Differential Analaysis of Block Ciphers Simon and Speck

Alex Biryukov, Arnab Roy, Vesselin Velichkov

Outline

Introduction
Light-Weight Block Ciphers: Simon and Speck
Differential Anlaysis
Simon: Round Function
Search for Differential Trail
Search for Differential
Differential Effect in SIMON
Embedded Bipartite Graphs
Key Recovery Attacks
Practical Attack: 19-round Simon32
Attacking 11-round SPECK
Attack Summary
Conclusion

Outline

Introduction
Light-Weight Block Ciphers: Simon and Speck
Differential Anlaysis
Simon: Round Function
Search for Differential Trail
Search for Differential
Differential Effect in SIMON
Embedded Bipartite Graphs
Key Recovery Attacks
Practical Attack: 19-round Simon32
Attacking 11-round SPECK
Attack Summary
Conclusion

Simon and Speck

- Simon , Speck - proposed in 2013, by a group of researchers from the NSA
- Competitive designs - Simplicity, Efficiency
- Both are constructed on ARX principle
- SIMON - Feistel design with ARX based function
- SPECK - ARX, Resemblance with Threefish

SIMON

Feistel design with very simple F-function

Block Size - 32, 48, 64 with key size 64 , 72 or 96,96 or 128 respectively.

Speck

Round function is similar to Threefish XOR round-key instead of (modular)adding the round-key

Block Size -32 , 48, 64 with key size 64,72 or 96,96 or 128 respectively.

Outline

Introduction
Light-Weight Block Ciphers: Simon and Speck
Differential Anlaysis
Simon: Round Function
Search for Differential Trail
Search for Differential
Differential Effect in SIMON
Embedded Bipartite Graphs
Key Recovery Attacks
Practical Attack: 19-round Simon32
Attacking 11-round SPECK
Attack Summary
Conclusion

Outline

Introduction
Light-Weight Block Ciphers: SIMON and SPECK
Differential Anlaysis
Simon: Round Function
Search for Differential Trail
Search for Differential
Differential Effect in SIMON
Embedded Bipartite Graphs
Key Recovery Attacks
Practical Attack: 19-round Simon32
Attacking 11-round SPECK
Attack Summary
Conclusion

SIMON: DP of $A(n d) R X$ round function

$$
\begin{aligned}
& \operatorname{Pr}(\alpha \rightarrow \gamma)= \\
& \quad \frac{|\{x:(x \wedge(x \lll r)) \oplus((x \oplus \alpha) \wedge((x \oplus \alpha) \lll r))=\gamma\}|}{2^{n}}
\end{aligned}
$$

DP: Path counting in DAG

Find DP \Longleftrightarrow Count paths in a DAG

DP: Path counting in DAG

Find DP \Longleftrightarrow Count paths in a DAG (Example: $n=5, r=2$)

DP: Path counting in DAG

Find DP \Longleftrightarrow Count paths in a DAG (Example: $\mathrm{n}=5, \mathrm{r}=2$)

$\alpha_{0} \alpha_{3} \gamma_{0}$	$\alpha_{2} \alpha_{0}$		$\alpha_{4} \alpha_{2} \gamma_{4}$	$\alpha_{1} \alpha_{4} \gamma_{1}$	$\alpha_{3} \alpha_{1} \gamma_{3}$
000	10	0			

DP: Path counting in DAG

Find DP \Longleftrightarrow Count paths in a DAG (E $\quad \alpha_{4} \alpha_{3} \alpha_{2} \alpha_{1} \alpha_{0}$ $\alpha_{2} \alpha_{1} \alpha_{0} \alpha_{4} \alpha_{3}$

$\alpha_{0} \alpha_{3} \gamma_{0}$
$\mathbf{0} \mathbf{0}$ $\mathbf{0}$

$\alpha_{2} \alpha_{0}$	γ_{2}
$\mathbf{1 0}$	$\mathbf{0}$

$\alpha_{4} \alpha_{2} \gamma_{4}$	
$\mathbf{0 1}$	$\mathbf{0}$

$\alpha_{3} \alpha_{1}$	γ_{3}
$\mathbf{0 1}$	$\mathbf{0}$

DP: Path counting in DAG

Find DP \Longleftrightarrow Count paths in a DAG (Example: $n=5, r=2$)

DP: Path counting in DAG

Find DP \Longleftrightarrow Count paths in a DAG (Example: $n=5, r=2$)

Example: Impossible I/O Difference

Outline

Introduction
Light-Weight Block Ciphers: SIMON and SPECK
Differential Anlaysis
Simon: Round Function
Search for Differential Trail
Search for Differential
Differential Effect in SIMON
Embedded Bipartite Graphs
Key Recovery Attacks
Practical Attack: 19-round Simon32
Attacking 11-round SPECK
Attack Summary
Conclusion

About Extending Matsui's Search for ARX

- Matsui[EuroCrypt'94] : while selecting DP of round ℓ check $p=p_{1} \cdot p_{2} \ldots p_{\ell} \cdot B_{n-\ell} \geq \overline{B_{n}}$, if $p \geq \overline{B_{n}}$ update the bound
- Problem: DDT requires exponential memory for ARX designs

About Extending Matsui's Search for ARX

- Matsui[EuroCrypt'94] : while selecting DP of round ℓ check $p=p_{1} \cdot p_{2} \ldots p_{\ell} \cdot B_{n-\ell} \geq \overline{B_{n}}$, if $p \geq \overline{B_{n}}$ update the bound
- Problem: DDT requires exponential memory for ARX designs
- Biryukov-Velichkov [CT-RSA'14]: Use partial DDT table for ARX (Threshold Search)
- The pDDT - \mathcal{D} contains $\alpha \rightarrow \beta$ iff $p(\alpha \rightarrow \beta) \geq p_{\tau}$

About Extending Matsui's Search for ARX

- Matsui[EuroCrypt'94] : while selecting DP of round ℓ check $p=p_{1} \cdot p_{2} \ldots p_{\ell} \cdot B_{n-\ell} \geq \overline{B_{n}}$, if $p \geq \overline{B_{n}}$ update the bound
- Problem: DDT requires exponential memory for ARX designs
- Biryukov-Velichkov [CT-RSA'14]: Use partial DDT table for ARX (Threshold Search)
- The pDDT - \mathcal{D} contains $\alpha \rightarrow \beta$ iff $p(\alpha \rightarrow \beta) \geq p_{\tau}$
- While searching, if some $(\alpha \rightarrow \beta) \notin \mathcal{D}$, then it is possible to take several options e.g. Choose greedily, Search all possible, Highway-Country Road approach

Using the Threshold Search for ARX

- Parameters in Threshold Search: Size of pDDT (and p_{τ}), precomputaion time for pDDT
- Lower p_{τ} can intuitively lead to better result; But increases the search complexity and size of the pDDT table

Using the Threshold Search for ARX

- Parameters in Threshold Search: Size of pDDT (and p_{τ}), precomputaion time for pDDT
- Lower p_{τ} can intuitively lead to better result; But increases the search complexity and size of the pDDT table
- Including New Entries: The new transitions $(\alpha \rightarrow \beta) \notin \mathcal{D}$ are added to a secondary table - \mathcal{D}^{\prime}

Using the Threshold Search for ARX

- Parameters in Threshold Search: Size of pDDT (and p_{τ}), precomputaion time for pDDT
- Lower p_{τ} can intuitively lead to better result; But increases the search complexity and size of the pDDT table
- Including New Entries: The new transitions $(\alpha \rightarrow \beta) \notin \mathcal{D}$ are added to a secondary table - \mathcal{D}^{\prime}
- Restrict size of \mathcal{D}^{\prime} - By Hamming weight of the differences; Used for Speck
- Another way - select $(\alpha \rightarrow \beta)$ at round ℓ such that at round $\ell+1$ there is at least one transition $\in \mathcal{D}$; Used for SIMON together with Hamming weight

Highway-Country Road Analogy

Route: Luxembourg to Frankfurt

The Highway only route - 2 hr 46 min Highway-Country Road - 2hr 31min

Outline

Introduction
Light-Weight Block Ciphers: SimON and Speck
Differential Anlaysis
Simon: Round Function
Search for Differential Trail
Search for Differential
Differential Effect in SIMON
Embedded Bipartite Graphs
Key Recovery Attacks
Practical Attack: 19-round Simon32
Attacking 11-round SPECK
Attack Summary
Conclusion

Extension for Differential: Clustering Trails

- We extend the Threshold Search for clustering trails.
- Main Idea: for round ℓ select transition with p_{ℓ} : $\left(p_{1} \cdot p_{2} \ldots p_{\ell-1} p_{\ell} \cdot B_{n-\ell}\right) \geq \epsilon \cdot B_{n}$
- Input: Best trail found by threshold Search, pDDT table, ϵ

Extension for Differential: Clustering Trails

- We extend the Threshold Search for clustering trails.
- Main Idea: for round ℓ select transition with p_{ℓ} : $\left(p_{1} \cdot p_{2} \ldots p_{\ell-1} p_{\ell} \cdot B_{n-\ell}\right) \geq \epsilon \cdot B_{n}$
- Input: Best trail found by threshold Search, pDDT table, ϵ
- Efficiency: Hamming weight and probability constraints can be applied
- Difference with branch-and-bound - We prune the search tree by limiting the search to ϵ region of the best known probability

Extension for Differential: Clustering Trails

- We extend the Threshold Search for clustering trails.
- Main Idea: for round ℓ select transition with p_{ℓ} : $\left(p_{1} \cdot p_{2} \ldots p_{\ell-1} p_{\ell} \cdot B_{n-\ell}\right) \geq \epsilon \cdot B_{n}$
- Input: Best trail found by threshold Search, pDDT table, ϵ
- Efficiency: Hamming weight and probability constraints can be applied
- Difference with branch-and-bound - We prune the search tree by limiting the search to ϵ region of the best known probability
- We apply this technique to both Simon and Speck

An overview: Differential Search

An overview: Differential Search

An overview: Differential Search

Search Results

Cipher	\# rounds	$\log _{2} p$, trail	$\log _{2} p$, diff.	\# trails
Simon32	13 14	$\begin{aligned} & -36 \\ & -36 \end{aligned}$	$\begin{aligned} & -29.69 \\ & -28.11 \\ & -30.20 \\ & -30.94 \end{aligned}$	45083 full search full search
SIMON48	15	$\begin{aligned} & -48 \\ & -52 \end{aligned}$	$\begin{aligned} & -42.11 \\ & -43.01 \end{aligned}$	112573
Simon64	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & -70 \\ & -70 \\ & -72 \\ & -72 \end{aligned}$	$\begin{aligned} & \hline-58.68 \\ & -59.01 \\ & -60.53 \\ & -61.01 \end{aligned}$	$\begin{gathered} 210771 \\ - \\ 337309 \end{gathered}$
SPECK32	9	-30	-30	1
SPECK48	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & -40 \\ & -47 \end{aligned}$	-39.75 -40.55 -46.48	$\begin{gathered} 137 \\ - \\ 384 \end{gathered}$
Speck64	13	-58	$\begin{aligned} & -57.70 \\ & -58.90 \end{aligned}$	48
	14	-60	-59.11	125

Outline

Introduction
Light-Weight Block Ciphers: Simon and Speck
Differential Anlaysis
Simon: Round Function
Search for Differential Trail
Search for Differential
Differential Effect in SIMON
Embedded Bipartite Graphs
Key Recovery Attacks
Practical Attack: 19-round Simon32
Attacking 11-round SPECK
Attack Summary
Conclusion

Outline

Introduction
Light-Weight Block Ciphers: SIMON and SPECK
Differential Anlaysis
Simon: Round Function
Search for Differential Trail
Search for Differential
Differential Effect in SimON
Embedded Bipartite Graphs
Key Recovery Attacks
Practical Attack: 19-round Simon32
Attacking 11-round SPECK
Attack Summary
Conclusion

The differential graph for SIMON

60000 trails

The differential graph for SIMON

The differential graph for SIMON

60000 trails

The differential graph for SIMON

60000 trails

Bipartite Subgraph of Trails

Feistel: $\Delta_{L}^{i}=11 \Longrightarrow \Delta_{R}^{i+1}=11$

$$
\Delta_{L}^{i} \xrightarrow{f} \nabla=\{000 * 000 * 00 * 0 \quad 00 * 0\}
$$

$$
\begin{aligned}
\left.\nabla \oplus\left(\Delta_{L}^{i} \lll 2\right) \oplus \Delta_{R}^{i}\right) & =\Delta_{L}^{i+1} \\
120 \oplus(22) \oplus 106 & =4 \\
122 \oplus(22) \oplus 104 & =4
\end{aligned}
$$

Outline

Introduction
Light-Weight Block Ciphers: Simon and Speck
Differential Anlaysis
Simon: Round Function
Search for Differential Trail
Search for Differential
Differential Effect in SIMON
Embedded Bipartite Graphs
Key Recovery Attacks
Practical Attack: 19-round Simon32
Attacking 11-round SPECK
Attack Summary
Conclusion

Outline

Introduction
Light-Weight Block Ciphers: SIMON and SPECK
Differential Anlaysis
Simon: Round Function
Search for Differential Trail
Search for Differential
Differential Effect in SIMON
Embedded Bipartite Graphs
Key Recovery Attacks
Practical Attack: 19-round SIMON32
Attacking 11-round SPECK
Attack Summary
Conclusion

19 Round Simon32: Practical Attack

Use 13 round differential with probability $\approx 2^{-28.11}$, Add 2 rounds on top, 4 rounds at the end

Guess 25 bits(and linear combinations) from K^{18}, K^{17}, K^{16}

Attack on Simon32

- Identify pairs satisfying top 2 rounds truncated difference guess 2 bits of K^{0}

Attack on Simon32

We use four differentials

$$
\begin{aligned}
& \mathcal{D}_{1}:(2000,8000) \rightarrow(2000,0) \\
& \mathcal{D}_{2}:(4000,0001) \rightarrow(4000,0) \\
& \mathcal{D}_{3}:(0004,0010) \rightarrow(0004,0) \\
& \mathcal{D}_{4}:(0008,0020) \rightarrow(0008,0)
\end{aligned}
$$

Truncated diffrence for top 2 round

$$
\begin{aligned}
& (00100000 * 000001 *, * * 00 \quad 00 * * 00 * 0 \quad 1 * * 0) \\
& \text { (0100 000* } 000001 * 0, * 000 \quad 0 * * 0 \quad 0 * 01 \quad * * 0 *) \\
& \text { (} 000 * 000001 * 00100,0 * * 00 * 01 * * 0 * * 000 \text {) } \\
& (00 * 000001 * 001000, * * 00 * 01 * * 0 * * 0000)
\end{aligned}
$$

Attack on Simon32

- Data Collection: Encrypt structure of size 2^{30}
- Filtering: $2^{30-18}=2^{12}$ pairs remain for any \mathcal{D}_{i}
- Counting : For each \mathcal{D}_{i}
- 2^{12} pairs, 25 bit guessing
- 2^{17} candidates for 25 bits
- Intersection of Counters:

- 2^{12} candidates for 42 bits
- Intersection with $\mathcal{D}_{4} \Longrightarrow 2^{7}$ candidates for 47 bits But 39 from last 4 rounds
- By brute-forcing rest — total $2^{25+7}=2^{32}$ key guesses

Attack on Simon32

- Data Collection: Encrypt structure of size 2^{30}
- Filtering: $2^{30-18}=2^{12}$ pairs remain for any \mathcal{D}_{i}
- Counting : For each \mathcal{D}_{i}
- 2^{12} pairs, 25 bit guessing
- 2^{17} candidates for 25 bits
- Intersection of Counters:

- 2^{12} candidates for 42 bits
- Intersection with $\mathcal{D}_{4} \Longrightarrow 2^{7}$ candidates for 47 bits But 39 from last 4 rounds
- By brute-forcing rest — total $2^{25+7}=2^{32}$ key guesses

Attack on Simon32

- Data Collection: Encrypt structure of size 2^{30}
- Filtering: $2^{30-18}=2^{12}$ pairs remain for any \mathcal{D}_{i}
- Counting : For each \mathcal{D}_{i}
- 2^{12} pairs, 25 bit guessing
- 2^{17} candidates for 25 bits
- Intersection of Counters:
- $\mathcal{D}_{1}, \mathcal{D}_{2}-19$ common bits (guessed) $\Longrightarrow 2^{15}$ for 35 bits
- Intersection: $\mathcal{D}_{3}, \mathcal{D}_{1}, \mathcal{D}_{2}-20$ bits common
- 2^{12} candidates for 42 bits
- Intersection with $\mathcal{D}_{4} \Longrightarrow 2^{7}$ candidates for 47 bits But 39 from last 4 rounds
- By brute-forcing rest — total $2^{25+7}=2^{32}$ key guesses

Attack on Simon32

- Data Collection: Encrypt structure of size 2^{30}
- Filtering: $2^{30-18}=2^{12}$ pairs remain for any \mathcal{D}_{i}
- Counting : For each \mathcal{D}_{i}
- 2^{12} pairs, 25 bit guessing
- 2^{17} candidates for 25 bits
- Intersection of Counters:

- 2^{12} candidates for 42 bits
- Intersection with $\mathcal{D}_{4} \Longrightarrow 2^{7}$ candidates for 47 bits But 39 from last 4 rounds
- By brute-forcing rest - total $2^{25+7}=2^{32}$ key guesses

Attack on Simon32

- Data Collection: Encrypt structure of size 2^{30}
- Filtering: $2^{30-18}=2^{12}$ pairs remain for any \mathcal{D}_{i}
- Counting : For each \mathcal{D}_{i}
- 2^{12} pairs, 25 bit guessing
- 2^{17} candidates for 25 bits
- Intersection of Counters:

- 2^{12} candidates for 42 bits
- Intersection with $\mathcal{D}_{4} \Longrightarrow 2^{7}$ candidates for 47 bits But 39 from last 4 rounds
- By brute-forcing rest - total $2^{25+7}=2^{32}$ key guesses

Attack on Simon32

- Data Collection: Encrypt structure of size 2^{30}
- Filtering: $2^{30-18}=2^{12}$ pairs remain for any \mathcal{D}_{i}
- Counting : For each \mathcal{D}_{i}
- 2^{12} pairs, 25 bit guessing
- 2^{17} candidates for 25 bits
- Intersection of Counters:

- 2^{12} candidates for 42 bits
- Intersection with $\mathcal{D}_{4} \Longrightarrow 2^{7}$ candidates for 47 bits But 39 from last 4 rounds
- By brute-forcing rest — total $2^{25+7}=2^{32}$ key guesses

Outline

Introduction
Light-Weight Block Ciphers: SIMON and SPECK
Differential Anlaysis
Simon: Round Function
Search for Differential Trail
Search for Differential
Differential Effect in SIMON
Embedded Bipartite Graphs
Key Recovery Attacks
Practical Attack: 19-round SImON32
Attacking 11-round SPECK
Attack Summary
Conclusion

Attack on Speck32

- Use 9 round differential with $p=2^{-30}$; Add one round each on top and at the end

- Guess 16 bits from $K^{10}, 11$ bits from $K^{9}, 1$ carry bit

Attack on Speck32

- Verify the difference at the end of round 9
- Keep a counter of size 2^{28}
- Expect 2^{18} counters with 4 increments
- Bruteforce rest of the $64-27=37$ bits of last 4 round-keys
- Total number of key guessing $2^{18+37}=2^{55}$

Outline

Introduction
Light-Weight Block Ciphers: SIMON and SPECK
Differential Anlaysis
Simon: Round Function
Search for Differential Trail
Search for Differential
Differential Effect in SIMON
Embedded Bipartite Graphs
Key Recovery Attacks
Practical Attack: 19-round SImON32
Attacking 11-round SPECK

Attack Summary

Conclusion

Summary of Attacks

Cipher	Key	Rounds	Rounds	Our Results		Known Result	
	Size	Total	Attacked	Time	Data	Time	Data
SIMON32	64	32	19	2^{32}	2^{31}	-	-
SIMON48	72	36	20	2^{52}	2^{46}	-	-
	96	36	20	2^{75}	2^{46}	-	-
SIMON64	96	42	26	2^{89}	2^{63}	2^{94}	$2^{63 *}$
	128	44	26	2^{121}	2^{63}	2^{126}	$2^{63 *}$
SPECK32	64	22	11	2^{55}	2^{31}	-	-
SPECK48	$72 / 96$	22	12	2^{43}	2^{43}	$2^{45.3}$	2^{45}
SPECK64	96	26	16	2^{63}	2^{63}	-	-
	128	27	16	2^{63}	2^{63}	-	-

Outline

Introduction
Light-Weight Block Ciphers: Simon and Speck
Differential Anlaysis
Simon: Round Function
Search for Differential Trail
Search for Differential
Differential Effect in SIMON
Embedded Bipartite Graphs
Key Recovery Attacks
Practical Attack: 19-round Simon32
Attacking 11-round SPECK
Attack Summary
Conclusion

Summary

- Analysis and Linear time (in word size) Algorithm to find DP of SIMON round function
- Threshold Search with Highway-Country road approach for analysing Simon and SPECK
- Extend the Threshold Search technique for Differential Search
- Improved differentials for SIMON and SPECK
- All these methods are generic and can be used to analyse ARX designs
- Additionally, use the differentials for key recovery attack on reduced round Simon and Speck

