Differential Cryptanalysis of Round-Reduced Simon and Speck

Farzaneh Abed Eik List Stefan Lucks Jakob Wenzel

Bauhaus-Universität Weimar

FSE 2014
March 27, 2014

Agenda

■ Motivation

- Simon and Speck
- Our Method

■ Results
■ Discussion

Section 1

Motivation

Motivation

■ June 2013, two lightweight ciphers Simon, Speck by NSA
■ Intensively optimized
■ Performant in both hard- and software
■ No security analysis for both ciphers \Rightarrow left as a task to the community

Section 2

Simon and Speck

SIMON

■ Uses ARX construction

- Families of Feistel-network

■ Three simple operations: AND, rotations, XOR
■ State size $2 n$ and key size k, 10 family members

SIMON (cont'd)

```
Require: \(\left(L^{0}, R^{0}\right)\{\) Plaintext \(\}\)
Ensure: \(\left(L^{r}, R^{r}\right)\{\) Ciphertext\}
    1: for \(i=1, \ldots, r\) do
    2: \(\quad L^{i} \leftarrow R^{i-1} \oplus K^{i-1}\)
        \(\left(L^{i-1} \lll 2\right)\)
3: \(\quad R^{i} \leftarrow L^{i-1}\)
4: end for
5: return \(\left(L^{r}, R^{r}\right)\)
```


Figure: SIMON encryption

SPECK

■ Three operations: Addition, rotations, XOR
■ Support variety of block and key sizes, 10 family members
■ Similar to ThreeFish but much faster

Speck (cont'd)

Require: $\left(L^{0}, R^{0}\right)\{$ Plaintext $\}$
Ensure: $\left(L^{r}, R^{r}\right)\{$ Ciphertext $\}$
1: for $i=1, \ldots, r$ do
2: $\quad L^{i} \leftarrow\left(L^{i-1} \ggg \alpha\right)+R^{i-1} \bmod 2^{n}$
3: $\quad L^{i} \leftarrow L^{i} \oplus K^{i-1}$
4: $\quad R^{i} \leftarrow\left(R^{i-1} \lll \beta\right) \oplus L^{i}$
5: end for
6: return $\left(L^{r}, R^{r}\right)$

Figure: SPECK encryption

Section 3

Method

Why Differential Attacks

■ Slide: XOR of 1-bit constant with round keys
■ Linear: Difficulties to linearise AND
■ MITM: Fast diffusion in key schedule
■ Splice and Cut: Fast diffusion in key schedule

Methods for Differential Characteristic and Probability

Twofold approach:
1 Matsui's Algorithm:
■ Finds the best r-round characteristic in depth-first manner

- Usse as reference trail for the Branch-and-Bound

2 Branch and bound (B\&B) Algorithm:

- Prunes the search
- Finds the optimal solution

How to Apply Matsui and B\&B

■ Start from the input difference α
■ Propagate in forward and backward direction

- Collect all output difference $\alpha \rightarrow \beta$ and their P

■ Use as starting point for the next round in depth-first manner

How to Apply Matsui and B\&B (cont'd)

■ Searching all possible paths is infeasible

- Prune the search tree

■ Define P threshold
■ Consider pairs with $P \gg 2^{p-t h r e s h o l d}$ and
■ maximum number of characteristics

Branch-and-Bound

Differential Attacks Procedure

1 Collect text pairs
2 Filter out pairs
3 Filter out round keys
4 Test all remaining key candidates by brute-force

Differential Attacks (cont'd)

1. Collection phase:

1 Collect plaintext pairs (P_{i}, P_{i}^{\prime})
2 Obtain $\left(C_{i}, C_{i}^{\prime}\right)$ ciphertext pairs from encryption oracle

Differential Attacks (cont'd)

2. Filtering phase:

3 Derive all pairs (C_{i}, C_{i}^{\prime}) with the correct difference
4 Store all correct pairs in a list

Differential Attacks (cont'd)

3. Key Guessing phase:

5 Guess some key bits
6 For all ciphertext in the list partially decrypt (C_{i}, C_{i}^{\prime})
7 Test for the match, if yes increment the counter
8 Output key candidates with highest counter

Differential Attacks (cont'd)

4. Brute-force phase:

9 Identify correct values for all remaining keys

Section 4

Results

Differential Attacks on Simon

Cipher	Total Rds	Attacked Rds	Data (CP)	Memory (Bytes)	Success Rate
SIMON32/64	32	18	$2^{31.2}$	$2^{15.0}$	0.63
SIMON48/k	36	19	$2^{46.0^{\dagger}}$	$2^{20.0}$	0.98
SIMON64/k	42,44	26	$2^{63.0}$	$2^{31.0}$	0.86
SIMON96/k	52,54	35	$2^{93.2}$	$2^{37.8}$	0.63
SIMON128/k	68,72	46	$2^{125.6}$	$2^{40.6}$	0.63

- CP = chosen plaintexts
- $\dagger=$ chosen ciphertexts

Differential Attacks on Speck

Cipher	Total Rds	Attacked Rds	Data (CP)	Memory (Bytes)	Success Rate
SPECK32/64	22	10	2^{29}	2^{16}	0.99
SPECK48/k	22,23	12	2^{45}	2^{24}	0.99
SPECK64/k	26,27	15	2^{61}	2^{32}	0.99
SPECK96/k	28,29	15	2^{89}	2^{48}	0.99
SPECK128/k	$32-34$	16	2^{116}	2^{64}	0.99

Rectangle Attack on Speck

Cipher	Total Rds	Attacked Rds	Data (CP)	Memory (Bytes)	Success Rate
SPECK32/64	22	11	$2^{30.1}$	$2^{37.1}$	≈ 1
SPECK48/k	22,23	12	$2^{43.2}$	$2^{45.8}$	≈ 1
SPECK64/k	26,27	14	$2^{63.6}$	$2^{65.6}$	≈ 1
SPECK96/k	28,29	16	$2^{90.9}$	$2^{94.5}$	≈ 1
SPECK128/k	$32-34$	18	$2^{125.9}$	$2^{121.9}$	≈ 1

Comparison for SIMON

Cipher	Total Rds.	Biryukov		Alkhzaimi		Us	
		Rds.	Pr	Rds.	Pr	Rds.	Pr
SIMON32/64	32	14	$2^{-30.94}$	16	$2^{-29.48}$	18	$2^{-30.22}$
SIMON48/k	36	15	$2^{-42.11}$	18	$2^{-42.6}$	15	$2^{-43.01}$
SIMON64/k	42,44	21	$2^{-61.17}$	24	$2^{-62.0}$	21	$2^{-61.01}$
SIMON96/k	52,54	-	-	29	$2^{-87.5}$	35	$2^{-92.2}$
SIMON128/k	68,72	-	-	40	$2^{-124.8}$	46	$2^{-124.6}$

Comparison for SPECK

Cipher	Total Rds.	Biryukov		Us	
		Rds.	Pr	Rds.	Pr
SPECK32/64	22	9	2^{-31}	10	$2^{-30.99}$
SPECK48/k	22,23	10	$2^{-43.87}$	12	$2^{-40.55}$
SPECK64/k	26,27	13	$2^{-57.70}$	15	$2^{-58.9}$
SPECK96/k	28,29	-	-	15	$2^{-83.98}$
SPECK128/k	$32-34$	-	-	16	$2^{-111.16}$

Section 5

Conclusion

Conclusion

■ Differential attacks on up to half of the rounds for SIMON and SPECK

- SIMON is highly vulnerable against differential cryptanalysis

■ Any new analysis on addition-based ARX would be a threat to SPECK
■ ThreeFish, 2010, only 24/72 rounds up to now, SPECK, 2013, up to half

Differentials for Simon32/64

Rd.	ΔL^{i}	ΔR^{i}	$\log _{2}(p)$	Rd.	ΔL^{i}	ΔR^{i}	$\log _{2}(p)$
0	0	Δ_{6}		8	Δ_{4}	$\Delta_{2,6,14}$	-6
1	Δ_{6}	0	0	9	$\Delta_{2,14}$	Δ_{4}	-2
2	Δ_{8}	Δ_{6}	-2	10	Δ_{0}	$\Delta_{2,14}$	-4
3	$\Delta_{6,10}$	Δ_{8}	-2	11	Δ_{14}	Δ_{0}	-2
4	Δ_{12}	$\Delta_{6,10}$	-4	12	0	Δ_{14}	-2
5	$\Delta_{6,10,14}$	Δ_{12}	-2	13	Δ_{14}	0	0
6	$\Delta_{0,8}$	$\Delta_{6,10,14}$	-6	14			
7	$\Delta_{2,6,14}$	$\Delta_{0,8}$	-4	15			
Σ							-36
$\Sigma_{a c c}$							-30.22

■ \sum : the total probability of the full characteristic

- $\sum_{\text {acc }}$: the accumulated probability of all found trails from start to the end

Differentials for Speck32/64

Rd.	ΔL^{i}	ΔR^{i}	$\log _{2}(p)$	Rd.	ΔL^{i}	ΔR^{i}	$\log _{2}(p)$
0	$\Delta_{5,6,9,11}$	$\Delta_{0,2,9,14}$		6	Δ_{15}	$\Delta_{1,3,10,15}$	-2
1	$\Delta_{0,4,9}$	$\Delta_{2,9,11}$	-5	7	$\Delta_{1,3,8,10,15}$	$\Delta_{5,8,10,12,15}$	-4
2	$\Delta_{11,13}$	Δ_{4}	-4	8	$\Delta_{1,3,5,15}$	$\Delta_{3,5,7,10,12,14,15}$	-6
3	Δ_{6}	0	-2	9	$\Delta_{3,5,7,8,15}$	$\Delta_{0,1,3,8,9,12,14,15}$	-7
4	Δ_{15}	Δ_{15}	0	10			
5	$\Delta_{8,15}$	$\Delta_{1,8,15}$	-1				
Σ							-31
$\Sigma_{\text {acc }}$						-30.99	

