# Improved Linear Sieving Techniques with 

Applications to Step-Reduced LED-64

Itai Dinur ${ }^{1}$, Orr Dunkelman ${ }^{2,4}$,
Nathan Keller ${ }^{3}$ and Adi Shamir ${ }^{4}$
${ }^{1}$ École normale supérieure, France
${ }^{2}$ University of Haifa, Israel
${ }^{3}$ Bar-Ilan University, Israel
${ }^{4}$ The Weizmann Institute, Israel

## Summary

- We propose several new techniques in MITM attacks on block ciphers
- We apply the new techniques to the lightweight block cipher LED-64 (presented by Guo et al. at CHES'11)
- We improve the best known attacks on some stepreduced variants of this cipher in several models


## Summary

| Reference | Model | Steps | Time | Data | Memory |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IS'12 | Single-Key | 2 | $2^{56}$ | $2^{8} \mathrm{CP}$ | $\mathbf{2}^{8}$ |
| New | Single-Key | $\mathbf{2}$ | $\mathbf{2}^{48}$ | $\mathbf{2}^{16} \mathbf{C P}$ | $\mathbf{2}^{16}$ |
| DDKS'13 | Single-Key | 2 | $2^{60}$ | $2^{49} \mathrm{KP}$ | $2^{60}$ |
| New | Single-Key | $\mathbf{2}$ | $\mathbf{2}^{48}$ | $\mathbf{2}^{48} \mathrm{KP}$ | $\mathbf{2}^{48}$ |
| MRTV'12 | Related-Key | 3 | $\mathbf{2}^{60}$ | $\mathbf{2}^{60} \mathrm{CP}$ | $\mathbf{2}^{60}$ |
| New | Related-Key | $\mathbf{3}$ | $\mathbf{2}^{49}$ | $\mathbf{2}^{49} \mathbf{C P}$ | $\mathbf{2}^{49}$ |

- Also note the theoretical attacks:
- [DDKS'13] 3-step known plaintext attack
- [MRTV'12] 4-step related-key attack


## Summary

- Our main tool is called a linear key sieve
- Exploits linear dependencies between key bits guessed in both sides of the attack
- We show for the first time that the splice-and-cut attack can be applied in the known plaintext model
- Our related-key attack in based on an extension of differential MITM on AES-based designs


## LED

- 64-bit lightweight block cipher presented by Guo, Peyrin, Poschmann, and Robshaw at CHES'11
- Two main versions: LED-64 and LED-128
- LED-64 is an 8-step EM scheme with 1 key



## The LED Step Function

- LED uses an AES-like design
- Each step ( $F_{1}, F_{2}, \ldots, F_{8}$ ) applies 4 AES-like rounds



## The LED Round

AddConstants
SubCells
ShiftRows
MixColumnsSerial


## Previous Attacks on 2-Step LED

- Several previous attacks
[MRTV'12,NWW'13,DDKS'13] require about $2^{60}$ time and memory and a lot of data
- [IS'12] requires $2^{56}$ time and $2^{8}$ and chosen plaintexts and a small amount of memory



## A MITM Attack on 1-Step LED [IS'12]

- [IS'12] is based on a MITM attack on 1-step LED-64 given a single known plaintext-ciphertext pair
- A similar attack MITM attack published by Sasaki in 2011
- Exploits a few well-known observations regarding the structure of AES-like ciphers



## A MITM Attack on 1-Step LED [IS'12]

- Observation 1: The order of the linear operations ARK and MCS is interchangeable
- $\mathrm{MCS}^{-1}\left(\right.$ ARK $\left.^{-1}(\mathrm{C})\right)=$ ARK $^{\prime-1}\left(\mathrm{MCS}^{-1}(\mathrm{C})\right)$, where ARK ${ }^{\prime}$ adds the key $\mathrm{K}^{\prime}=\mathrm{MCS}^{-1}(\mathrm{~K})$



## A MITM Attack on 1-Step LED [IS'12]

- Observation 2: Given an inverse-diagonal we can fully compute the diagonal of the state after the 7 operations (and vise-versa)
- This 4 nibble to 4 nibble mapping is called a super-Sbox



## A MITM Attack on 1-Step LED [IS'12]

- Observation 3: Given knowledge of any b bits of the state $X$, we can compute the values of $b$ linear combinations (over GF(2)) on the state $\operatorname{MCS}(X)$



## A MITM Attack on 1-Step LED [IS'12]



## A MITM Attack on 1-Step LED [IS'12]



## A MITM Attack on 1-Step LED [IS'12]



## A MITM Attack on 1-Step LED [IS'12]

- From the encryption side we calculate 32 linear combinations on the state after 2 rounds
- From the decryption side we calculate 48 bits
- The linear subspaces intersect on a linear subspace of dimension 32+48-64=16
- 16 combinations of a basis for the intersection subspace are computable independently from both sides
- Typically called indirect partial matching



## A MITM Attack on 1-Step LED [IS'12]

- We have 16 bits of the sieving on the state
- We guess 32 key bits from the encryption side
- We guess 48 key bits from the decryption side
- After filtering we remain with about $2^{32+48-16}=2^{64}$ keys
- The current form of the attack is not faster than exhaustive search



## The New Linear Key Sieve

- We can add more filtering conditions by using more data, but this is not required
- We guess 32 bits of $K$ from the encryption side and 48 bits of $K^{\prime}$ from the decryption side
- Since K and K' are related by a linear function we can factor out 32+48-64=16 linear combintations on the key computable independently from both sides
- We call these expressions a linear key sieve



## The New Linear Key Sieve

- Similar techniques exploited linear message schedules of hash functions in MITM attacks [Aoki and Sasaki, CRYPTO'09]
- This is the first time that such sieving techniques are used on block ciphers


An Improved MITM Attack on 1-Step LED

- We have 16 bits of sieve on the state
- We have 16 bits of the linear key sieve
- Guess 32 key bits from the encryption side
- Compute the 32 bits of filtering and store the suggestions in a sorted list L
- Guess 48 key bits from the decryption side
- Compute the 32 bits of filtering, search L, and obtain a suggestion for the full key
- After filtering we need to test about $2^{32+48-16-16}=2^{48}$ keys
- We obtain an attack with time complexity $2^{48}$


## Splice-and-Cut (Aoki and Sasaki, 2008)

- In order to attack 2-step LED, we use the splice-and-cut technique (as the previous attack of [IS'12])



## Splice-and-Cut on 2-Step LED-64

- We choose $2^{16}$ plaintexts $P_{i}$ and evaluate $F_{1}$ on $2^{48}$ values $\mathrm{X}_{\mathrm{j}}$
- Each of the $2^{64}$ keys is covered by a unique ( $i, j$ ) such that $\mathrm{P}_{\mathrm{i}}+\mathrm{X}_{\mathrm{j}}=\mathrm{K}$
$2^{16}$ plaintexts

$2^{48}$ evaluations



## Splice-and-Cut on 2-Step LED-64

- Ask for chosen plaintexts $\mathrm{P}_{\mathrm{i}}$ in which 3 inversediagonals are 0



## Splice-and-Cut on 2-Step LED-64

- $P_{i}+X_{j}=K$ implies that for any $P_{i}: K=X_{j}$ on the 3 inversediagonals
- Each $X_{j}$ is associated with a value of $K$ on the 3 inverse-diagonals



## Splice-and-Cut on 2-Step LED-64

- For each $X_{j}$ we can continue the evaluation and calculate 48 linear expression on the state after 6 rounds



## Splice-and-Cut on LED-64



## Splice-and-Cut on LED-64

- Using the sieve on the state and the linear key sieve, we obtain an attack with time complexity $2^{48}$
- The data complexity is $2^{16}$ chosen plaintexts
- The memory complexity is about $2^{16}$


## An Attempt to Obtain a Known Plaintext Attack on 2-Step LED-64

- We obtain $2^{16}$ random plaintexts and evaluate $F_{1}$ on $2^{48}$ values
- Each of the $2^{64}$ keys is covered with high probability by ( $\mathrm{i}, \mathrm{j}$ ) such that $\mathrm{P}_{\mathrm{i}}+\mathrm{X}_{\mathrm{j}}=\mathrm{K}$
$2^{16}$ plaintexts

$2^{48}$ evaluations




## An Attempt to Obtain a Known

 Plaintext Attack on 2-Step LED-64

## The Known Plaintext Attack on 2-Step



## The Known Plaintext Attack on 2-Step

 LED-64- We need to carefully reconstruct the attack in order to obtain to obtain an efficient algorithm
- We obtain a known plaintext splice-and-cut attack on LED-64!
- The time complexity is $2^{48}$, which is the same as for the chosen plaintext attack
- The data and memory complexity are increased to $2^{48}$


## Conclusions

- We introduced the linear key sieve which exploits linear dependencies between key bits in MITM attacks on block ciphers
- We used this technique to efficiently apply for the first time a splice-and-cut attack in the known plaintext model
- We applied these techniques to obtain the best known attacks on 2-step LED-64
- We also obtained the best known attack on 3-step LED-64 in the related-key model


## Thank you for your attention!

