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This Work 

 UCE: Universal Computational Extractor[Bellare et al.@CRYPTO’13] 

 ＝Standard model security notion for a family of hash functions that 

“behave like a random oracle” 

 We ask: 

 
 

 Our results:  

CPA 

PKE 
UCE + 

Fujisaki- 

Okamoto 

CCA Deterministic PKE 
(with some constraint) 

Dolev-Dwork- 

Naor (DDN) 

CPA 

PKE 
UCE + ?? CCA 

PKE 

CPA PKE 

counterexample 

CCA PKE (via KEM) 

CCA1 PKE 
(for random messages) 

Negative  

Positive  



Outline 

 Background, Motivation, Results 

 

 Definitions for UCE 

 

 Negative Results 

 

 Positive Results 
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Random Oracles 

and Their Problems 

 Random Oracle (RO) Model [Bellare-Rogaway@CCS’93] 

≒ View a cryptographic hash function as a random function 

 
 

 Using ROs, many efficient and simple constructions 

are possible  

 PKE (OAEP, etc.), Signature (FDH, PSS, etc.), more 

 

 However, ROs have several problems  

 [CGH98] : a scheme secure in RO model, insecure in the std. model 

 [Nielsen02]:  a primitive that is only achievable using a RO 
 

In general, constructions and security proofs 

w/o ROs are desirable 
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SHA1, Keccak, etc. 



Universal Computational Extractor 

(UCE) [Bellare et al. @CRYPTO’13] 

 ＝Standard model security notion for a family of (hash) functions that 

“behave like random oracle” 

 Purpose： To instantiate ROs in RO-based constructions 

 

 [Bellare et al.@CRYPTO’13] showed simple (and potentially efficient) 

constructions of cryptographic primitives whose (efficient) 

constructions were only known in the RO model 

 

 PRIV-secure deterministic PKE 

 Related-key secure & KDM secure SKE 

 Point function obfuscation 

 Message-Locked Encryption 

 CPA secure instantiation of OAEP 

 Adaptively secure garbling schemes 

 etc. 
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UCE is quite powerful!! 



Our Motivation 

 UCE is new, and have not been understood well 

 Q. Is UCE useful for constructing other primitives? 

 In this work, we concretely ask: 
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CPA 

PKE 
UCE + ?? 

CCA 

PKE 

One of the most important cryptographic primitives 
• CCA security = de-facto standard security of PKE used in practice 

• implies NM, UC, security against Bleichenbacher’s attack 

 

A number of practical constructions using ROs are known: 
•  OAEP, Fujisaki-Okamoto, SAEP, REACT, OAEP+, etc. 



Our Results 

 We ask: 

 
 

 Our results:  

CPA 

PKE 
UCE + 

Fujisaki- 

Okamoto 

CCA Deterministic PKE 
(with some constraint) 

Dolev-Dwork- 

Naor (DDN) 

CPA 

PKE 
UCE + ?? CCA 

PKE 

CPA PKE 

counterexample 

CCA PKE (via KEM) 

CCA1 PKE 
(for random messages) 

Negative  

Positive  

We also do some abstraction of 

the “core” of the DDN construction as  

tag-based encryption (TBE) 



Interpretation of Our Results 

 Negative results: 

 UCE is not as powerful as ROs 

 Our positive results are non-trivial 

 

 Positive results 

 Imply that the DDN construction is quite powerful 

 Give us insights for CPA vs. CCA 
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CPA 

PKE 

UCE + 
construct CCA 

PKE 

NM-bounded 

-CCA PKE 
[PSV06,CDMW08] 

GAP?? 

JUMP!!  

c.f.) 

・[MH@TCC’14] 

・[Dachman-Soled@PKC’14] 



Outline 

 Background, Motivation, Results 

 

 Definitions for UCE 

 

 Negative Results 

 

 Positive Results 
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Family of Functions and 

UCE Security 

 A family of functions (function 

family) consists of (FKG, F) 

 

 UCE security for source class S 

(UCE[S] security) 
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Key Generation κ  FKG(1k) 

Evaluation y  Fκ(x) 

κ : function index  

P 

x Random 

Oracle F0 
(b = 0) 

Output 

b’ 

Leakage L 

A 

F1(・) = FK(・) 

 (b = 1) 

or 

κ  FKG(1k)  

b  {0,1} 

Func. index 

κ 

Source S ∊ S 

Function Family is 

UCE[S]-secure 

if Pr[b’ = b] = 1/2 + neg. 

for ∀S ∊ S and ∀PPT A 

S 
Fb(x) 



Family of Functions and 

UCE Security 

 A family of functions (function 

family) consists of (FKG, F) 

 

 UCE security for source class S 

(UCE[S] security) 
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Key Generation κ  FKG(1k) 

Evaluation y  Fκ(x) 

κ : function index  

P 

x Random 

Oracle F0 
(b = 0) 

Output 

b’ 

Leakage L 

A 

F1(・) = FK(・) 

 (b = 1) 

or 

κ  FKG(1k)  

b  {0,1} 

Func. index 

κ 

Source S ∊ S 

Function Family is 

UCE[S]-secure 

if Pr[b’ = b] = 1/2 + neg. 

for ∀S ∊ S and ∀PPT A 

S 
Fb(x) 

Actual strength of UCE security 

depends on what restrictions 

we put on the class of sources 

 

Class S is larger 

UCE[S] security is stronger 



Restrictions on Sources (1/2) 

Q. Why not consider all PPT algo. for sources? 

(i.e. Why not set S = {PPT algo.} ?) 

 A. UCE[PPT algo.] security is unachievable. 

Sources have to be at least (computationally) unpredictable: 

x 

F(x) 

Random 

Oracle F 

Source S is 

computationally unpredictable 

if Pr[x’ ∊ Q] = neg 

for any PPT P 
Leakage L 

P 

Source S ∊ S 

Let Q be the 

set of queries 

made by  

 

Source S is 

statistically unpredictable 

if Pr[x’ ∊ Q] = neg 

for any comp. unbounded P 

S ∊ Scup 

S ∊ Ssup 

S 

Output 

x’ 

S 



Restrictions on Sources (2/2) 

 Very recently, Brzsuka, Farshim, Mittelbach (BFM) attacked UCE[Scup] 

security using indistinguishability obfuscation (iO) 

 eprint 2014/099 

 

 To avoid BFM’s attack, we have to put further restrictions on the class of 

sources (… or disbelieve iO…) 

 Scup
t,q: the class of sources that are comp. unpredictable, 

            run at most t steps, and make at most q queries 

 Ssup
t,q:  (similar) 

 

Appeared on Feb. 10. 

However, we had known an 

“overview” of the attack 

by personal communication 



Restrictions on Sources (2/2) 

 Very recently, Brzsuka, Farshim, Mittelbach (BFM) attacked UCE[Scup] 

security using indistinguishability obfuscation (iO) 

 eprint 2014/099 

 

 To avoid BFM’s attack, we have to put further restrictions on the class of 

sources (… or disbelieve iO…) 

 Scup
t,q: the class of sources that are comp. unpredictable, 

            run at most t steps, and make at most q queries 

 Ssup
t,q:  (similar) 

 

 Later, it turned out that BFM’s attack can be mounted by  a comp. 

unpredictable source with q = 1 (much stronger than we expected  ) 

 To avoid it, t has to be smaller than their iO-based source… 

 Exactly how small t has to be depends on the running time of iO 

 So far, iO is very impractical, so that our results seem to survice 

 We can also restrict the “leakage size” of sources to avoid BFM’s attack 

Appeared on Feb. 10. 

However, we had known an 

“overview” of the attack 

by personal communication 



Outline 

 Background, Motivation, Results 

 

 Definitions for UCE 

 

 Negative Results 

 

 Positive Results 
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Fujisaki-Okamoto (FO) 

Construction (PKC’99 ver.) 

 Is a very important and useful result in public key crypto. 
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CPA 

PKE 
RO FO CCA PKE 

(in RO model) + 

EncFO(pk, m; r) 

 CFO  Enc(pk, (r||m) ; H(r||m) ) 

 Output CFO 

DecFO(sk, CFO) 

 (r||m)  Dec(sk, CFO) 

 Check 

CFO = Enc(pk, (r||m) ; H(r||m) ) 

 Output m 

 

PKGFO(1k) 

 (pk, sk)  PKG(1k) 

 Output (pk, sk) 



Natural Question 

Q. Can we instantiate RO in the FO construction with UCE? 
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CPA 

PKE 
UCE FO + 

EncFO(pk, m; r) 

 CFO  Enc(pk, (r||m) ; Fκ(r||m) ) 

 Output CFO 

DecFO(sk, CFO) 

 (r||m)  Dec(sk, CFO) 

 Check 

CFO = Enc(pk, (r||m) ; Fκ(r||m) ) 

 Output m 

 

PKGFO(1k) 

 (pk, sk)  PKG(1k) 

 κ  FKG(1k) 

 Output ((pk, κ), sk) 

?? CCA PKE 
(in std. model) 



Natural Question 

Q. Can we instantiate RO in the FO construction with UCE? 
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CPA 

PKE 
UCE FO + 

EncFO(pk, m; r) 

 CFO  Enc(pk, (r||m) ; Fκ(r||m) ) 

 Output c 

DecFO(sk, CFO) 

 (r||m)  Dec(sk, CFO) 

 Check 

CFO = Enc(pk, (r||m) ; Fκ(r||m) ) 

 Output m 

 

PKGFO(1k) 

 (pk, sk)  PKG(1k) 

 κ  FKG(1k) 

 Output ((pk, κ), sk) 

?? CCA PKE 
(in std. model) 

(Unfortunately) NO! 

• counterexample 1 

 

 

 

• counterexample 2 

 

 

CPA 

PKE 
UCE + FO CPA 

PKE 

CCA1 PKE 
(for random messages) 

CPA 

PKE 
UCE + FO 



Design Counterexample Pair 

PKE π’ and UCE F’ 

 

Modify PKE π into π’ 

 PKG’ = PKG 

 Enc’(pk, m; r) 

 If r = 0k, then z = 1 else z = 0 

 Return c = (z || Enc(pk, m; r)) 

 Dec’ ignores the first bit of c 

 

 

 

 

 
 

 

 Modify the function family F into F’: 

 FKG’(1k) 

 κFKG(1k) 

 Pick a “weak input” v*  {0,1}k 

 Return κ’ = (κ, v*) 

 F’κ’(x) 

 If last k-bit of x is v* then return y = 0k 

 Return y = Fκ(x) 

 

 

 

 

• Suppose we are given CPA secure PKE π and function family F 



Design Counterexample Pair 

PKE π’ and UCE F’ 

 

Modify PKE π into π’ 

 PKG’ = PKG 

 Enc’(pk, m; r) 

 If r = 0k, then z = 1 else z = 0 

 Return c = (z || Enc(pk, m; r)) 

 Dec’ ignores the first bit of c 

 

 

 

 

 
 

 If the PKE π is CPA secure 

 So is the PKE π’ 

 

 Modify the function family F into F’: 

 FKG’(1k) 

 κFKG(1k) 

 Pick a “weak input” v*  {0,1}k 

 Return κ’ = (κ, v*) 

 F’κ’(x) 

 If last k-bit of x is v* then return y = 0k 

 Return y = Fκ(x) 

 

 

 

 

 For any S ⊆ Scup: 

If F is UCE[S] secure  So is F’ 

The MSB of a 

ciphertext c reveals 

whether r = 0k 

F’ reveals whether 

the last k-bit of input 

x is v* 

• Suppose we are given CPA secure PKE π and function family F 



Use π’ and F’ 

in the FO Construction 

 PKFO = ( pk, κ’ = (κ, v*)  ) 

 

 If we encrypt the weak input v* by EncFO(PKFO, ・), 

 The MSB of the ciphertext CFO is always 1, because… 

 CFO = Enc’(pk, (r||v*), F’κ’(r||v*) )          

       = Enc’(pk, (r||v*), 0k)  

       = (1 || c’) for some c’ 

 

 If we encrypt a random message by EncFO(PKFO, ・), 

 Pr[MSB(CFO) =  1] is neg., due to UCE[S] security of F’ 

 

 Adversary using challenge plaintexts (M0, M1) = (v*, random) 

can break CPA security 
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Because F’κ’(r||v*) = 0k 

Because of how Enc’ is designed 



Negative Results: Summary 
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CPA 

PKE 
UCE + FO CPA 

PKE 

CCA1 PKE 
(for random messages) 

CPA 

PKE 
UCE + FO 

counterexample 

counterexample 



Negative Results: Summary 
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CPA 

PKE 
UCE + FO CPA 

PKE 

CCA1 PKE 
(for random messages) 

CPA 

PKE 
UCE + FO 

counterexample 

counterexample 

PKE secure for random 

messages may be used 

as a secure KEM 

Not explained in this slide. 

The counterexample pair is 

slightly more complicated to 

bypass the “re-encryption” validity 

check of ciphertexts in DecFO  



Outline 

 Background, Motivation, Results 

 

 Definitions for UCE 

 

 Negative Results 

 

 Positive Results 

 
24 



Key Encapsulation Mechanisms 

(KEM) 

= “Public Key” part of hybrid encryption 

 

 

 

 

 
 

 Cramer-Shoup’03 
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Key Generation (pk, sk)  KKG(1k) 

Encapsulation (C, K)  Encap(pk) 

Decapsulation K / ⊥  Decap(sk, C) 

K: session-key 

used by SKE 
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CCA 

KEM 

CCA 

SKE + CCA 

PKE 



Our CCA Secure KEM: 

Overview 

 

 

 
 

 

 In the original DDN, a plaintext is encrypted 

multiple times under independently generated pk’s 

 Extension from Naor-Yung’s double encryption 
 

 Its “core” structure can be understood as a special kind of 

tag-based encryption (TBE) 
 

 We formalize it as a stand-alone cryptographic primitive: 

“Puncturable TBE”  to reduce “description complexity” 
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CPA 

PKE 
UCE DDN 

CCA 

KEM + 
Original version: 

CPA PKE + one-time sig. + NIZK 



Puncturable TBE 

(PTBE) 

 = TBE with two decryption modes 

 

 

 

 

 

 

 

 Correctness:∀tag ≠ tag*, ∀ c  TEnc(pk, tag, m): 

 TDec(sk, tag, c) = PTDec(psktag*, tag, c) = m 

 Security : Extended CPA security 

≒CPA security in the presence of psktag* 
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Key Generation (pk, sk)  TKG(1k) 

Encryption c  TEnc(tpk, tag, m) 

Decryption m / ⊥  TDec (tsk, tag, c) 

Puncturing psktag*  Punc(sk, tag*) 

Punctured 

Decryption 
m / ⊥ 

 PTDec(psktag*, tag, c) 

The name “puncturable” is inspired 

by “puncturable PRF” of 

[Sahai-Waters@eprint 2013/454] 

Concrete instantiations from…  

・CPA PKE 

  (i.e. DDN’s building block itself) 

・Broadcast encryption 

・Multi-recipient PKE/KEM 



PTBE based on CPA PKE 

(Core Structure of Original DDN) 

 pk =  (                                  ),  sk =  (                 ) 
 

 

 

 TEnc(PK, tag, m) : 

 Let ti be the i-th bit of tag 

 ∀i =1,2,…,k : ci  Enc(pkti
i, m) 

 C = {ci} i=1,2,…,k 

 

 TDec (SK, tag, C): 

 Let t1 be the first bit of tag 

 m  Dec(skt1
1,c1)  
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pk0
1    pk0

2   ….  pk0
k 

pk1
1    pk1

2   ….  pk1
k 

sk0
1    sk0

2   ….  sk0
k 

sk1
1    sk1

2   ….  sk1
k 

 Punc(sk, tag*) : 

 Let t*i be the i-th bit of tag* 

 psktag* = {sk(1-t*i)
i} i=1,2,…,k 

 

 

 PTDec (psktag*, tag, C): 

 If tag* = tag then abort 

 Let ti be the i-th bit of tag 

 ℓ  min{ i | ti ≠ t*i} 

 m  Dec(sk(1-t*ℓ)
ℓ,cℓ)  

 



Our CCA Secure KEM 

 

 PK = (pk, ck, κ) 

 SK = sk 
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 Encap(PK) 

1. α  random 

2. (r || r’ || K)  UCEκ(α) 

3. tag  Com(ck, α; r’ ) 

4. c  TEnc(pk, tag, α; r ) 

5. C  (tag, c ) 

6. Output (C, K) 

 Decap(SK, C = (tag, c) ) 

1. α  TDec(sk, tag, c) 

2. (r || r’ || K)  UCEκ(α) 

3. Check 

c = TEnc(pk, tag, α; r ) 

∧ tag = Com(ck, α: r’ ) 

4. Output K 

(pk, sk): PTBE key pair 

ck: commitment key 

κ: UCE’s function index 



Our CCA Secure KEM 

 

 PK = (pk, ck, κ) 

 SK = sk 
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 Encap(PK) 

1. α  random 

2. (r || r’ || K)  UCEκ(α) 

3. tag  Com(ck, α; r’ ) 

4. c  TEnc(pk, tag, α; r ) 

5. C  (tag, c ) 

6. Output (C, K) 

 Decap(SK, C = (tag, c) ) 

1. α  TDec(sk, tag, c) 

2. (r || r’ || K)  UCEκ(α) 

3. Check 

c = TEnc(pk, tag, α; r ) 

∧ tag = Com(ck, α: r’ ) 

4. Output K 

(pk, sk): PTBE key pair 

ck: commitment key 

κ: UCE’s function index 

By using a commitment of α 

as a “tag”, we do not need 

one-time signature in DDN 

Due to validity check of c and tag, 

we do not need NIZK in DDN 



Our CCA Secure KEM 

 

 PK = (pk, ck, κ) 

 SK = sk 
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 Encap(PK) 

1. α  random 

2. (r || r’ || K)  UCEκ(α) 

3. tag  Com(ck, α; r’ ) 

4. c  TEnc(pk, tag, α; r ) 

5. C  (tag, c ) 

6. Output (C, K) 

 Decap(SK, C = (tag, c) ) 

1. α  TDec(sk, tag, c) 

2. (r || r’ || K)  UCEκ(α) 

3. Check 

c = TEnc(pk, tag, α; r ) 

∧ tag = Com(ck, α: r’ ) 

4. Output K 

(pk, sk): PTBE key pair 

ck: commitment key 

κ: UCE’s function index 

By using a commitment of α 

as a “tag”, we do not need 

one-time signature in DDN 

Due to validity check of c and tag, 

we do not need NIZK in DDN 

(tM: running time 

of algorithm M) 
There is a circularity between α and (r, r’), but it can be 

overcome by UCE[Scup
t,1] security of the function family 

with t = O(tTKG+tComKG+tEnc+tCom+tPunc) 
Use PTDec(psktag*, ・)  

to answer dec. queries 



Our CCA Secure KEM 

 

 PK = (pk, ck, κ) 

 SK = sk 
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 Encap(PK) 

1. α  random 

2. (r || r’ || K)  UCEκ(α) 

3. tag  Com(ck, α; r’ ) 

4. c  TEnc(pk, tag, α; r ) 

5. C  (tag, c ) 

6. Output (C, K) 

 Decap(SK, C = (tag, c) ) 

1. α  TDec(sk, tag, c) 

2. (r || r’ || K)  UCEκ(α) 

3. Check 

c = TEnc(pk, tag, α; r ) 

∧ tag = Com(ck, α: r’ ) 

4. Output K 

(pk, sk): PTBE key pair 

ck: commitment key 

κ: UCE’s function index 

By using a commitment of α 

as a “tag”, we do not need 

one-time signature in DDN 

Due to validity check of c and tag, 

we do not need NIZK in DDN 

There is a circularity between α and (r, r’), but it can be 

overcome by UCE[Scup
t,1] security of the function family 

with t = O(tTKG+tComKG+tEnc+tCom+tPunc) 
Use PTDec(psktag*, ・)  

to answer dec. queries 

(tM: running time 

of algorithm M) 

If PTBE is extended-CPA secure, COM is hiding and binding, 

F is UCE[Scup
t,1] secure (with t below), 

 Our KEM is CCA secure 



Extensions 

 Deterministic PKE 

 Slight modification from our KEM 

 Derive (r, r’) for TEnc and Com from a high min-entropy plaintext 

 Achieve CCA security for block sources [BFO08] 

with bounded running time 

 Restriction is due to the BFM’s iO-based attack 

 It is weaker than security for ordinary block sources, 

but still a meaningful security notion in practice 
 

 Weakening the UCE assumption 

 If we replace CPA PKE with Lossy PKE [BHY09], 

then we can weaken the assumption on the function family 

from UCE[Scup
t,1] security to UCE[Ssup

t,1] security 

 BFM’s iO-based attack does not apply to UCE[Ssup] security  
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Summary 

 We ask: 

 
 

 Our results:  

CPA 

PKE 
UCE + 

Fujisaki- 

Okamoto 

CCA Deterministic PKE 
(for block sources with 

bounded running time) 

Dolev-Dwork- 

Naor (DDN) 

CPA 

PKE 
UCE + ?? CCA 

PKE 

CPA PKE 

counterexample 

CCA PKE (via KEM) 

CCA1 PKE 
(for random messages) 

Negative  

Positive  

Abstraction by  

Puncturable TBE 

We can use Lossy PKE 

for weakening the UCE 

assumption 


