
1 1 1

Chosen Ciphertext Security

via UCE

Takahiro Matsuda (RISEC, AIST)

Goichiro Hanaoka (RISEC, AIST)

t-matsuda@aist.go.jp

2014/3/26 Wed.

PKC 2014

@Buenos Aires

3/26～3/28

This Work

 UCE: Universal Computational Extractor[Bellare et al.@CRYPTO’13]

 ＝Standard model security notion for a family of hash functions that

“behave like a random oracle”

 We ask:

 Our results:

CPA

PKE
UCE +

Fujisaki-

Okamoto

CCA Deterministic PKE
(with some constraint)

Dolev-Dwork-

Naor (DDN)

CPA

PKE
UCE + ?? CCA

PKE

CPA PKE

counterexample

CCA PKE (via KEM)

CCA1 PKE
(for random messages)

Negative 

Positive 

Outline

 Background, Motivation, Results

 Definitions for UCE

 Negative Results

 Positive Results

3

Random Oracles

and Their Problems

 Random Oracle (RO) Model [Bellare-Rogaway@CCS’93]

≒ View a cryptographic hash function as a random function

 Using ROs, many efficient and simple constructions

are possible 

 PKE (OAEP, etc.), Signature (FDH, PSS, etc.), more

 However, ROs have several problems 

 [CGH98] : a scheme secure in RO model, insecure in the std. model

 [Nielsen02]: a primitive that is only achievable using a RO

In general, constructions and security proofs

w/o ROs are desirable
4

SHA1, Keccak, etc.

Universal Computational Extractor

(UCE) [Bellare et al. @CRYPTO’13]

 ＝Standard model security notion for a family of (hash) functions that

“behave like random oracle”

 Purpose： To instantiate ROs in RO-based constructions

 [Bellare et al.@CRYPTO’13] showed simple (and potentially efficient)

constructions of cryptographic primitives whose (efficient)

constructions were only known in the RO model

 PRIV-secure deterministic PKE

 Related-key secure & KDM secure SKE

 Point function obfuscation

 Message-Locked Encryption

 CPA secure instantiation of OAEP

 Adaptively secure garbling schemes

 etc.
5

UCE is quite powerful!!

Our Motivation

 UCE is new, and have not been understood well

 Q. Is UCE useful for constructing other primitives?

 In this work, we concretely ask:

6

CPA

PKE
UCE + ??

CCA

PKE

One of the most important cryptographic primitives
• CCA security = de-facto standard security of PKE used in practice

• implies NM, UC, security against Bleichenbacher’s attack

A number of practical constructions using ROs are known:
• OAEP, Fujisaki-Okamoto, SAEP, REACT, OAEP+, etc.

Our Results

 We ask:

 Our results:

CPA

PKE
UCE +

Fujisaki-

Okamoto

CCA Deterministic PKE
(with some constraint)

Dolev-Dwork-

Naor (DDN)

CPA

PKE
UCE + ?? CCA

PKE

CPA PKE

counterexample

CCA PKE (via KEM)

CCA1 PKE
(for random messages)

Negative 

Positive 

We also do some abstraction of

the “core” of the DDN construction as

tag-based encryption (TBE)

Interpretation of Our Results

 Negative results:

 UCE is not as powerful as ROs

 Our positive results are non-trivial

 Positive results

 Imply that the DDN construction is quite powerful

 Give us insights for CPA vs. CCA

8

CPA

PKE

UCE +
construct CCA

PKE

NM-bounded

-CCA PKE
[PSV06,CDMW08]

GAP??

JUMP!! 

c.f.)

・[MH@TCC’14]

・[Dachman-Soled@PKC’14]

Outline

 Background, Motivation, Results

 Definitions for UCE

 Negative Results

 Positive Results

9

Family of Functions and

UCE Security

 A family of functions (function

family) consists of (FKG, F)

 UCE security for source class S

(UCE[S] security)

10

Key Generation κ  FKG(1k)

Evaluation y  Fκ(x)

κ : function index

P

x Random

Oracle F0
(b = 0)

Output

b’

Leakage L

A

F1(・) = FK(・)

 (b = 1)

or

κ  FKG(1k)

b  {0,1}

Func. index

κ

Source S ∊ S

Function Family is

UCE[S]-secure

if Pr[b’ = b] = 1/2 + neg.

for ∀S ∊ S and ∀PPT A

S
Fb(x)

Family of Functions and

UCE Security

 A family of functions (function

family) consists of (FKG, F)

 UCE security for source class S

(UCE[S] security)

11

Key Generation κ  FKG(1k)

Evaluation y  Fκ(x)

κ : function index

P

x Random

Oracle F0
(b = 0)

Output

b’

Leakage L

A

F1(・) = FK(・)

 (b = 1)

or

κ  FKG(1k)

b  {0,1}

Func. index

κ

Source S ∊ S

Function Family is

UCE[S]-secure

if Pr[b’ = b] = 1/2 + neg.

for ∀S ∊ S and ∀PPT A

S
Fb(x)

Actual strength of UCE security

depends on what restrictions

we put on the class of sources

Class S is larger

UCE[S] security is stronger

Restrictions on Sources (1/2)

Q. Why not consider all PPT algo. for sources?

(i.e. Why not set S = {PPT algo.} ?)

 A. UCE[PPT algo.] security is unachievable.

Sources have to be at least (computationally) unpredictable:

x

F(x)

Random

Oracle F

Source S is

computationally unpredictable

if Pr[x’ ∊ Q] = neg

for any PPT P
Leakage L

P

Source S ∊ S

Let Q be the

set of queries

made by

Source S is

statistically unpredictable

if Pr[x’ ∊ Q] = neg

for any comp. unbounded P

S ∊ Scup

S ∊ Ssup

S

Output

x’

S

Restrictions on Sources (2/2)

 Very recently, Brzsuka, Farshim, Mittelbach (BFM) attacked UCE[Scup]

security using indistinguishability obfuscation (iO)

 eprint 2014/099

 To avoid BFM’s attack, we have to put further restrictions on the class of

sources (… or disbelieve iO…)

 Scup
t,q: the class of sources that are comp. unpredictable,

 run at most t steps, and make at most q queries

 Ssup
t,q: (similar)

Appeared on Feb. 10.

However, we had known an

“overview” of the attack

by personal communication

Restrictions on Sources (2/2)

 Very recently, Brzsuka, Farshim, Mittelbach (BFM) attacked UCE[Scup]

security using indistinguishability obfuscation (iO)

 eprint 2014/099

 To avoid BFM’s attack, we have to put further restrictions on the class of

sources (… or disbelieve iO…)

 Scup
t,q: the class of sources that are comp. unpredictable,

 run at most t steps, and make at most q queries

 Ssup
t,q: (similar)

 Later, it turned out that BFM’s attack can be mounted by a comp.

unpredictable source with q = 1 (much stronger than we expected )

 To avoid it, t has to be smaller than their iO-based source…

 Exactly how small t has to be depends on the running time of iO

 So far, iO is very impractical, so that our results seem to survice

 We can also restrict the “leakage size” of sources to avoid BFM’s attack

Appeared on Feb. 10.

However, we had known an

“overview” of the attack

by personal communication

Outline

 Background, Motivation, Results

 Definitions for UCE

 Negative Results

 Positive Results

15

Fujisaki-Okamoto (FO)

Construction (PKC’99 ver.)

 Is a very important and useful result in public key crypto.

16

CPA

PKE
RO FO CCA PKE

(in RO model) +

EncFO(pk, m; r)

 CFO  Enc(pk, (r||m) ; H(r||m))

 Output CFO

DecFO(sk, CFO)

 (r||m)  Dec(sk, CFO)

 Check

CFO = Enc(pk, (r||m) ; H(r||m))

 Output m

PKGFO(1k)

 (pk, sk)  PKG(1k)

 Output (pk, sk)

Natural Question

Q. Can we instantiate RO in the FO construction with UCE?

17

CPA

PKE
UCE FO +

EncFO(pk, m; r)

 CFO  Enc(pk, (r||m) ; Fκ(r||m))

 Output CFO

DecFO(sk, CFO)

 (r||m)  Dec(sk, CFO)

 Check

CFO = Enc(pk, (r||m) ; Fκ(r||m))

 Output m

PKGFO(1k)

 (pk, sk)  PKG(1k)

 κ  FKG(1k)

 Output ((pk, κ), sk)

?? CCA PKE
(in std. model)

Natural Question

Q. Can we instantiate RO in the FO construction with UCE?

18

CPA

PKE
UCE FO +

EncFO(pk, m; r)

 CFO  Enc(pk, (r||m) ; Fκ(r||m))

 Output c

DecFO(sk, CFO)

 (r||m)  Dec(sk, CFO)

 Check

CFO = Enc(pk, (r||m) ; Fκ(r||m))

 Output m

PKGFO(1k)

 (pk, sk)  PKG(1k)

 κ  FKG(1k)

 Output ((pk, κ), sk)

?? CCA PKE
(in std. model)

(Unfortunately) NO!

• counterexample 1

• counterexample 2

CPA

PKE
UCE + FO CPA

PKE

CCA1 PKE
(for random messages)

CPA

PKE
UCE + FO

Design Counterexample Pair

PKE π’ and UCE F’

Modify PKE π into π’

 PKG’ = PKG

 Enc’(pk, m; r)

 If r = 0k, then z = 1 else z = 0

 Return c = (z || Enc(pk, m; r))

 Dec’ ignores the first bit of c

 Modify the function family F into F’:

 FKG’(1k)

 κFKG(1k)

 Pick a “weak input” v*  {0,1}k

 Return κ’ = (κ, v*)

 F’κ’(x)

 If last k-bit of x is v* then return y = 0k

 Return y = Fκ(x)

• Suppose we are given CPA secure PKE π and function family F

Design Counterexample Pair

PKE π’ and UCE F’

Modify PKE π into π’

 PKG’ = PKG

 Enc’(pk, m; r)

 If r = 0k, then z = 1 else z = 0

 Return c = (z || Enc(pk, m; r))

 Dec’ ignores the first bit of c

 If the PKE π is CPA secure

 So is the PKE π’

 Modify the function family F into F’:

 FKG’(1k)

 κFKG(1k)

 Pick a “weak input” v*  {0,1}k

 Return κ’ = (κ, v*)

 F’κ’(x)

 If last k-bit of x is v* then return y = 0k

 Return y = Fκ(x)

 For any S ⊆ Scup:

If F is UCE[S] secure  So is F’

The MSB of a

ciphertext c reveals

whether r = 0k

F’ reveals whether

the last k-bit of input

x is v*

• Suppose we are given CPA secure PKE π and function family F

Use π’ and F’

in the FO Construction

 PKFO = (pk, κ’ = (κ, v*))

 If we encrypt the weak input v* by EncFO(PKFO, ・),

 The MSB of the ciphertext CFO is always 1, because…

 CFO = Enc’(pk, (r||v*), F’κ’(r||v*))

 = Enc’(pk, (r||v*), 0k)

 = (1 || c’) for some c’

 If we encrypt a random message by EncFO(PKFO, ・),

 Pr[MSB(CFO) = 1] is neg., due to UCE[S] security of F’

 Adversary using challenge plaintexts (M0, M1) = (v*, random)

can break CPA security

21

Because F’κ’(r||v*) = 0k

Because of how Enc’ is designed

Negative Results: Summary

22

CPA

PKE
UCE + FO CPA

PKE

CCA1 PKE
(for random messages)

CPA

PKE
UCE + FO

counterexample

counterexample

Negative Results: Summary

23

CPA

PKE
UCE + FO CPA

PKE

CCA1 PKE
(for random messages)

CPA

PKE
UCE + FO

counterexample

counterexample

PKE secure for random

messages may be used

as a secure KEM

Not explained in this slide.

The counterexample pair is

slightly more complicated to

bypass the “re-encryption” validity

check of ciphertexts in DecFO

Outline

 Background, Motivation, Results

 Definitions for UCE

 Negative Results

 Positive Results

24

Key Encapsulation Mechanisms

(KEM)

= “Public Key” part of hybrid encryption

 Cramer-Shoup’03

25

Key Generation (pk, sk)  KKG(1k)

Encapsulation (C, K)  Encap(pk)

Decapsulation K / ⊥  Decap(sk, C)

K: session-key

used by SKE

25

CCA

KEM

CCA

SKE + CCA

PKE

Our CCA Secure KEM:

Overview

 In the original DDN, a plaintext is encrypted

multiple times under independently generated pk’s

 Extension from Naor-Yung’s double encryption

 Its “core” structure can be understood as a special kind of

tag-based encryption (TBE)

 We formalize it as a stand-alone cryptographic primitive:

“Puncturable TBE” to reduce “description complexity”

26

CPA

PKE
UCE DDN

CCA

KEM +
Original version:

CPA PKE + one-time sig. + NIZK

Puncturable TBE

(PTBE)

 = TBE with two decryption modes

 Correctness:∀tag ≠ tag*, ∀ c  TEnc(pk, tag, m):

 TDec(sk, tag, c) = PTDec(psktag*, tag, c) = m

 Security : Extended CPA security

≒CPA security in the presence of psktag*

27

Key Generation (pk, sk)  TKG(1k)

Encryption c  TEnc(tpk, tag, m)

Decryption m / ⊥  TDec (tsk, tag, c)

Puncturing psktag*  Punc(sk, tag*)

Punctured

Decryption
m / ⊥

 PTDec(psktag*, tag, c)

The name “puncturable” is inspired

by “puncturable PRF” of

[Sahai-Waters@eprint 2013/454]

Concrete instantiations from…

・CPA PKE

 (i.e. DDN’s building block itself)

・Broadcast encryption

・Multi-recipient PKE/KEM

PTBE based on CPA PKE

(Core Structure of Original DDN)

 pk = (), sk = ()

 TEnc(PK, tag, m) :

 Let ti be the i-th bit of tag

 ∀i =1,2,…,k : ci  Enc(pkti
i, m)

 C = {ci} i=1,2,…,k

 TDec (SK, tag, C):

 Let t1 be the first bit of tag

 m  Dec(skt1
1,c1)

 28

pk0
1 pk0

2 …. pk0
k

pk1
1 pk1

2 …. pk1
k

sk0
1 sk0

2 …. sk0
k

sk1
1 sk1

2 …. sk1
k

 Punc(sk, tag*) :

 Let t*i be the i-th bit of tag*

 psktag* = {sk(1-t*i)
i} i=1,2,…,k

 PTDec (psktag*, tag, C):

 If tag* = tag then abort

 Let ti be the i-th bit of tag

 ℓ  min{ i | ti ≠ t*i}

 m  Dec(sk(1-t*ℓ)
ℓ,cℓ)

Our CCA Secure KEM

 PK = (pk, ck, κ)

 SK = sk

29

 Encap(PK)

1. α  random

2. (r || r’ || K)  UCEκ(α)

3. tag  Com(ck, α; r’)

4. c  TEnc(pk, tag, α; r)

5. C  (tag, c)

6. Output (C, K)

 Decap(SK, C = (tag, c))

1. α  TDec(sk, tag, c)

2. (r || r’ || K)  UCEκ(α)

3. Check

c = TEnc(pk, tag, α; r)

∧ tag = Com(ck, α: r’)

4. Output K

(pk, sk): PTBE key pair

ck: commitment key

κ: UCE’s function index

Our CCA Secure KEM

 PK = (pk, ck, κ)

 SK = sk

30

 Encap(PK)

1. α  random

2. (r || r’ || K)  UCEκ(α)

3. tag  Com(ck, α; r’)

4. c  TEnc(pk, tag, α; r)

5. C  (tag, c)

6. Output (C, K)

 Decap(SK, C = (tag, c))

1. α  TDec(sk, tag, c)

2. (r || r’ || K)  UCEκ(α)

3. Check

c = TEnc(pk, tag, α; r)

∧ tag = Com(ck, α: r’)

4. Output K

(pk, sk): PTBE key pair

ck: commitment key

κ: UCE’s function index

By using a commitment of α

as a “tag”, we do not need

one-time signature in DDN

Due to validity check of c and tag,

we do not need NIZK in DDN

Our CCA Secure KEM

 PK = (pk, ck, κ)

 SK = sk

31

 Encap(PK)

1. α  random

2. (r || r’ || K)  UCEκ(α)

3. tag  Com(ck, α; r’)

4. c  TEnc(pk, tag, α; r)

5. C  (tag, c)

6. Output (C, K)

 Decap(SK, C = (tag, c))

1. α  TDec(sk, tag, c)

2. (r || r’ || K)  UCEκ(α)

3. Check

c = TEnc(pk, tag, α; r)

∧ tag = Com(ck, α: r’)

4. Output K

(pk, sk): PTBE key pair

ck: commitment key

κ: UCE’s function index

By using a commitment of α

as a “tag”, we do not need

one-time signature in DDN

Due to validity check of c and tag,

we do not need NIZK in DDN

(tM: running time

of algorithm M)
There is a circularity between α and (r, r’), but it can be

overcome by UCE[Scup
t,1] security of the function family

with t = O(tTKG+tComKG+tEnc+tCom+tPunc)
Use PTDec(psktag*, ・)

to answer dec. queries

Our CCA Secure KEM

 PK = (pk, ck, κ)

 SK = sk

32

 Encap(PK)

1. α  random

2. (r || r’ || K)  UCEκ(α)

3. tag  Com(ck, α; r’)

4. c  TEnc(pk, tag, α; r)

5. C  (tag, c)

6. Output (C, K)

 Decap(SK, C = (tag, c))

1. α  TDec(sk, tag, c)

2. (r || r’ || K)  UCEκ(α)

3. Check

c = TEnc(pk, tag, α; r)

∧ tag = Com(ck, α: r’)

4. Output K

(pk, sk): PTBE key pair

ck: commitment key

κ: UCE’s function index

By using a commitment of α

as a “tag”, we do not need

one-time signature in DDN

Due to validity check of c and tag,

we do not need NIZK in DDN

There is a circularity between α and (r, r’), but it can be

overcome by UCE[Scup
t,1] security of the function family

with t = O(tTKG+tComKG+tEnc+tCom+tPunc)
Use PTDec(psktag*, ・)

to answer dec. queries

(tM: running time

of algorithm M)

If PTBE is extended-CPA secure, COM is hiding and binding,

F is UCE[Scup
t,1] secure (with t below),

 Our KEM is CCA secure

Extensions

 Deterministic PKE

 Slight modification from our KEM

 Derive (r, r’) for TEnc and Com from a high min-entropy plaintext

 Achieve CCA security for block sources [BFO08]

with bounded running time

 Restriction is due to the BFM’s iO-based attack

 It is weaker than security for ordinary block sources,

but still a meaningful security notion in practice

 Weakening the UCE assumption

 If we replace CPA PKE with Lossy PKE [BHY09],

then we can weaken the assumption on the function family

from UCE[Scup
t,1] security to UCE[Ssup

t,1] security

 BFM’s iO-based attack does not apply to UCE[Ssup] security 
33

Summary

 We ask:

 Our results:

CPA

PKE
UCE +

Fujisaki-

Okamoto

CCA Deterministic PKE
(for block sources with

bounded running time)

Dolev-Dwork-

Naor (DDN)

CPA

PKE
UCE + ?? CCA

PKE

CPA PKE

counterexample

CCA PKE (via KEM)

CCA1 PKE
(for random messages)

Negative 

Positive 

Abstraction by

Puncturable TBE

We can use Lossy PKE

for weakening the UCE

assumption

