Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack Principle Procedure

Results and Trade-Offs

Cryptanalysis of KLEIN FSE 2014

Virginie Lallemand and María Naya-Plasencia

Inria, France

March 4th 2014

Incla

SOC

< ロ ト < 団 ト < 三 ト < 三 ト</p>

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack Principle Procedure

Results and Trade-Offs 1 The KLEIN Block Cipher

2 Previous Analyses

3 Some Properties

4 New Attack

Results and Trade-Offs

DQC

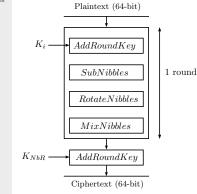
< ロト < 回ト < 三ト < 三ト</p>

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses


Some Properties

New Attack Principle Procedure

Results and Trade-Offs

Family of Lightweight Block Ciphers presented at RFIDSec 2011 by Zheng Gong, Svetla Nikova, and Yee Wei Law

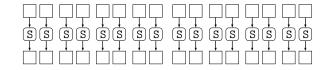
Version	Key Size	Rounds
KLEIN-64	64	12
KLEIN-80	80	16
KLEIN-96	96	20

イロト イロト イヨト イ

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule


Previous Analyses

Some Properties

New Attack Principle

Results and Trade-Offs

SubNibbles (SN)

Splits the state into 4-bit parts (nibbles) and applies the following Sbox:

x																
S[x]	7	4	а	9	1	f	b	0	с	3	2	6	8	е	d	5

DQC

イロト イロト イヨト

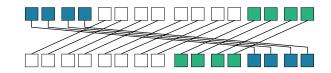
Round Function

Cryptanalysis of KLEIN

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule


Previous Analyses

Some Properties

New Attack

Results and Trade-Offs

RotateNibbles (RN)

Cyclic rotation of the state leftwards by 2 bytes / 4 nibbles.

1

DQC

<ロト <回ト < 回ト <

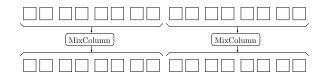
MixNibbles (MN)

Cryptanalysis of KI EIN

I allemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule


Previous Analyses

Some Properties

New Attack

Results and Trade-Offs

Byte wise operation computing AES MixColumn transformation on each half of the state

A byte is seen as an element of $GF(2^8) = GF(2)/x^8 + x^4 + x^3 + x + 1$ The output is composed of 4 bytes resulting from multiplication with the following matrix:

(02	03	01	01
01	02	03	01
01	01	02	03
03	01	01	02/

< D > < P > < E >

Key-Schedule

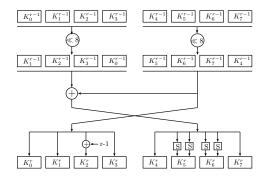
Cryptanalysis of KLEIN

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function

Key-Schedule


Previous Analyses

Some Properties

New Attack

Results and Trade-Offs

1

SAC

<ロト <回ト < 回ト

Previous Analyses

Cryptanalysis of	
KLEIN	

Main Idea of Previous Analyses

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack

Principle

Results and Trade-Offs

990

< ロ ト < 団 ト < 三 ト < 三 ト</p>

Previous Analyses

Cryptanalysis of KLEIN

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack

Principle

Results and Trade-Offs

proposition [ANS 11][YWLZ 11]

Main Idea of Previous Analyses

During encryption and key derivation, there is a slow diffusion between higher and lower nibbles.

< ロト < 回ト < 三ト < 三ト</p>

Previous Analyses

Cryptanalysis of KLEIN

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack Principle

Procedure

Results and Trade-Offs

Main Idea of Previous Analyses

proposition [ANS 11][YWLZ 11]

During encryption and key derivation, there is a slow diffusion between higher and lower nibbles.

Version	Attacks	Rounds	Data	Time	Memory	Source
	integral	7	2 ^{34.3}	2 ^{45.5}	2 ³²	[YWLZ 11]
	truncated	8	2 ³²	2 ^{46.8}	2 ¹⁶	[YWLZ 11]
KLEIN-64	differential	8	2 ³⁵	2 ³⁵	-	[ANS 11]
	PC MITM	10	1	2 ⁶²	2 ⁶⁰	[NWW 13]
	biclique	12	2 ³⁹	2 ^{62.84}	2 ^{4.5}	[ASR 13]
	integral	8	2 ^{34.3}	2 ^{77.5}	2 ³²	[YWLZ 11]
KLEIN-80	PC MITM	11	2	2 ⁷⁴	2 ⁷⁴	[NWW 13]
	biclique	16	2 ⁴⁸	2 ⁷⁹	2 ⁶⁰	[AFLLW 12]
KLEIN-96	PC MITM	13	2	2 ⁹⁴	2 ⁸²	[NWW 13]
	biclique	20	2 ³²	2 ^{95.18}	2 ⁶⁰	[AFLLW 12]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

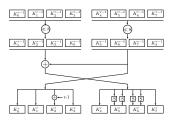
Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties


New Attack Principle Procedure

Results and Trade-Offs

Properties

proposition [ANS 11][YWLZ 11]

In the KeySchedule algorithm, lower nibbles and higher nibbles are not mixed: the lower nibbles (resp. higher nibbles) of any round-key can be computed directly from the lower nibbles (resp. higher nibbles) of the master key.

イロト イポト イヨト イヨト

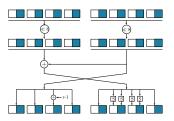
Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties


New Attack Principle Procedure

Results and Trade-Offs

Properties

proposition [ANS 11][YWLZ 11]

In the KeySchedule algorithm, lower nibbles and higher nibbles are not mixed: the lower nibbles (resp. higher nibbles) of any round-key can be computed directly from the lower nibbles (resp. higher nibbles) of the master key.

1

イロト イポト イヨト イ

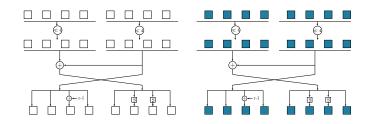
Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties


New Attack Principle Procedure

Results and Trade-Offs

Properties

proposition [ANS 11][YWLZ 11]

In the KeySchedule algorithm, lower nibbles and higher nibbles are not mixed: the lower nibbles (resp. higher nibbles) of any round-key can be computed directly from the lower nibbles (resp. higher nibbles) of the master key.

イロト イロト イヨト イ

Some Properties

Cryptanalysis of KLEIN

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack Principle

Results and Trade-Offs

proposition [ANS 11][YWLZ 11]

Properties

All layers except MixNibbles are nibble-wise and do not mix higher nibbles with lower nibbles.

1

DQC

・ロト ・日 ・ ・ モ ・ ・

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

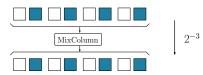
Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack Principle Procedure

Results and Trade-Offs


proposition [ANS 11][YWLZ 11]

Properties

All layers except MixNibbles are nibble-wise and do not mix higher nibbles with lower nibbles.

proposition [ANS 11][YWLZ 11]

If the state entering MixColumn has inactive higher nibbles, then the output has the same pattern if and only if the MSB of the 4 lower nibble differences all have the same value. This case occurs with probability 2^{-3} . The same property holds for MixColumn⁻¹

イロト イボト イヨト イヨ

Some Properties

Cryptanalysis of KLEIN

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack

Principle Procedure

Results and Trade-Offs

Resulting Truncated Differential Attack [ANS 11]

- Probability 2^{-28.82}
- Find several conforming pairs
 - Use the difference before MN at round 6 to reduce the key space (2^{-6})

< □ > < 同 > < 三 >

Some Properties

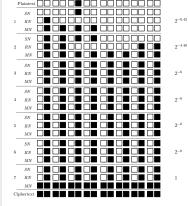
Cryptanalysis of KLEIN

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses


Some Properties

New Attack

Principle Procedure

Results and Trade-Offs

Resulting Truncated Differential Attack [ANS 11]

- Probability 2^{-28.82}
- Find several conforming pairs
 - Use the difference before MN at round 6 to reduce the key space (2^{-6})

If we try to attack more rounds:

- Hard to filter conforming pairs
- Expensive to get several ones

< D > < P > < E >

Cryptanalysis of KLEIN

Lallemand and Naya-Plasencia

New Attack

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack

Principle Procedure

Results and Trade-Offs

Lallemand and Naya-Plasencia (Inria)

Cryptanalysis of KLEIN

March 4th 2014 14 / 25

E

990

< □ > < □ > < □ > < Ξ > < Ξ >

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack

Principle

Results and Trade-Offs

New Attack

Principle

Access MN of the previous rounds to obtain bigger sieves

990

< ロト < 回ト < 三ト < 三ト</p>

Cryptanalysis of **KI FIN**

I allemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack

Principle

Results and Trade-Offs

New Attack

Principle

Access MN of the previous rounds to obtain bigger sieves

- Build triples made up of 2 messages and a possible value for the lower nibbles of the master key
- Test together if the key guess is correct and if the pair is conforming to the differential path
- Invert a round to access another MN step and use the associated filter to discard triples

< ロト < 同ト < ヨト < ヨト

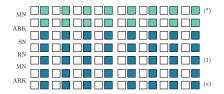
Cryptanalysis of KLEIN

How to Invert a Round:

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule


Previous Analyses

Some Properties

New Attack

Principle Procedure

Results and Trade-Offs

1

990

<ロト <回ト < 回ト <

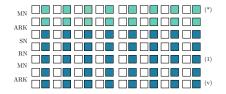
Cryptanalysis of KLEIN

How to Invert a Round:

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule


Previous Analyses

Some Properties

New Attack

Principle Procedure

Results and Trade-Offs

Given: Candidate triple that has passed the test at point (1) Associated values of the state lower nibbles at point (v)

Goal: Compute the difference on the lower nibbles at point (*):

< □ > < 同 > < 三 >

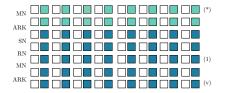
Cryptanalysis of KLEIN

How to Invert a Round:

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule


Previous Analyses

Some Properties

New Attack

Principle Procedure

Results and Trade-Offs

Given: Candidate triple that has passed the test at point (1) Associated values of the state lower nibbles at point (v)

Goal: Compute the difference on the lower nibbles at point (*): • Invert SN (value)

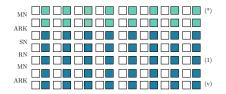
< □ > < 同 > < 三 >

Cryptanalysis of KLEIN

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule


Previous Analyses

Some Properties

New Attack

Principle Procedure

Results and Trade-Offs

Given: Candidate triple that has passed the test at point (1) Associated values of the state lower nibbles at point (v)

Goal: Compute the difference on the lower nibbles at point (*): • Invert SN (value)

Invert RN

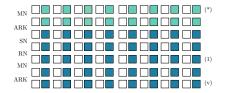
How to Invert a Round:

Cryptanalysis of KLEIN

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule


Previous Analyses

Some Properties

New Attack

Principle Procedure

Results and Trade-Offs

Given: Candidate triple that has passed the test at point (1) Associated values of the state lower nibbles at point (v)

Goal: Compute the difference on the lower nibbles at point (*):

• Invert SN (value)

How to Invert a Round:

Invert RN

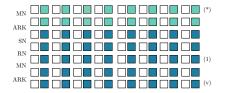
Invert ARK (Key Schedule property)

Cryptanalysis of KLEIN

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule


Previous Analyses

Some Properties

New Attack

Principle Procedure

Results and Trade-Offs

Given: Candidate triple that has passed the test at point (1) Associated values of the state lower nibbles at point (v)

Goal: Compute the difference on the lower nibbles at point (*):

• Invert SN (value)

How to Invert a Round:

- Invert RN
- Invert ARK (Key Schedule property)
- We have to invert MN in lower nibbles

New Attack Principle

Cryptanalysis of **KI FIN**

I allemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack

Principle

Results and Trade-Offs

Let $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$ be the binary decomposition of a byte a. (a_0, a_1, a_2, a_3) the higher nibble (a_4, a_5, a_6, a_7) the lower nibble

proposition

Inverting a Round: MN case

To compute the lower nibbles of the input of *MixColumn* given the lower nibbles of the output (a, b, c, d), we require 3 information bits from the higher nibbles:

$$\begin{cases} a_1 + a_2 + b_2 + c_0 + c_1 + c_2 + d_0 + d_2 \\ a_1 + b_0 + b_1 + c_1 + d_0 + d_1 \\ a_0 + a_1 + a_2 + b_0 + b_2 + c_1 + c_2 + d_2 \end{cases}$$

Lallemand and Nava-Plasencia (Inria)

イロト イポト イヨト イヨ

New Attack

Principle

Cryptanalysis of **KI FIN**

I allemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack

Principle

Results and Trade-Offs

Let $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$ be the binary decomposition of a byte a. (a_0, a_1, a_2, a_3) the higher nibble (a_4, a_5, a_6, a_7) the lower nibble

proposition

Inverting a Round: MN case

To compute the lower nibbles of the input of *MixColumn* given the lower nibbles of the output (a, b, c, d), we require 3 information bits from the higher nibbles:

$$\begin{cases} a_1 + a_2 + b_2 + c_0 + c_1 + c_2 + d_0 + d_2 \\ a_1 + b_0 + b_1 + c_1 + d_0 + d_1 \\ a_0 + a_1 + a_2 + b_0 + b_2 + c_1 + c_2 + d_2 \end{cases}$$

 \Rightarrow a 6-bit guess suffices to predict the lower nibbles entering MixNibble

< ロト < 同ト < ヨト < ヨト

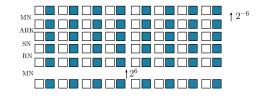
Cryptanalysis of KLEIN

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses


Some Properties

New Attack

Principle

Results and Trade-Offs

Inverting a Round: MN case

• We invert MN for the 2⁶ possibilities for the 6-bit guesses • The conditions on the previous MN give us a filter of 2^{-6}

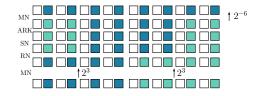
Cryptanalysis of **KI FIN**

I allemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses


Some Properties

New Attack

Principle

Results and Trade-Offs

Inverting a Round: MN case

- We invert MN for the 2⁶ possibilities for the 6-bit guesses
- The conditions on the previous MN give us a filter of 2^{-6}
- We can invert independently the 2 MC to reduce the cost of this operation (2^4 round computations instead of 2^6)

イロト イロト イヨト

New Attack

Procedure

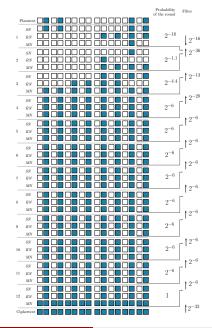
Cryptanalysis of KLEIN

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses


Some Properties

New Attack

Principle

Procedure

Results and Trade-Offs

Path of probability $2^{-69.5}$ For each pair with higher nibbles inactive before the last MN :

- Guess the Lower Nibbles of the key and use the first round as a filter
- Invert the last round with a 6-bit guess
- 3 Use the difference obtained before MN as a filter
- Invert another round

- B

- 5 The first rounds give us more efficient filters
- 6 Finally we compare the values of the lower nibbles recovered with the value of the plaintext

∃ >

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack

Procedure

Results and Trade-Offs

Results

• At the end, $2^{8.5}$ triples remain

• Higher Nibbles search discards the incorrect values

Source	Rounds	Data	Time	Memory	Attacks
[YWLZ 11]	7	2 ^{34.3}	2 ^{45.5}	2 ³²	integral
[YWLZ 11]	8	2 ³²	2 ^{46.8}	2 ¹⁶	truncated
[ANS 11]	8	2 ³⁵	2 ³⁵	-	differential
[NWW 13]	10	1	2 ⁶²	2 ⁶⁰	PC MITM
[ASR 13]	12	2 ³⁹	2 ^{62.84}	2 ^{4.5}	biclique
Our New Attack	12	254.5	2 ^{57.07}	2 ¹⁶	truncated

12 1

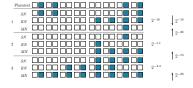
DQC

・ロト ・日 ・ ・ モ ・ ・

Trade-offs

Lallemand and Naya-Plasencia

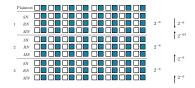
The KLEIN Block Cipher

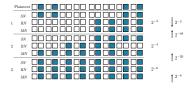

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack Principle


Results and Trade-Offs By changing the beginnings of the truncated differential paths, we obtain 4 interesting trade-offs:



Case II

Case IV

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack

Principle Procedure

Results and Trade-Offs

Complexity of the Attacks on Full KLEIN-64

Resulting complexities for the 4 previous trade-offs

Case	Data	Time	Memory
1	2 ^{54.5}	2 ⁵⁷	2 ¹⁶
2	2 ^{56.5}	2 ⁶²	2 ⁴
3	2 ³⁵	2 ^{63.8}	2 ³²
4	2 ⁴⁶	2 ⁶²	2 ¹⁶

1

イロト イロト イヨト イ

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack

Principle

Results and Trade-Offs

Complexities for KLEIN-80 and KLEIN-96:

more rounds \Rightarrow paths of lower probabilities longer keys \Rightarrow more lower nibbles to guess

Version	Case	Rounds	Data	Time	Memory
80	1	13	2 ^{60.49}	2 ^{71.1}	2 ¹⁶
80	2	13	2 ^{62.49}	2 ⁷⁶	2 ⁴
80	3	13	2 ⁴¹	2 ⁷⁸	2 ³²
80	4	13	2 ⁵²	2 ⁷⁶	2 ¹⁶
96	3	14	2 ⁴⁷	2 ⁹²	2 ³²
96	4	14	2 ⁵⁸	2 ^{89.2}	2 ¹⁶

1

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack

Principle Procedure

Results and Trade-Offs

Complexities for KLEIN-80 and KLEIN-96:

more rounds \Rightarrow paths of lower probabilities longer keys \Rightarrow more lower nibbles to guess

Version	Case	Rounds	Data	Time	Memory
80	1	13	2 ^{60.49}	2 ^{71.1}	2 ¹⁶
80	2	13	2 ^{62.49}	2 ⁷⁶	2 ⁴
80	3	13	2 ⁴¹	2 ⁷⁸	2 ³²
80	4	13	2 ⁵²	2 ⁷⁶	2 ¹⁶
96	3	14	247	2 ⁹²	2 ³²
96	4	14	2 ⁵⁸	2 ^{89.2}	2 ¹⁶

We can attack

- 13 rounds out of 16 of KLEIN-80
- 14 rounds out of 20 of KLEIN-96

イロト イポト イヨト イ

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack

Results and Trade-Offs

Conclusion

• First attack on the full version of KLEIN-64

990

< ロ ト < 団 ト < 三 ト < 三 ト</p>

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack Principle Procedure

Results and Trade-Offs

- First attack on the full version of KLEIN-64
- Verified experimentally on round-reduced versions (first practical attacks on 10 rounds)

Conclusion

-

・ロト ・日 ・ ・ モ ・ ・

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack Principle Procedure

Results and Trade-Offs

Conclusion

- First attack on the full version of KLEIN-64
- Verified experimentally on round-reduced versions (first practical attacks on 10 rounds)
- Changing the MDS matrix in MixNibble or the KeySchedule might counter these attacks

-

イロト イロト イヨト イ

Lallemand and Naya-Plasencia

The KLEIN Block Cipher

Round Function Key-Schedule

Previous Analyses

Some Properties

New Attack

Results and Trade-Offs

Thank you for your attention

Lallemand and Naya-Plasencia (Inria)

990

< ロ ト < 団 ト < 三 ト < 三 ト</p>