Improved Linear Sieving Techniques with Applications to Step-Reduced LED-64

<u>Itai Dinur</u>¹, Orr Dunkelman^{2,4}, Nathan Keller³ and Adi Shamir⁴

¹École normale supérieure, France
²University of Haifa, Israel
³Bar-Ilan University, Israel
⁴The Weizmann Institute, Israel

Summary

- We propose several new techniques in MITM attacks on block ciphers
- We apply the new techniques to the lightweight block cipher LED-64 (presented by Guo et al. at CHES'11)
- We improve the **best known attacks** on some stepreduced variants of this cipher in several models

Summary

Reference	Model	Steps	Time	Data	Memory
IS'12	Single-Key	2	2 ⁵⁶	2 ⁸ CP	2 ⁸
New	Single-Key	2	2 ⁴⁸	2 ¹⁶ CP	2 ¹⁶
DDKS'13	Single-Key	2	2 ⁶⁰	2 ⁴⁹ KP	2 ⁶⁰
New	Single-Key	2	2 ⁴⁸	2 ⁴⁸ KP	2 ⁴⁸
MRTV'12	Related-Key	3	2 ⁶⁰	2 ⁶⁰ CP	2 ⁶⁰
New	Related-Key	3	2 ⁴⁹	2 ⁴⁹ CP	2 ⁴⁹

- Also note the theoretical attacks:
 - [DDKS'13] 3-step known plaintext attack
 - [MRTV'12] 4-step related-key attack

Summary

- Our main tool is called a linear key sieve
 - Exploits linear dependencies between key bits guessed in both sides of the attack
- We show for the first time that the splice-and-cut attack can be applied in the known plaintext model
- Our related-key attack in based on an extension of differential MITM on AES-based designs

LED

- 64-bit lightweight block cipher presented by Guo, Peyrin, Poschmann, and Robshaw at CHES'11
- Two main versions: LED-64 and LED-128
- LED-64 is an 8-step EM scheme with 1 key

The LED Step Function

- LED uses an AES-like design
- Each step (F₁, F₂,...,F₈) applies 4 AES-like rounds

The LED Round

Previous Attacks on 2-Step LED

- Several previous attacks [MRTV'12,NWW'13,DDKS'13] require about 2⁶⁰ time and memory and a lot of data
- [IS'12] requires 2⁵⁶ time and 2⁸ and chosen plaintexts and a small amount of memory

- [IS'12] is based on a MITM attack on 1-step LED-64 given a single known plaintext-ciphertext pair
- A similar attack MITM attack published by Sasaki in 2011
- Exploits a few well-known observations regarding the structure of AES-like ciphers

- Observation 1: The order of the linear operations ARK and MCS is interchangeable
- MCS⁻¹(ARK⁻¹(C))=ARK'⁻¹(MCS⁻¹(C)), where ARK' adds the key K'=MCS⁻¹(K)

- Observation 2: Given an inverse-diagonal we can fully compute the diagonal of the state after the 7 operations (and vise-versa)
- This 4 nibble to 4 nibble mapping is called a super-Sbox

 Observation 3: Given knowledge of any b bits of the state X, we can compute the values of b linear combinations (over GF(2)) on the state MCS(X)

- From the encryption side we calculate 32 linear combinations on the state after 2 rounds
- From the **decryption** side we calculate 48 bits
- The linear subspaces intersect on a linear subspace of dimension 32+48-64=16
- 16 combinations of a basis for the intersection subspace are computable independently from both sides
- Typically called indirect partial matching

b=32 linear combinations

- We have **16** bits of the **sieving** on the **state**
- We guess 32 key bits from the encryption side
- We guess **48** key bits from the **decryption** side
- After filtering we remain with about 2³²⁺⁴⁸⁻¹⁶=2⁶⁴ keys
- The current form of the attack is not faster than exhaustive search

b=32 linear combinations

The New Linear Key Sieve

- We can add more filtering conditions by using more data, but this is not required
- We guess 32 bits of K from the encryption side and 48 bits of K' from the decryption side
- Since K and K' are related by a linear function we can factor out 32+48-64=16 linear combinitations on the key computable independently from both sides
- We call these expressions a **linear key sieve**

The New Linear Key Sieve

- Similar techniques exploited linear message schedules of hash functions in MITM attacks [Aoki and Sasaki, CRYPTO'09]
- This is the first time that such sieving techniques are used on block ciphers

An Improved MITM Attack on 1-Step LED

- We have 16 bits of sieve on the state
- We have **16** bits of the **linear key sieve**
- Guess 32 key bits from the encryption side
 - Compute the 32 bits of filtering and store the suggestions in a sorted list L
- Guess 48 key bits from the **decryption** side
 - Compute the 32 bits of filtering, search L, and obtain a suggestion for the full key
- After filtering we need to test about 2³²⁺⁴⁸⁻¹⁶⁻¹⁶=2⁴⁸
 keys
- We obtain an attack with time complexity 2⁴⁸

Splice-and-Cut (Aoki and Sasaki, 2008)

 In order to attack 2-step LED, we use the splice-and-cut technique (as the previous attack of [IS'12])

- We choose 2^{16} plaintexts P_i and evaluate F_1 on 2^{48} values X_j
- Each of the 2⁶⁴ keys is covered by a unique (i,j) such that P_i+X_j=K

 Ask for chosen plaintexts P_i in which 3 inversediagonals are 0

- P_i+X_j=K implies that for any P_i: K=X_j on the 3 inversediagonals
- Each X_j is associated with a value of K on the 3 inverse-diagonals

 For each X_j we can continue the evaluation and calculate 48 linear expression on the state after 6 rounds

Splice-and-Cut on LED-64

Splice-and-Cut on LED-64

- Using the sieve on the state and the linear key sieve, we obtain an attack with time complexity 2⁴⁸
- The **data** complexity is 2¹⁶ chosen plaintexts
- The memory complexity is about 2¹⁶

An Attempt to Obtain a Known Plaintext Attack on 2-Step LED-64

- We obtain 2^{16} random plaintexts and evaluate F_1 on 2^{48} values
- Each of the 2⁶⁴ keys is covered with high probability by (i,j) such that P_i+X_j=K

The Known Plaintext Attack on 2-Step LED-64

- We need to carefully reconstruct the attack in order to obtain to obtain an efficient algorithm
- We obtain a known plaintext splice-and-cut attack on LED-64!
- The time complexity is 2⁴⁸, which is the same as for the chosen plaintext attack
 - The **data** and **memory** complexity are increased to 2⁴⁸

Conclusions

- We introduced the linear key sieve which exploits linear dependencies between key bits in MITM attacks on block ciphers
- We used this technique to efficiently apply for the first time a splice-and-cut attack in the known plaintext model
- We applied these techniques to obtain the best known attacks on 2-step LED-64
- We also obtained the best known attack on 3-step LED-64 in the related-key model

Thank you for your attention!