Differential Analaysis of Block Ciphers SIMON and SPECK

Alex Biryukov, Arnab Roy, Vesselin Velichkov

Introduction

Light-Weight Block Ciphers: SIMON and SPECK

Differential Anlaysis

SIMON: Round Function Search for Differential Trail Search for Differential

Differential Effect in SIMON

Embedded Bipartite Graphs

Key Recovery Attacks

Practical Attack: 19-round SIMON32 Attacking 11-round SPECK Attack Summary

Introduction Light-Weight Block Ciphers: SIMON and SPECK

Differential Anlaysis

SIMON: Round Function Search for Differential Trail Search for Differential

Differential Effect in SIMON

Embedded Bipartite Graphs

Key Recovery Attacks

Practical Attack: 19-round SIMON32 Attacking 11-round SPECK Attack Summary

- SIMON, SPECK proposed in 2013, by a group of researchers from the NSA
- Competitive designs Simplicity, Efficiency
- Both are constructed on ARX principle
- SIMON Feistel design with ARX based function
- SPECK ARX, Resemblance with *Threefish*

Feistel design with very simple F-function

Block Size -32, 48, 64 with key size 64, 72 or 96, 96 or 128 respectively.

SPECK

Round function is similar to Threefish XOR round-key instead of (modular)adding the round-key

Block Size -32, 48, 64 with key size 64, 72 or 96, 96 or 128 respectively.

Introduction

Light-Weight Block Ciphers: SIMON and SPECK

Differential Anlaysis

SIMON: Round Function Search for Differential Trail Search for Differential

Differential Effect in SIMON

Embedded Bipartite Graphs

Key Recovery Attacks

Practical Attack: 19-round SIMON32 Attacking 11-round SPECK Attack Summary

Introduction

Light-Weight Block Ciphers: SIMON and SPECK

Differential Anlaysis

SIMON: Round Function

Search for Differential Trail Search for Differential

Differential Effect in SIMON

Embedded Bipartite Graphs

Key Recovery Attacks

Practical Attack: 19-round SIMON32 Attacking 11-round SPECK Attack Summary

SIMON: DP of A(nd)RX round function

Find DP \iff Count paths in a DAG

Example: Impossible I/O Difference

Introduction

Light-Weight Block Ciphers: SIMON and SPECK

Differential Anlaysis

SIMON: Round Function Search for Differential Trail Search for Differential

Differential Effect in SIMON

Embedded Bipartite Graphs

Key Recovery Attacks

Practical Attack: 19-round SIMON32 Attacking 11-round SPECK Attack Summary

About Extending Matsui's Search for ARX

- ▶ **Matsui**[EuroCrypt'94] : while selecting DP of round ℓ check $p = p_1 \cdot p_2 \dots p_\ell \cdot B_{n-\ell} \ge \overline{B_n}$, if $p \ge \overline{B_n}$ update the bound
- <u>Problem</u>: DDT requires exponential memory for ARX designs

About Extending Matsui's Search for ARX

- ▶ **Matsui**[EuroCrypt'94] : while selecting DP of round ℓ check $p = p_1 \cdot p_2 \dots p_\ell \cdot B_{n-\ell} \ge \overline{B_n}$, if $p \ge \overline{B_n}$ update the bound
- <u>Problem</u>: DDT requires exponential memory for ARX designs
- Biryukov-Velichkov [CT-RSA'14]: Use partial DDT table for ARX (*Threshold Search*)
- The pDDT \mathcal{D} contains $\alpha \to \beta$ iff $p(\alpha \to \beta) \ge p_{\tau}$

About Extending Matsui's Search for ARX

- ▶ **Matsui**[EuroCrypt'94] : while selecting DP of round ℓ check $p = p_1 \cdot p_2 \dots p_\ell \cdot B_{n-\ell} \ge \overline{B_n}$, if $p \ge \overline{B_n}$ update the bound
- <u>Problem</u>: DDT requires exponential memory for ARX designs
- Biryukov-Velichkov [CT-RSA'14]: Use partial DDT table for ARX (*Threshold Search*)
- The pDDT \mathcal{D} contains $\alpha \to \beta$ iff $p(\alpha \to \beta) \ge p_{\tau}$
- While searching, if some (α → β) ∉ D, then it is possible to take several options e.g. Choose greedily, Search all possible, Highway-Country Road approach

Using the Threshold Search for ARX

- ► Parameters in *Threshold Search*: Size of pDDT (and p_τ), precomputation time for pDDT
- Lower p_τ can intuitively lead to better result; But increases the search complexity and size of the pDDT table

Using the Threshold Search for ARX

- ► Parameters in *Threshold Search*: Size of pDDT (and p_τ), precomputation time for pDDT
- Lower p_τ can intuitively lead to better result; But increases the search complexity and size of the pDDT table
- Including New Entries: The new transitions (α → β) ∉ D are added to a secondary table – D'

Using the Threshold Search for ARX

- ► Parameters in *Threshold Search*: Size of pDDT (and p_τ), precomputation time for pDDT
- Lower p_τ can intuitively lead to better result; But increases the search complexity and size of the pDDT table
- Including New Entries: The new transitions (α → β) ∉ D are added to a secondary table – D'
- ► Restrict size of D' By Hamming weight of the differences; Used for SPECK
- Another way select (α → β) at round ℓ such that at round ℓ + 1 there is at least one transition ∈ D; Used for SIMON together with Hamming weight

Highway-Country Road Analogy

Route: Luxembourg to Frankfurt

The Highway only route – 2hr 46min Highway-Country Road – 2hr 31min

Introduction

Light-Weight Block Ciphers: SIMON and SPECK

Differential Anlaysis

SIMON: Round Function Search for Differential Trail Search for Differential

Differential Effect in SIMON

Embedded Bipartite Graphs

Key Recovery Attacks

Practical Attack: 19-round SIMON32 Attacking 11-round SPECK Attack Summary

Extension for Differential: Clustering Trails

- ► We extend the *Threshold Search* for clustering trails.
- ▶ **Main Idea**: for round ℓ select transition with p_{ℓ} : $(p_1 \cdot p_2 \dots p_{\ell-1} p_{\ell} \cdot B_{n-\ell}) \ge \epsilon \cdot B_n$
- Input: Best trail found by threshold Search, pDDT table, e

Extension for Differential: Clustering Trails

- ► We extend the *Threshold Search* for clustering trails.
- ► **Main Idea**: for round ℓ select transition with p_{ℓ} : $(p_1 \cdot p_2 \dots p_{\ell-1} p_{\ell} \cdot B_{n-\ell}) \ge \epsilon \cdot B_n$
- Input: Best trail found by threshold Search, pDDT table, e
- Efficiency: Hamming weight and probability constraints can be applied
- ► Difference with branch-and-bound We prune the search tree by limiting the search to *e* region of the best known probability

Extension for Differential: Clustering Trails

- ► We extend the *Threshold Search* for clustering trails.
- ► **Main Idea**: for round ℓ select transition with p_{ℓ} : $(p_1 \cdot p_2 \dots p_{\ell-1} p_{\ell} \cdot B_{n-\ell}) \ge \epsilon \cdot B_n$
- Input: Best trail found by threshold Search, pDDT table, e
- Efficiency: Hamming weight and probability constraints can be applied
- ► Difference with branch-and-bound We prune the search tree by limiting the search to *e* region of the best known probability
- ► We apply this technique to both SIMON and SPECK

An overview: Differential Search

An overview: Differential Search

An overview: Differential Search

Search Results

Cipher	# rounds	log ₂ p, trail	log ₂ p, diff.	# trails
SIMON32	13	-36	-29.69	45083
			-28.11	full search
		-36	-30.20	—
	14		-30.94	full search
SIMON48	15	-48	-42.11	112573
		-52	-43.01	-
SIMON64	20	-70	-58.68	210771
		-70	-59.01	—
	21	-72	-60.53	337309
		-72	-61.01	_
SPECK32	9	-30	-30	1
SPECK48	10	-40	-39.75	137
			-40.55	—
	11	-47	-46.48	384
Speck64	13	-58	-57.70	48
			-58.90	-
	14	-60	-59.11	125

Introduction

Light-Weight Block Ciphers: SIMON and SPECK

Differential Anlaysis

SIMON: Round Function Search for Differential Trail Search for Differential

Differential Effect in SIMON

Embedded Bipartite Graphs

Key Recovery Attacks

Practical Attack: 19-round SIMON32 Attacking 11-round SPECK Attack Summary

Introduction

Light-Weight Block Ciphers: SIMON and SPECK

Differential Anlaysis

SIMON: Round Function Search for Differential Trail Search for Differential

Differential Effect in SIMON Embedded Bipartite Graphs

Key Recovery Attacks

Practical Attack: 19-round SIMON32 Attacking 11-round SPECK Attack Summary

The differential graph for SIMON

The differential graph for SIMON

The differential graph for SIMON

22/36

The differential graph for SIMON

Bipartite Subgraph of Trails

Feistel:
$$\Delta_L^i = 11 \implies \Delta_R^{i+1} = 11$$

 $\Delta_L^i \xrightarrow{f} \nabla = \{000 \star 000 \star 00 \star 00 \star 0\}$

 $\nabla \oplus (\Delta_L^i \lll 2) \oplus \Delta_R^i) = \Delta_L^{i+1}$ $120 \oplus (22) \oplus 106 = 4$ $122 \oplus (22) \oplus 104 = 4$

Introduction

Light-Weight Block Ciphers: SIMON and SPECK

Differential Anlaysis

SIMON: Round Function Search for Differential Trail Search for Differential

Differential Effect in SIMON

Embedded Bipartite Graphs

Key Recovery Attacks

Practical Attack: 19-round SIMON32 Attacking 11-round SPECK Attack Summary

Introduction

Light-Weight Block Ciphers: SIMON and SPECK

Differential Anlaysis

SIMON: Round Function Search for Differential Trail Search for Differential

Differential Effect in SIMON

Embedded Bipartite Graphs

Key Recovery Attacks

Practical Attack: 19-round SIMON32

Attacking 11-round SPECK Attack Summary

19 Round SIMON32: Practical Attack

Use 13 round differential with probability $\approx 2^{-28.11},$ Add 2 rounds on top, 4 rounds at the end

Guess 25 bits(and linear combinations) from K^{18} , K^{17} , K^{16}

 Identify pairs satisfying top 2 rounds truncated difference – guess 2 bits of K⁰

We use four differentials

 $\begin{aligned} \mathcal{D}_1 &: (2000, 8000) \to (2000, 0) \\ \mathcal{D}_2 &: (4000, 0001) \to (4000, 0) \\ \mathcal{D}_3 &: (0004, 0010) \to (0004, 0) \\ \mathcal{D}_4 &: (0008, 0020) \to (0008, 0) \end{aligned}$

Truncated diffrence for top 2 round

(0010 0000 *000 001*,**00 00** 00*0 1**0) (0100 000* 0000 01*0,*000 0**0 0*01 **0*) (000* 0000 01*0 0100,0**0 0*01 **0* *000) (00*0 0000 1*00 1000,**00 *01* *0** 0000)

- Data Collection: Encrypt structure of size 2³⁰
- Filtering: $2^{30-18} = 2^{12}$ pairs remain for any D_i
- Counting : For each D_i
 - ▶ 2¹² pairs, 25 bit guessing
 - 2¹⁷ candidates for 25 bits
- Intersection of Counters:
 - ▶ $D_1, D_2 19$ common bits (guessed) $\implies 2^{15}$ for 35 bits
 - ▶ Intersection: D_3 , D_1 , D_2 20 bits common
- 2¹² candidates for 42 bits
- ► Intersection with D₄ ⇒ 2⁷ candidates for 47 bits But 39 from last 4 rounds
- ▶ By brute-forcing rest total $2^{25+7} = 2^{32}$ key guesses

- Data Collection: Encrypt structure of size 2³⁰
- Filtering: $2^{30-18} = 2^{12}$ pairs remain for any D_i
- Counting : For each D_i
 - 2¹² pairs, 25 bit guessing
 - 2¹⁷ candidates for 25 bits
- Intersection of Counters:
 - ▶ $D_1, D_2 19$ common bits (guessed) $\implies 2^{15}$ for 35 bits
 - Intersection: $\mathcal{D}_3, \mathcal{D}_1, \mathcal{D}_2 20$ bits common
- 2¹² candidates for 42 bits
- ► Intersection with D₄ ⇒ 2⁷ candidates for 47 bits But 39 from last 4 rounds
- ▶ By brute-forcing rest total $2^{25+7} = 2^{32}$ key guesses

- Data Collection: Encrypt structure of size 2³⁰
- Filtering: $2^{30-18} = 2^{12}$ pairs remain for any D_i
- Counting : For each D_i
 - 2¹² pairs, 25 bit guessing
 - 2¹⁷ candidates for 25 bits
- Intersection of Counters:
 - $\mathcal{D}_1, \mathcal{D}_2 19$ common bits (guessed) $\implies 2^{15}$ for 35 bits
 - ► Intersection: D₃, D₁, D₂ 20 bits common
- 2¹² candidates for 42 bits
- ► Intersection with D₄ ⇒ 2⁷ candidates for 47 bits But 39 from last 4 rounds
- By brute-forcing rest total $2^{25+7} = 2^{32}$ key guesses

- Data Collection: Encrypt structure of size 2³⁰
- Filtering: $2^{30-18} = 2^{12}$ pairs remain for any D_i
- Counting : For each D_i
 - 2¹² pairs, 25 bit guessing
 - 2¹⁷ candidates for 25 bits
- Intersection of Counters:
 - $\mathcal{D}_1, \mathcal{D}_2 19$ common bits (guessed) $\implies 2^{15}$ for 35 bits
 - Intersection: $\mathcal{D}_3, \mathcal{D}_1, \mathcal{D}_2 20$ bits common

2¹² candidates for 42 bits

- ► Intersection with D₄ ⇒ 2⁷ candidates for 47 bits But 39 from last 4 rounds
- By brute-forcing rest total $2^{25+7} = 2^{32}$ key guesses

- Data Collection: Encrypt structure of size 2³⁰
- Filtering: $2^{30-18} = 2^{12}$ pairs remain for any D_i
- Counting : For each D_i
 - 2¹² pairs, 25 bit guessing
 - 2¹⁷ candidates for 25 bits
- Intersection of Counters:
 - $\mathcal{D}_1, \mathcal{D}_2 19$ common bits (guessed) $\implies 2^{15}$ for 35 bits
- 2¹² candidates for 42 bits
- Intersection with D₄ ⇒ 2⁷ candidates for 47 bits But 39 from last 4 rounds
- By brute-forcing rest total $2^{25+7} = 2^{32}$ key guesses

- Data Collection: Encrypt structure of size 2³⁰
- Filtering: $2^{30-18} = 2^{12}$ pairs remain for any D_i
- Counting : For each D_i
 - 2¹² pairs, 25 bit guessing
 - 2¹⁷ candidates for 25 bits
- Intersection of Counters:
 - D₁, D₂ − 19 common bits (guessed) ⇒ 2¹⁵ for 35 bits
 Intersection: D₃, D₁, D₂ − 20 bits common
- 2¹² candidates for 42 bits
- Intersection with D₄ ⇒ 2⁷ candidates for 47 bits But 39 from last 4 rounds
- ▶ By brute-forcing rest total 2²⁵⁺⁷ = 2³² key guesses

Introduction

Light-Weight Block Ciphers: SIMON and SPECK

Differential Anlaysis

SIMON: Round Function Search for Differential Trail Search for Differential

Differential Effect in SIMON

Embedded Bipartite Graphs

Key Recovery Attacks

Practical Attack: 19-round SIMON32 Attacking 11-round SPECK Attack Summary

Attack on SPECK32

• Use 9 round differential with $p = 2^{-30}$; Add one round each on top and at the end

• Guess 16 bits from K^{10} , 11 bits from K^9 , 1 carry bit

- Verify the difference at the end of round 9
- Keep a counter of size 2²⁸
- Expect 2¹⁸ counters with 4 increments
- Bruteforce rest of the 64 27 = 37 bits of last 4 round-keys
- ► Total number of key guessing 2¹⁸⁺³⁷ = 2⁵⁵

Introduction

Light-Weight Block Ciphers: SIMON and SPECK

Differential Anlaysis

SIMON: Round Function Search for Differential Trail Search for Differential

Differential Effect in SIMON

Embedded Bipartite Graphs

Key Recovery Attacks

Practical Attack: 19-round SIMON32 Attacking 11-round SPECK Attack Summary

Cipher	Key	Rounds	Rounds	Our Results		Known Result	
	Size	Total	Attacked	Time	Data	Time	Data
SIMON32	64	32	19	2 ³²	2 ³¹	_	_
SIMON48	72	36	20	2 ⁵²	2 ⁴⁶	_	_
	96	36	20	2 ⁷⁵	2 ⁴⁶	_	_
SIMON64	96	42	26	2 ⁸⁹	2 ⁶³	2 ⁹⁴	2 ⁶³ *
	128	44	26	2 ¹²¹	2 ⁶³	2 ¹²⁶	2 ⁶³ *
Speck32	64	22	11	2 ⁵⁵	2 ³¹	_	_
Speck48	72/96	22	12	2 ⁴³	2 ⁴³	2 ^{45.3}	2 ⁴⁵
Speck64	96	26	16	2 ⁶³	2 ⁶³	_	_
	128	27	16	2 ⁶³	2 ⁶³	-	-

Introduction

Light-Weight Block Ciphers: SIMON and SPECK

Differential Anlaysis

SIMON: Round Function Search for Differential Trail Search for Differential

Differential Effect in SIMON

Embedded Bipartite Graphs

Key Recovery Attacks

Practical Attack: 19-round SIMON32 Attacking 11-round SPECK Attack Summary

Summary

- Analysis and Linear time (in word size) Algorithm to find DP of SIMON round function
- Threshold Search with Highway-Country road approach for analysing SIMON and SPECK
- Extend the *Threshold Search* technique for **Differential** Search
- Improved differentials for SIMON and SPECK
- All these methods are generic and can be used to analyse ARX designs
- Additionally, use the differentials for key recovery attack on reduced round SIMON and SPECK