,k)-MDHI assumption holds and F is

a PRF, then the scheme is a secure homomorphic MAC
with tags of size O(k?) and supports arithmetic circuits of

degree <D and composition circuits of degree Zk.



oAnother approach to solve the problem is to leverage SNARKSs

O0The homomorphic signature is a SNARK proof about the existence
of valid signatures on the inputs

oHowever, by following this approach:

Ocomposition is achieved via recursive composition of proofs
(proofs about validity of other proofs) [BCCT13]

ofunction independence achieved via universal circuits

oQverall, less natural approach and likely to require non-
falsifiable (knowledge) assumptions [GW11]

Oln contrast, our solutions can be based on falsifiable
assumptions



0 We proposed new homomorphic MAC schemes

O Based on encoding w/limited malleability

o Multilinear maps - trading succinctness vs. composition
0 Main open questions:

o Can we achieve Fully Homomorphic MACs with
unbounded verification queries ?

o How about Fully-Homomorphic Signatures?
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o Multilinear maps - trading succinctness vs. composition
0 Main open questions:

O Can we achieve Fully Homomorphic MACs W|th
unbounded verification queries ?

o How about Fully-Homomorphic Signatures?

( Interesting observation: if we assume ideal W
compact k-linear maps with k<p exponential, our I
scheme is homomorphic for all circuits of
bounded depth and secure against unbounded

| verlﬁcatlon querles







