Generalizing Homomorphic MACs

for Arithmetic Circuits

Dario Catalano Dario Fiore
Universita di Catania IMDEA Software Institute
Italy Spain
Rosario Gennaro Luca Nizzardo®
CUNY Universita di Milano-Bicocca
USA Italy

d ea *work done while visiting CUNY

PKC’14 - Buenos Aires, March 28, 2014

I
OMotivation

ocHomomorphic MACs
O Definition
O Previous work

oOur results

oSummary & Open problems

Delegating Computations on Outsourced Data

FEE 33
FEETIRR v,y Uy, ...
FEE 233
ol e

bl b

FEE A3
FEE 33 Vyy Vyy -o.
EEE 23
FEE A3
i ﬁ\ﬂ

“Compute P”

<

FEE A3
FEE 33 Vyy Vyy -o.
EEE 23
FEE A3
i ﬁ\ﬂ

“Compute P”

bk “Compute P”
FEE 333 V) UVpy 200, UV, <

CEE 733 >

PR 337 Y X
G ﬁ\r.\

Question:
0 How can the client be sure that P is executed on the company’s data?

FEETIY W W ®

FEETRR vy, vy bee, U,
EEE 273 >
FEE A

Ifﬂ’ﬁ\r.\

Question:

0 How can the client be sure that P is executed on the company’s data?
0 Trivial solution: the cloud sends all the authenticated inputs.

FEEAT] X "

FEETR vy, Uy be., U,
FEE/ 133 >
FEE A

EER ﬁ\ri\

Question:

0 How can the client be sure that P is executed on the company’s data?
0 Trivial solution: the cloud sends all the authenticated inputs.

TOO INEFFICIENT

FEETIY W W ®

“Compute P”
FEEIRY Vg5 Vg --o5 U, ¢
FEF 33 >
FEF 337 J X
R ﬁ\r-.\

Question:

0 How can the client be sure that P is executed on the company’s data?
0 Trivial solution: the cloud sends all the authenticated inputs.

TOO INEFFICIENT

Main Goals
0 Integrity 0 Efficiency
Untrusted cloud must not Client’s communication and

be able to send incorrect y storage must be minimized

FREIIY W W “Compute P*
FEE 333 UV, Uy, ...
EEE A33
FEE 323
R ﬁ\l:n\

sk

Main Goals

0 Integrity 0 Efficiency
Untrusted cloud must not Client’s communication and
be able to send incorrect y storage must be minimized

FEEITY W W
FEENY V5 U, -
EEE 233

EER| 227
I E ﬁ\ri\
sk
w proves that “y is the output of P on authenticated data”
Main Goals
0 Integrity 0 Efficiency
Untrusted cloud must not Client’s communication and

be able to send incorrect y storage must be minimized

An approach to solve the problem:
Homomorphic Message Authenticators [GW13]

FEEATY W W »
ﬂfﬁ’.mn Vyy Vyy ey U,

ERE 273
REE 227
FEE A,
sk
w proves that “y is the output of P on authenticated data”
Main Goals

O Integrit 0 Efficienc
Cloud cannot forge MACs. IQI << size of kinput values.

S
oKeyGen(A)—(sk,ek) // private key sk, public evaluation key ek

S
oKeyGen(A)—(sk,ek) // private key sk, public evaluation key ek

o0Auth(sk,v,)= o which authenticates value v w.r.t. label = v T
- Idea of labels: uniquely “remember” the outsourced data l |
$665.41 - “Jan, 3rd, 2012, Google stock price” Auth
$668.28 - “Jan, 4th, 2012, Google stock price”
$659.01 - “Jan, 5th, 2012, Google stock price” l

S
oKeyGen(A)—(sk,ek) // private key sk, public evaluation key ek

o0Auth(sk,v,)= o which authenticates value v w.r.t. label = v T
- Idea of labels: uniquely “remember” the outsourced data l |
$665.41 - “Jan, 3rd, 2012, Google stock price” Auth
$668.28 - “Jan, 4th, 2012, Google stock price”
$659.01 - “Jan, 5th, 2012, Google stock price” l

oEval(ek,P,)— o new tag authenticating “output of
labeled program P’

OA labeled program P is a circuit f with a label = on each input wire

. e.g., P computes the yearly average stock price for some days — each day
labeled by some 7,

S
oKeyGen(A)—(sk,ek) // private key sk, public evaluation key ek

o0Auth(sk,v,)= o which authenticates value v w.r.t. label = v T
- Idea of labels: uniquely “remember” the outsourced data l |
$665.41 - “Jan, 3rd, 2012, Google stock price” Auth
$668.28 - “Jan, 4th, 2012, Google stock price”
$659.01 - “Jan, 5th, 2012, Google stock price” l

oEval(ek,P,)— o new tag authenticating “output of
labeled program P’

OA labeled program P is a circuit f with a label = on each input wire

. e.g., P computes the yearly average stock price for some days — each day
labeled by some 7,

oVer(sk, P, v, o) checks whether v is output of P=(f,z,, ..., z,)
on values authenticated with labels z,,...,7,

S
oKeyGen(A)—(sk,ek) // private key sk, public evaluation key ek

o0Auth(sk,v,)= o which authenticates value v w.r.t. label = v T
- ldea of labels: uniquely “remember” the outsourced data ol
$665.41 - “Jan, 3rd, 2012, Google stock price” rAuth
$668.28 - “Jan, 4th, 2012, Google stock price”
$659.01 - “Jan, 5th, 2012, Google stock price” l

oEval(ek,P,)— o new tag authenticating “output of
labeled program P’

OA labeled program P is a circuit f with a label = on each input wire

. e.g., P computes the yearly average stock price for some days — each day
labeled by some 7,

oVer(sk, P, v, o) checks whether v is output of P=(f,z,, ..., z,)
on values authenticated with labels z,,...,7,

-
oSecurity: ...in 2 slides

oSuccinctness: size of tags (returned by Eval) does
not depend on the number of inputs of the
computation

nComposition: authenticated outputs can be further
used as inputs to other circuits

-
0At gate level: for every pair of authenticated inputs,

obtain an authenticated output

0At gate level: for every pair of authenticated inputs,
obtain an authenticated output

0At gate level: for every pair of authenticated inputs,
obtain an authenticated output

(’Uz,) (’029)

0At gate level: for every pair of authenticated inputs,
obtain an authenticated output

('U1,

0At gate level: for every pair of authenticated inputs,
obtain an authenticated output

('U1,

0At gate level: for every pair of authenticated inputs,
obtain an authenticated output

('U1,

0At gate level: for every pair of authenticated inputs,
obtain an authenticated output

(’Uz,) (’029)

Very useful property if one wants to merge
partially authenticated computations,
e.g., for parallelization (MapReduce)

(f(’l)1,’vg,’l)3,’v4),)

Unforgeability against chosen-message attacks
Basic idea: nobody, without sk, can create a “valid” MAC

Unforgeability against chosen-message attacks
Basic idea: nobody, without sk, can create a “valid” MAC

T; ,U;

=AUth(3k, ‘l:’z',’Ui)

Unforgeability against chosen-message attacks
Basic idea: nobody, without sk, can create a “valid” MAC

T; ,U;

=AUth(3k, ‘l:’z',’Ui)

P,v,
b=Ver(sk,P,v, o)

Unforgeability against chosen-message attacks
Basic idea: nobody, without sk, can create a “valid” MAC

{Each T; can be

t’&)U’L !
queried only once |}

=AUth(3k, ‘l:’z',’Uz')

P,v,
b=Ver(sk,P,v, o)

Unforgeability against chosen-message attacks
Basic idea: nobody, without sk, can create a “valid” MAC

{Each T; can be

Ty s Ug |
‘querled onl jonce |
R & Auth(oh ey el e
"‘ v ,~/’.'
ﬁ & P,v,
sk b=Ver(sk,P,v,0)

oAdversary wins if it makes a verification query (P,v*,o") such that, for
P=(f,z,, ..., ©,): Ver(sk,P,v*,0")=accept and

Unforgeability against chosen-message attacks
Basic idea: nobody, without sk, can create a “valid” MAC

{Each T; can be

Ty s Ug |
‘querled onl jonce |
R & Auth(eh ey el e
ks 44 ~‘:
ﬁ & P,v,
sk b=Ver(sk,P,v,0)

oAdversary wins if it makes a verification query (P,v*,o") such that, for
P=(f,z,, ..., ©,): Ver(sk,P,v*,0")=accept and

OType-1: 37, that has never been queried, and z; “does contribute” to
f

Unforgeability against chosen-message attacks
Basic idea: nobody, without sk, can create a “valid” MAC

{Each T; can be

T; 4U; |
| queried onlyonce |
@ @ =AUth(8k,‘L"7;,’Ui)
ﬁ & P
sk b=Ver(sk,P,v,0)

oAdversary wins if it makes a verification query (P,v*,o") such that, for
P=(f,z,, ..., ©,): Ver(sk,P,v*,0")=accept and

OType-1: 37, that has never been queried, and z; “does contribute” to

f
oType-2: all labels have been queried and v*#f(v ,...,v)

ocHomomorphic Signatures [JMSWO02] (more flexible - public verification)

OMany realizations for linear functions [BFKW09, GKKR10, CFW11, AL11, CFW12,
Freemanl?2, ALP13, ..]

OBeyond linear: only one scheme [BF11] for constant-degree polynomials

ocHomomorphic Signatures [JMSWO02] (more flexible - public verification)

OMany realizations for linear functions [BFKW09, GKKR10, CFW11, AL11, CFW12,
Freemanl?2, ALP13, ..]

OBeyond linear: only one scheme [BF11] for constant-degree polynomials
ocHomomorphic MACs (beyond linear):

Realizations: Previous Work
9 |

ocHomomorphic Signatures [JMSWO02] (more flexible - public verification)

OMany realizations for linear functions [BFKW09, GKKR10, CFW11, AL11, CFW12,
Freemanl?2, ALP13, ..]

OBeyond linear: only one scheme [BF11] for constant-degree polynomials
ocHomomorphic MACs (beyond linear):

Assumption Security Computations Size of tags Comp.

no verif.

qleries Arbitrary O(1) v

[GW13]

Realizations: Previous Work
9 |

ocHomomorphic Signatures [JMSWO02] (more flexible - public verification)

OMany realizations for linear functions [BFKW09, GKKR10, CFW11, AL11, CFW12,
Freemanl?2, ALP13, ..]

OBeyond linear: only one scheme [BF11] for constant-degree polynomials
ocHomomorphic MACs (beyond linear):

Assumption Security Computations Size of tags Comp.

no verif.

queries Arbitrary O(1) v

[GW13]

degree-d arithmetic 0(d) Vv

[CF13] (1) el ful circuits, d=0(1)

Realizations: Previous Work
9 |

ocHomomorphic Signatures [JMSWO02] (more flexible - public verification)

OMany realizations for linear functions [BFKW09, GKKR10, CFW11, AL11, CFW12,
Freemanl?2, ALP13, ..]

OBeyond linear: only one scheme [BF11] for constant-degree polynomials
ocHomomorphic MACs (beyond linear):

Assumption Security Computations Size of tags Comp.

no verif.

queries Arbitrary O(1) v

[GW13]

degree-d arithmetic

[CF13] (1) ez full Srouts. 4=O(1)

degree-D arithmetic
[CF13] (2) BEReEnlzI full circuits for O(1) X
D=poly(k)

Our Results

[GW13]

[CF13] (1)

[CF13] (2)

{ This work

{ This work

o

maps

arithmetic circuits

Assumption Security Computations Size of tags Comp.
no Ver. .
queries Arbitrary O(1) V4
degree-d arithmetic
OWF full circuits, d=0(1) O(d) v
degree-D arithmetic
d-DH| full circuits for O(1) X
Encoding w/ degree-D arithmetic E
limited full circuits for O(1) X ;
malleability D=poly(k) i
(D,k)-MDHI]
on multilinear full degree-(D+k) O(k?) v (k)

! e T

Our Results

NO Velr. .
FHE queries Arbitrary O(1) v
Aenrea_-A arithmaotic i —
OWF v

(Basic idea: additively homomorphic but not
multiplicative homomorphic (similar to

d-DH] [BCIOP13]). Possible instantiations: Paillier, x
BV11.
Ehcbding w / ﬂ:‘g@fee—b arithmetic
0 limited full circuits for O(1) X
malleability D=poly(k)
(D,k)-MDHI
0 " degree-(D+k) 5
o %J;E)hsnear full arithmetic circuits O() v (k)

Our

o

[GW13]

[CF13] (1)

[CF13] (2)

{ This work

{ This work

Results

Assumption Security Computations Size of tags Comp.
no Ver. .
FHE queries Arbitrary O(1) v
degree-d arithmetic
OWF full circuits, d=0(1) O(d) v
| degree-D arithmetic R
a-DH| We use graded k-linear maps [GGH13 “? x
remman s CLT13] and support composition circuits Of
Encoding W/ |bounded degree k. |
limited L B x
malleability / D=po|y(k)
(D,k)-MDHI# :
» degree-(D+k)) !
on multilinear| full arithmetic circuits O(ke) v K E
LS S i

Our

o

[GW13]

[CF13] (1)

[CF13] (2)

{ This work

{ This work

Results

Assumption Security Computations Size of tags Comp.
no Ver. .
FHE queries Arbitrary O(1) v
degree-d arithmetic
OWF full circuits, d=0(1) O(d) v
~_|deagree-D arithmetic I
a-DH| We use graded k-linear maps [GGH13 “? x
o en s CLT13] and support composition circuits of
Encodin w/
imito bounde&d gree ‘ ~__ThisTalk J x
malleability / D=po|y(k)
(D,k)-MDHI# :
» degree-(D+k)) !
on multilinear| full Arithmetic ircuits O(k2) v (k) E

I
nGen(1X, k) generates k groups of prime order p

Gy, Gy, ..., G
owith a collection of bilinear maps
eij: G X G—=Giy;: €5(9i% 9;)=0i,;*
oNotation: ge<G, , gi=e(g,..., g) i times

0“Approximate” realizations via graded
encodings [GGH13, CLT13]

I
cKeyGen(1?, D, k):
oGenerate leveled k-linear groups of prime order p, e;: G; X G;=G,,;

OTake random generator g in G, sample z,a « Z,,
oCompute gw%, gaw%, fori=1..D
OSample a seed K of a PRF F: {O,l}"‘—»Zp

ar’"1

Osk=(K, g, =, a), €k=(ga, {gafz’g 5)

I
cKeyGen(1?, D, k):
oGenerate leveled k-linear groups of prime order p, e;: G; X G;=G,,;

OTake random generator g in G, sample z,a « Z,,
T "1 axr "1

oComputeg ,g ,fori=1..D
OSample a seed K of a PRF F: {O,l}"‘—»Zp
Dsk=(K, g, z, @), ek=(g",{g" g~ '})
oAuth(sk,v,7): the tag is a degree-1 polynomial y(X)eZ | X] s.t.

y(0)=v and y(z)=r,=F(2)

0000000
cKeyGen(1?, D, k):
oGenerate leveled k-linear groups of prime order p, e;: G; X G;=G,,;
OTake random generator g in G, sample z,a « Z,,

xr"1 axr "1

oComputeg ,g ,fori=1..D
OSample a seed K of a PRF F: {O,l}"‘—»Zp
0sk=(K, g, z, a), ek=(g’, {gmAi,gamAi}i)
oAuth(sk,v,7): the tag is a degree-1 polynomial y(X)eZ | X] s.t.
y(0)=v and y(z)=r,=F ()

oEval(ek,f): compute y(X) < f(y,(X), ...,y,(X)) over Z |X], |y(X)|<D

-
cKeyGen(1?, D, k):
oGenerate leveled k-linear groups of prime order p, e;: G; X G;=G,,;
OTake random generator g in G, sample z,a « Z,,
oCompute g{EAi, gawAi, fori=1..D
OSample a seed K of a PRF F: {O,l}"‘—»Zp
0sk=(K, g, z, a), ek=(g", {gmAi,gamAi}i)
oAuth(sk,v,7): the tag is a degree-1 polynomial y(X)eZ | X] s.t.
y(0)=v and y(z)=r,=F (2

oEval(ek,f): compute y(X) < f(y,(X), ...,y,(X)) over Z |X], |y(X)|<D

nCompress(ek, y(X)): A« [14_, (")V = gV v

o Similarly, compute Fﬁga[y(w)'ym)]=/la. Output o=(y(0), A, I')

0000000
oCompositionkEval(ek, ¢, o, =(v,,A,, I'), 0,=(v,, A,, '))P>o=(v, A, I)

(simplified description for ¢ single gate and elements in G,)

0000000
oCompositionkEval(ek, ¢, o, =(v,,A,, I'), 0,=(v,, A,, '))P>o=(v, A, I)

(simplified description for ¢ single gate and elements in G,)
oAddition: v=v,+v,, A=A, A, I'=I', T,

e
oCompositionkEval(ek, ¢, o, =(v,,A,, I'), 0,=(v,, A,, '))P>o=(v, A, I)
(simplified description for ¢ single gate and elements in G,)
oAddition: v=v,+v,, A=A, A, I'=I', T,
oMultiplication: v=v,v,,
A1 = e(A1,I’2) e(Ap ga)vge(ga’Az)vl = za[y(w) =
r,=e(l,r,) e, g""”e@")" =g, "

e
oCompositionkEval(ek, ¢, o, =(v,,A,, I'), 0,=(v,, A,, '))P>o=(v, A, I)
(simplified description for ¢ single gate and elements in G,)
oAddition: v=v,+v,, A=A, A, I'=I', T,
oMultiplication: v=v,v,,
A, =e(A,TI,)elA, g)?e(@,A)" = gza[y(w) -l
r,=e(l,r, eI, g")”e@"Iy)" =g,
oBasic idea: use the graded maps to compute $(A,, ...,A) A , with deg(d)=<k

e
oCompositionkEval(ek, ¢, o, =(v,,A,, I'), 0,=(v,, A,, '))P>o=(v, A, I)
(simplified description for ¢ single gate and elements in G,)
oAddition: v=v,+v,, A=A, A, I'=I', T,
oMultiplication: v=v,v,,
A, =e(A,TI,)elA, g)?e(@,A)" = gza[y(w) -l
r,=e(l,r, eI, g")”e@"Iy)" =g,
oBasic idea: use the graded maps to compute $(A,, ...,A) A , with deg(d)=<k

oVer(sk, P, v, 0)—0/1 Let P=(f,z,, ...,) and o=(v, A, I")

e
oCompositionkEval(ek, ¢, o, =(v,,A,, I'), 0,=(v,, A,, '))P>o=(v, A, I)
(simplified description for ¢ single gate and elements in G,)
oAddition: v=v,+v,, A=A, A, I'=I', T,
oMultiplication: v=v,v,,
A, =e(A,TI,)elA, g)?e(@,A)" = gza[y(w) -l
r,=e(l,r, eI, g")”e@"Iy)" =g,
oBasic idea: use the graded maps to compute $(A,, ...,A) A , with deg(d)=<k
oVer(sk, P, v, 0)—0/1 Let P=(f,z,, ...,) and o=(v, A, I")

o Derive r;+F (7) i=1..n and compute r «f(r,, ...,)

n

e
oCompositionkEval(ek, ¢, o, =(v,,A,, I'), 0,=(v,, A,, '))P>o=(v, A, I)
(simplified description for ¢ single gate and elements in G,)
oAddition: v=v,+v,, A=A, A, I'=I', T,
oMultiplication: v=v,v,,
A, =e(A,TI,)elA, g)?e(@,A)" = gza[y(w) -l
r,=e(l,r, eI, g")”e@"Iy)" =g,
oBasic idea: use the graded maps to compute $(A,, ...,A) A , with deg(d)=<k
oVer(sk, P, v, 0)—0/1 Let P=(f,z,, ...,) and o=(v, A, I")

o Derive r;+F (7) i=1..n and compute r «f(r,, ...,)

n

o Verify the invariant A= g, (¢l -l

e
oCompositionkEval(ek, ¢, o, =(v,,A,, I'), 0,=(v,, A,, '))P>o=(v, A, I)
(simplified description for ¢ single gate and elements in G,)
oAddition: v=v,+v,, A=A, A, I'=I', T,
oMultiplication: v=v,v,,
A, =e(A,TI,)elA, g)?e(@,A)" = gza[y(w) -l
r,=e(l,r, eI, g")”e@"Iy)" =g,
oBasic idea: use the graded maps to compute $(A,, ...,A) A , with deg(d)=<k
oVer(sk, P, v, 0)—0/1 Let P=(f,z,, ...,) and o=(v, A, I")

o Derive r;+F (7) i=1..n and compute r «f(r,, ...,)

n

o Verify the invariant A= g, (¢l -l

oCorrectness

e
oCompositionkEval(ek, ¢, o, =(v,,A,, I'), 0,=(v,, A,, '))P>o=(v, A, I)
(simplified description for ¢ single gate and elements in G,)
oAddition: v=v,+v,, A=A, A, I'=I', T,
oMultiplication: v=v,v,,
A, =e(A,TI,)elA, g)?e(@,A)" = gza[y(w) -l
r,=e(l,r, eI, g")”e@"Iy)" =g,
oBasic idea: use the graded maps to compute $(A,, ...,A) A , with deg(d)=<k
oVer(sk, P, v, 0)—0/1 Let P=(f,z,, ...,) and o=(v, A, I")

o Derive r;+F (7) i=1..n and compute r «f(r,, ...,)

n

o Verify the invariant A= g, (¢l -l

oCorrectness

0y(2)= f(y,(2), wryu(@) = flry, .coir)=r

e
oCompositionkEval(ek, ¢, o, =(v,,A,, I'), 0,=(v,, A,, '))P>o=(v, A, I)
(simplified description for ¢ single gate and elements in G,)
oAddition: v=v,+v,, A=A, A, I'=I', T,
oMultiplication: v=v,v,,
A, =e(A,I,)e(lA,g)?e(@"Ay)" = gza[y(w) =
r,=e(l,r, eI, g")”e@"Iy)" =g,
oBasic idea: use the graded maps to compute $(A,, ...,A) A , with deg(d)=<k
oVer(sk, P, v, 0)—0/1 Let P=(f,z,, ...,) and o=(v, A, I")

o Derive r;+F (7) i=1..n and compute r «f(r,, ...,)

n

o Verify the invariant A= g, (¢l -l

oCorrectness
oy(x)= f(y,(x), ..,y () = f(r, ...,r)=r
o0 Homomorphic properties of the graded maps

e
oSecurity under the (D, k)-MDHI assumption

oGiven (g, g%, ..., 9" P) in G;, hard to compute g, = (Pk+1)
in G,

alt can be shown hard in the generic multilinear group
model, by extending the Uber assumption of [BBGOS5]

o0Theorem. If the (D,k)-MDHI assumption holds and F is

a PRF, then the scheme is a secure homomorphic MAC
with tags of size O(k?) and supports arithmetic circuits of

degree <D and composition circuits of degree Zk.

oAnother approach to solve the problem is to leverage SNARKSs

O0The homomorphic signature is a SNARK proof about the existence
of valid signatures on the inputs

oHowever, by following this approach:

Ocomposition is achieved via recursive composition of proofs
(proofs about validity of other proofs) [BCCT13]

ofunction independence achieved via universal circuits

oQverall, less natural approach and likely to require non-
falsifiable (knowledge) assumptions [GW11]

Oln contrast, our solutions can be based on falsifiable
assumptions

0 We proposed new homomorphic MAC schemes

O Based on encoding w/limited malleability

o Multilinear maps - trading succinctness vs. composition
0 Main open questions:

o Can we achieve Fully Homomorphic MACs with
unbounded verification queries ?

o How about Fully-Homomorphic Signatures?

0 We proposed new homomorphic MAC schemes

O Based on encoding w/limited malleability

o Multilinear maps - trading succinctness vs. composition
0 Main open questions:

O Can we achieve Fully Homomorphic MACs W|th
unbounded verification queries ?

o How about Fully-Homomorphic Signatures?

(Interesting observation: if we assume ideal W
compact k-linear maps with k<p exponential, our I
scheme is homomorphic for all circuits of
bounded depth and secure against unbounded

| verlﬁcatlon querles

