

Leakage-Flexible CCA-secure PKE: Simple Construction and Free of Pairing

Baodong Qin

Shengli Liu

Shanghai Jiao Tong University

PKC 2014 March 26, 2014

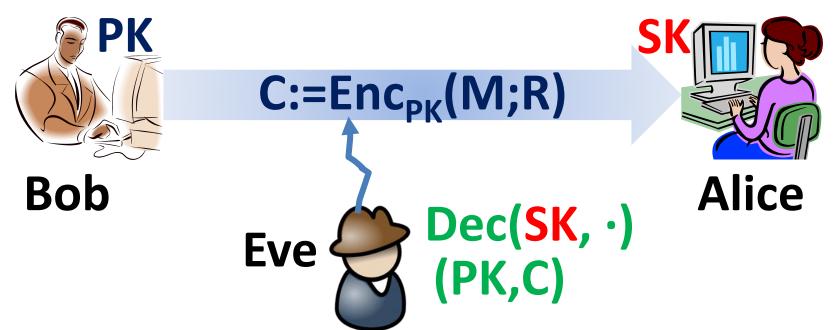
Contents

- Models of Key Leakage
- Previous Constructions and Limitations
- Refined subgroup indistinguishability (RSI) assumption
- Leakage-resilient CCA-secure PKE under the RSI assumptions
- Conclusion

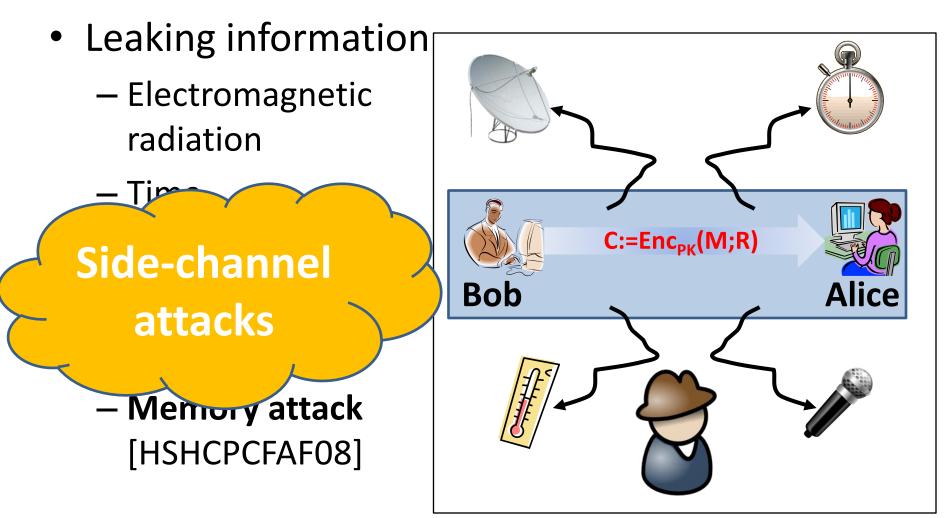
1. Models of Key Leakage

Traditional Security Models

- e.g. public-key setting
 - ✓ (SK, R) are private, (PK, C) are public
 - ✓ Semantic security[GM84]
 - Chosen-ciphertext security[NY90,RS91]

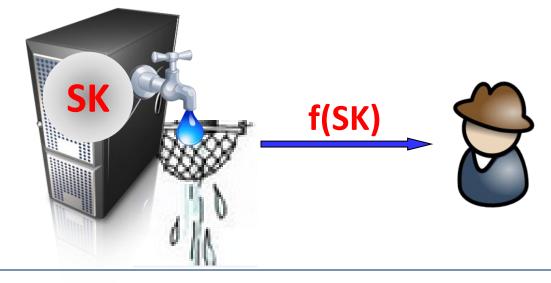


Real-Life Environments



Real-Life Environments

- Leaked information: sounds, power...
- ✓ Not all information is useful, but some
 - ✓ may reveals secret key
- ✓ How to model key leaks?



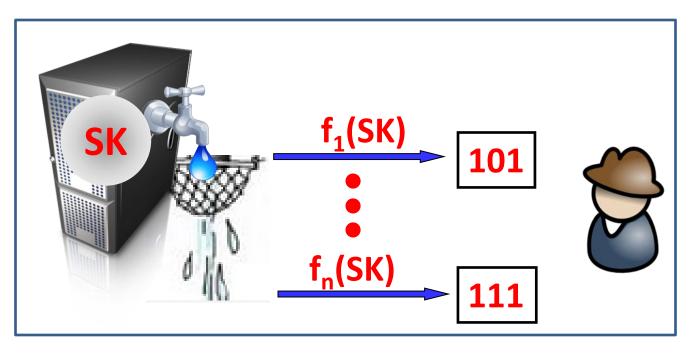
Key Leakage Models

- Only computation leaks information, e.g., [MicaliR04]
- Bounded leakage model, e.g., [AkaviaGV09,NaorS09]
- Continual leakage model, e.g., [BrakerskiKKV10, DodisHLW10]
- Auxiliary input model, e.g. [DodisKL09]
- Continual auxiliary input model, e.g. [YuenCZY12]
- •

Bounded-Leakage Model

- $\sum |\mathbf{f}_i| \leq \lambda \text{ (bound)}$
- Leakage-rate: $\lambda/|SK|$

✓ Leakage flexible if $\lambda/|SK|=1-o(1)$



Leakage-resilient CCA PKE

Adversary PK SK $Dec(C_1)$ SK SK f1(SK) 101 Challenger Dec(C_n) M, f_n(SK) 111 M_0, M_1 C*=Enc(PK, M_b) **Dec(C**₁) M₁ SK Dec(C_n) M_n b

Advantage:=|Pr[b=b']-1/2|

2. Previous Constructs and Limitations

 $\Delta \sigma a inst n$

Previous Constructions

Leakage-flexible CCA PKE

[DHLW10,GHV12] Practical, but complicated construction, involve pairing **Good** security, **good** security, **lower** leakage rate ✓ **Good** security, **good** effici(), **higher** leakage rate ✓ Good security, bad efficiency **√lexible** leakage **Good** security, **good** efficiency, **flexible** leakage ??

Our Contributions

- General instantiation of [QL13] LR-CCA, applying universal hash proof system[CS02] and one-time lossy filter [QL13]
 - Refined subgroup indistinguishability (RSI) assumption, Including DCR, QR...
- Improved leakage-rate: From 1/2-o(1) to 1-o(1)
 - 1/2-o(1) (DDH, DCR) from [QL13], improved to
 - leakage-flexible CCA-secure PKE
 - Practical, Simple construction, Without pairing
 - Under a special RSI assumption

3. RSI Assumption

RSI Assumption

• Group description: (G, T, g, h), such that

 $FG=G_1 x G_2$

- > G₁ and G₂ are cyclic groups; g and h are generators. r₁:=ord(g), r₂:=ord(h)
- >gcd(r₁,r₂)=1 (==> G is also a cyclic group)
- Elements in G are efficiently checkable.
- ≻An upper bound $T \ge r_1 x r_2$.

$$\{\mathbf{x} \leftarrow \mathbf{Z}_{\mathrm{T}}\} \approx_{\mathrm{s}} \{\mathbf{x} \leftarrow \mathbf{Z}_{\mathrm{r1} \times \mathrm{r2}}\}$$

RSI Assumption

 $\{\mathbf{w}: \mathbf{w} \leftarrow \mathbf{G}_1\} \approx \{\mathbf{w}: \mathbf{w} \leftarrow \mathbf{G}\}$ $\{\mathbf{w}: \mathbf{w} \leftarrow \mathbf{G}_1\} \approx \{\mathbf{w}: \mathbf{w} \leftarrow \mathbf{G} \setminus \mathbf{G}_1\}$

 $g^{X} \approx_{c} g^{X} \cdot h$ x is uniform over {1,..., T}

Example: a special RSI assumption (G, T, g, h)

>P=2pq+1 P, p, q primes **Group: Quadratic residues** $G=QR_{P}=G_{D}xG_{d}$ T=pq, $x \in QR_p, g=x^q, h=x^p$ **>**Assumption: $G_p \approx_c QR_P$ G. Nieto, et.al [NBD2005]

4. From RSI to PKE

From RSI (G, T, g, h) to Hash Proof System

- Subset membership problem
 Valid vs Invalid G₁ ≈ G\ G₁
- Projective hash $\{H_{sk}: G \rightarrow G\}$, $sk \leftarrow Z_T$:

• If
$$c = g^r \in G_1$$
 with witness r, then

$$\mathbf{H}_{sk}(\mathbf{c}) = (\mathbf{pk})^{\mathbf{r}} = \mathbf{g}^{sk \cdot \mathbf{r}} = \mathbf{g}^{\mathbf{r} \cdot sk} = \mathbf{c}^{sk}$$

From RSI to Hash Proof System

• ε -universal HPS:

for $c \in G \setminus G_1$, the guess probability of value $H_{sk}(c)$ conditioned on pk, is at most ε .

- Suppose e ≥ 2 is the smallest prime factor of r₁. Then HPS is 1/e universal
- Reduce the guess probability to 1/eⁿ by

n-fold parallelization.

 $\begin{array}{ll} H_{sk1}(c) = c^{sk1} & H_{sk2}(c) = c^{sk2} & \dots & H_{skn}(c) = c^{skn} \\ H_{sk1}(c) = pk_{1}^{r} & H_{sk2}(c) = pk_{2}^{r} & \dots & H_{skn}(c) = pk_{n}^{r} \end{array}$

(Dom, *l*)-One-time lossy filter: (FGen, FEval, FTag)

FGen(1^k) →(ek, td); ek also determines a tag space T, T_{inj} ⊂ T, T_{lossy} ⊂ T, T_{inj} ∩T_{lossy} =Ø
FEval(ek, t, x) computes f_{ek,t}(x). If t=(t_a, t_c) ∈T_{inj}, f_{ek,t}(x) is injective. If t=(t_a, t_c) ∈T_{lossy}, f_{ek,t}(x) has at most 2^ℓ values.
FTag(td, t_a) →t_c, such that t=(t_a, t_c) is a lossy tag.

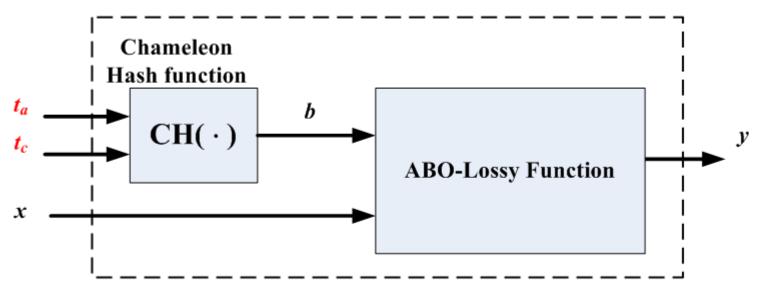
Indistinguishability:

{ (ek, (t_a, t_c)) } $_{random tc} \approx_{c} \{ (ek, (t_a, t_c')) \} _{tc' = FTag(td, ta)}$ Evasiveness

Given a lossy tag (t_a, t_c') , it is hard to get a new non-injective one.

- Construction idea
- All-but-one lossy function + chameleon hash function
- All-but-one lossy function: all tags are injective except one lossy t*

- Constructing ABO-Lossy Function from RSI
- Constructing OT-LF from Chameleon Hash and ABO-Lossy Function

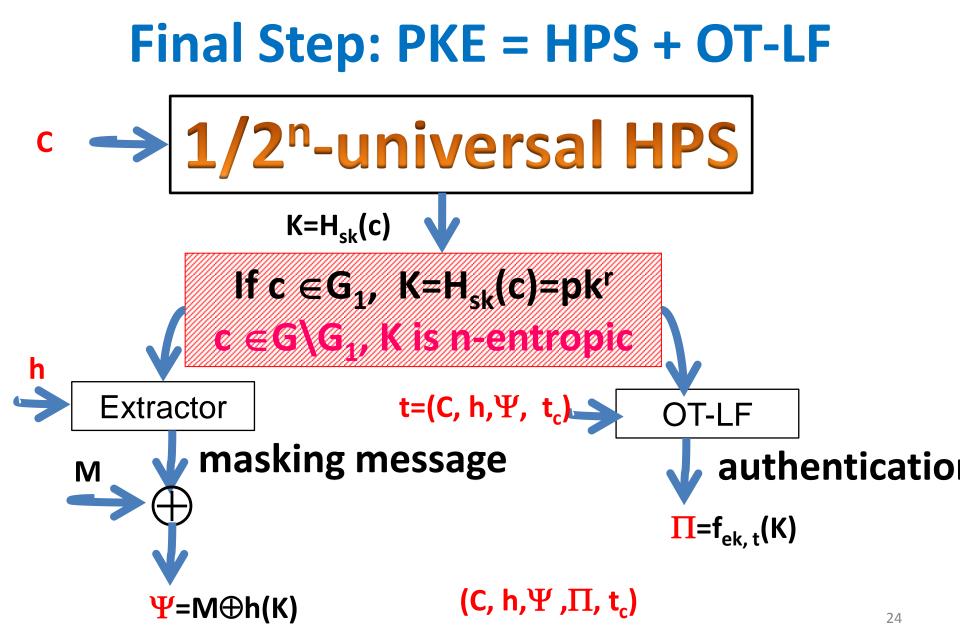


General Construction of One-Time Lossy Filter

- ABO-lossy function from RSI assumption
- A simple example: (G, T, g, h)

ek=g^s•h^{-b*}

- . $F_{abo}(ek, b, x) = (g^{s} \cdot h^{-b^{*}} \cdot h^{b})^{x} = (g^{s} \cdot h^{b-b^{*}})^{x}$ $x \in Z_{T}$
- If b=b*, then $F_{abo}(ek, b, x)=g^{sx} \in G_1$, hence $|F_{abo}(b^*, x)| \le r_1$.
- If b≠b*, then (g^sh^{b-b*})^x is injective, since g^sh^{b-b*} is a generator of G.



Parameters

For sufficiently large q, leakage-rate: $\lambda/|SK| \rightarrow 1-o(1)$

Comparison

Table 1: Parameters of leakage-flexible CCA-secure PKE schemes

Scheme	Group Type	Assumption	Group Size	Ciphertext Size	Pairing
			# bits	# G	
DHLW10	Prime	SXDH	160	$\lceil (2/\alpha)(2+1/2) \rceil + 16$	Yes
DHLW10	Prime	DLIN	160	$\lceil (3/\alpha)(3+1/2)\rceil + 35$	Yes
$\mathrm{GHV12}$	Prime	DLIN	160	$2\lceil 4/\alpha \rceil + 6$	Yes
This paper	Composite	RSI	$\lceil 1264/\alpha \rceil$	2	No

 $\alpha \in [0, 1)$ is the leakage-rate.

Conclusion

• A general assumption: RSI

 Improve leakage rate 1/2-o(1) from [QL13] (DDH,DCR) to 1-o(1) under a special RSI assumption.

• The first pairing-free leakage-flexible CCAsecure PKE

Thank you!