Differential Cryptanalysis of Round-Reduced Simon and Speck

Farzaneh Abed Eik List Stefan Lucks Jakob Wenzel

Bauhaus-Universität Weimar

FSE 2014 March 27, 2014

Agenda

- Motivation
- Simon and Speck
- Our Method
- Results
- Discussion

Section 1

Motivation

Motivation

- June 2013, two lightweight ciphers SIMON, SPECK by NSA
- Intensively optimized
- Performant in both hard- and software
- No security analysis for both ciphers \Rightarrow left as a task to the community

Section 2

SIMON and SPECK

SIMON

- Uses ARX construction
- Families of Feistel-network
- Three simple operations: AND, rotations, XOR
- State size 2*n* and key size *k*, 10 family members

SIMON (cont'd)

5: return (L^r, R^r)

Require:
$$(L^0, R^0)$$
 {Plaintext}
Ensure: (L^r, R^r) {Ciphertext}
1: for $i = 1, ..., r$ do
2: $L^i \leftarrow R^{i-1} \oplus K^{i-1} \oplus f(L^{i-1}) \oplus (L^{i-1} \lll 2)$
3: $R^i \leftarrow L^{i-1}$
4: end for

Figure: SIMON encryption

Speck

- Three operations: Addition, rotations, XOR
- Support variety of block and key sizes, 10 family members
- Similar to ThreeFish but much faster

SPECK (cont'd)

Figure: SPECK encryption

Section 3

Method

Why Differential Attacks

- Slide: XOR of 1-bit constant with round keys
- Linear: Difficulties to linearise AND
- MITM: Fast diffusion in key schedule
- Splice and Cut: Fast diffusion in key schedule

Methods for Differential Characteristic and Probability

Twofold approach:

- 1 Matsui's Algorithm:
 - Finds the best *r*-round characteristic in depth-first manner
 - Usse as reference trail for the Branch-and-Bound
- 2 Branch and bound (B&B) Algorithm:
 - Prunes the search
 - Finds the optimal solution

How to Apply Matsui and B&B

- Start from the input difference α
- Propagate in forward and backward direction
- Collect all output difference $\alpha \rightarrow \beta$ and their *P*
- Use as starting point for the next round in depth-first manner

How to Apply Matsui and B&B (cont'd)

- Searching all possible paths is infeasible
- Prune the search tree
- Define P threshold
- Consider pairs with $P \gg 2^{p-threshold}$ and
- maximum number of characteristics

Branch-and-Bound

Differential Attacks Procedure

- Collect text pairs
- 2 Filter out pairs
- 3 Filter out round keys
- 4 Test all remaining key candidates by brute-force

1. Collection phase:

1 Collect plaintext pairs (P_i, P'_i)

2 Obtain (C_i, C'_i) ciphertext pairs from encryption oracle

2. Filtering phase:

- 3 Derive all pairs (C_i, C'_i) with the correct difference
- 4 Store all correct pairs in a list

3. Key Guessing phase:

- 5 Guess some key bits
- **6** For all ciphertext in the list partially decrypt (C_i, C'_i)
- 7 Test for the match, if yes increment the counter
- Output key candidates with highest counter

4. Brute-force phase:

9 Identify correct values for all remaining keys

Section 4

Results

Results

Differential Attacks on Simon

Cipher	Total Rds	Attacked Rds	Data (CP)	Memory (Bytes)	Success Rate
SIMON32/64	32	18	2 ^{31.2}	2 ^{15.0}	0.63
SIMON48/k	36	19	2 ^{46.0†}	2 ^{20.0}	0.98
SIMON64/k	42,44	26	2 ^{63.0}	2 ^{31.0}	0.86
SIMON96/k	52,54	35	2 ^{93.2}	2 ^{37.8}	0.63
SIMON128/k	68,72	46	2 ^{125.6}	2 ^{40.6}	0.63

- CP = chosen plaintexts
- † = chosen ciphertexts

Results

Differential Attacks on Speck

Cipher	Total Rds	Attacked Rds	Data (CP)	Memory (Bytes)	Success Rate
Speck32/64	22	10	2 ²⁹	2 ¹⁶	0.99
Speck48/k	22,23	12	2 ⁴⁵	2 ²⁴	0.99
Speck64/k	26,27	15	2 ⁶¹	2 ³²	0.99
Speck96/k	28,29	15	2 ⁸⁹	2 ⁴⁸	0.99
Speck128/k	32-34	16	2 ¹¹⁶	2 ⁶⁴	0.99

Results

Rectangle Attack on Speck

Cipher	Total Rds	Attacked Rds	Data (CP)	Memory (Bytes)	Success Rate
Speck32/64	22	11	2 ^{30.1}	2 ^{37.1}	\approx 1
Speck48/k	22,23	12	2 ^{43.2}	2 ^{45.8}	\approx 1
Speck64/k	26,27	14	2 ^{63.6}	2 ^{65.6}	\approx 1
Speck96/k	28,29	16	2 ^{90.9}	2 ^{94.5}	pprox 1
Speck128/k	32-34	18	2 ^{125.9}	2 ^{121.9}	\approx 1

Comparison for SIMON

Cipher	Total Rds.	Biryukov		Alkhzaimi		Us	
		Rds.	Pr	Rds.	Pr	Rds.	Pr
SIMON32/64	32	14	$2^{-30.94}$	16	2 ^{-29.48}	18	2 ^{-30.22}
SIMON48/k	36	15	$2^{-42.11}$	18	$2^{-42.6}$	15	$2^{-43.01}$
SIMON64/k	42,44	21	$2^{-61.17}$	24	$2^{-62.0}$	21	$2^{-61.01}$
SIMON96/k	52,54	-	_	29	$2^{-87.5}$	35	$2^{-92.2}$
SIMON128/k	68,72	-	_	40	$2^{-124.8}$	46	$2^{-124.6}$

Comparison for SPECK

Cipher	Total Rds.	Biryukov		Us	
		Rds.	Pr	Rds.	Pr
Speck32/64	22	9	2 ⁻³¹	10	$2^{-30.99}$
Speck48/k	22,23	10	$2^{-43.87}$	12	$2^{-40.55}$
Speck64/k	26,27	13	$2^{-57.70}$	15	$2^{-58.9}$
Speck96/k	28,29	-	_	15	$2^{-83.98}$
Speck128/k	32-34	-	_	16	2 ^{-111.16}

Section 5

Conclusion

Conclusion

- Differential attacks on up to half of the rounds for SIMON and SPECK
- SIMON is highly vulnerable against differential cryptanalysis
- Any new analysis on addition-based ARX would be a threat to SPECK
- ThreeFish, 2010, only 24/72 rounds up to now, SPECK, 2013, up to half

Differentials for SIMON32/64

Rd.	ΔL^i	ΔR^{i}	$\log_2(p)$	Rd.	ΔL^i	ΔR^{i}	$\log_2(p)$
0	0	Δ_6		8	Δ_4	$\Delta_{2,6,14}$	-6
1	Δ_6	0	0	9	$\Delta_{2,14}$	Δ_4	-2
2	Δ_8	Δ_6	-2	10	Δ_0	$\Delta_{2,14}$	-4
3	$\Delta_{6,10}$	Δ_8	-2	11	Δ_{14}	Δ_0	-2
4	Δ_{12}	$\Delta_{6,10}$	-4	12	0	Δ_{14}	-2
5	$\Delta_{6,10,14}$	Δ_{12}	-2	13	Δ_{14}	0	0
6	$\Delta_{0,8}$	$\Delta_{6,10,14}$	-6	14			
7	$\Delta_{2,6,14}$	$\Delta_{0,8}$	-4	15			
Σ							-36
Σ_{acc}							-30.22

• \sum : the total probability of the full characteristic

• \sum_{acc} : the accumulated probability of all found trails from start to the end

Differentials for SPECK32/64

Rd.	ΔL^i	ΔR^{i}	$\log_2(p)$	Rd.	ΔL^i	ΔR^{i}	$\log_2(p)$
0	$\Delta_{5,6,9,11}$	$\Delta_{0,2,9,14}$		6	Δ_{15}	$\Delta_{1,3,10,15}$	-2
1	$\Delta_{0,4,9}$	$\Delta_{2,9,11}$	-5	7	$\Delta_{1,3,8,10,15}$	$\Delta_{5,8,10,12,15}$	-4
2	$\Delta_{11,13}$	Δ_4	-4	8	$\Delta_{1,3,5,15}$	$\Delta_{3,5,7,10,12,14,15}$	-6
3	Δ_6	0	-2	9	$\Delta_{3,5,7,8,15}$	$\Delta_{0,1,3,8,9,12,14,15}$	-7
4	Δ_{15}	Δ_{15}	0	10			
5	$\Delta_{8,15}$	$\Delta_{1,8,15}$	-1				
Σ							-31
Σ_{acc}							-30.99