Probabilistic Slide Cryptanalysis and Its Applications to LED-64 and Zorro

Hadi Soleimany

Department of Information and Computer Science, Aalto University School of Science, Finland

FSE 2014

Outline

Introduction

Slide Cryptanalysis Even-Mansour Scheme with a Single Key

Probabilistic Slide Cryptanalysis

Applications on LED-64 and Zorro

Conclusion

Introduction

Slide Cryptanalysis Even-Mansour Scheme with a Single Key

Probabilistic Slide Cryptanalysis

Applications on LED-64 and Zorro

Conclusion

Iterated Block Cipher

Block cipher:

$$E_{\mathcal{K}}(P): \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$$

Iterated block cipher:

$$P \rightarrow \mathfrak{R}_{k_1} \rightarrow \mathfrak{R}_{k_2} \rightarrow \mathfrak{R}_{k_3} \rightarrow \mathfrak{R}_{k_4} \rightarrow \cdots \rightarrow \mathfrak{R}_{k_{n-1}} \rightarrow \mathfrak{R}_{k_n} \rightarrow C$$
$$C = \mathfrak{R}_{k_n} \circ \cdots \circ \mathfrak{R}_{k_2} \circ \mathfrak{R}_{k_1}(P)$$

Iterated Block Cipher with Periodic Subkeys

Iterated Block Cipher with Periodic Subkeys

The cipher can be presented as a cascade of identical functions F_k.

 $P'=F_k(P)$

 $P' = F_k(P) \implies C' = F_k(C) \quad \text{(Slid pair)}$ $\Pr[P' = F_k(P)] = 2^{-n} \qquad \Pr[C = F_k^{-1}(C'), P' = F_k(P)] = 2^{-n} > 2^{-2n}$

 \implies 2^{*n*} pairs ((*P*, *C*), (*P'*, *C'*)) are expected to find a slid pair.

 $P' = F_k(P) \implies C' = F_k(C) \quad \text{(Slid pair)}$ $\Pr[P' = F_k(P)] = 2^{-n} \qquad \Pr[C = F_k^{-1}(C'), P' = F_k(P)] = 2^{-n} > 2^{-2n}$

 \implies 2^{*n*} pairs ((*P*, *C*), (*P'*, *C'*)) are expected to find a slid pair.

Typical countermeasures: Key-schedule or round constants.

 $P' = F_k(P) \implies C' = F_k(C) \quad \text{(Slid pair)}$ $\Pr[P' = F_k(P)] = 2^{-n} \qquad \Pr[C = F_k^{-1}(C'), P' = F_k(P)] = 2^{-n} > 2^{-2n}$

 \implies 2^{*n*} pairs ((*P*, *C*), (*P*', *C*')) are expected to find a slid pair.

Typical countermeasures: Key-schedule or round constants.

This Work: Probabilistic technique to overcome round constants in block ciphers based on the Even-Mansour scheme with a single key.

Even-Mansour Scheme with a Single Key

Even-Mansour Scheme with a Single Key

 Block ciphers like LED-64, PRINCE_{core}, Zorro and PRINTcipher.

LED-64

- Presented at CHES 2011 [Guo et al 11]
- 64-bit block cipher and supports 64-bit key
- 6 steps
- Each step consists of four rounds.

Zorro

- Presented at CHES 2013 [Gérard et al 13]
- 128-bit block cipher and supports 128-bit key
- 6 steps
- Each step consists of four rounds

Introduction

Slide Cryptanalysis Even-Mansour Scheme with a Single Key

Probabilistic Slide Cryptanalysis

Applications on LED-64 and Zorro

Conclusion

Slide cryptanalysis requires known plaintexts.

- Slide cryptanalysis requires known plaintexts.
 - But it is limited to the ciphers with identical rounds.

- Slide cryptanalysis requires known plaintexts.
 - But it is limited to the ciphers with identical rounds.
- Differential cryptanalysis is usually applicable on any round functions [Biham Shamir 90].

- Slide cryptanalysis requires known plaintexts.
 - But it is limited to the ciphers with identical rounds.
- Differential cryptanalysis is usually applicable on any round functions [Biham Shamir 90].
 - But there exists a lower bound for active S-boxes and it usually requires chosen plaintexts.

- Slide cryptanalysis requires known plaintexts.
 - But it is limited to the ciphers with identical rounds.
- Differential cryptanalysis is usually applicable on any round functions [Biham Shamir 90].
 - But there exists a lower bound for active S-boxes and it usually requires chosen plaintexts.
- Related-key differential usually has less active S-boxes and applicable on more rounds [Kelsey et al 97].

- Slide cryptanalysis requires known plaintexts.
 - But it is limited to the ciphers with identical rounds.
- Differential cryptanalysis is usually applicable on any round functions [Biham Shamir 90].
 - But there exists a lower bound for active S-boxes and it usually requires chosen plaintexts.
- Related-key differential usually has less active S-boxes and applicable on more rounds [Kelsey et al 97].
 - But usually it is not a realistic model.

- Slide cryptanalysis requires known plaintexts.
 - But it is limited to the ciphers with identical rounds.
- Differential cryptanalysis is usually applicable on any round functions [Biham Shamir 90].
 - But there exists a lower bound for active S-boxes and it usually requires chosen plaintexts.
- Related-key differential usually has less active S-boxes and applicable on more rounds [Kelsey et al 97].
 - But usually it is not a realistic model.
- Probabilistic reflection attack is applicable on block ciphers with almost symmetric rounds [Soleimany et al 13].

- Slide cryptanalysis requires known plaintexts.
 - But it is limited to the ciphers with identical rounds.
- Differential cryptanalysis is usually applicable on any round functions [Biham Shamir 90].
 - But there exists a lower bound for active S-boxes and it usually requires chosen plaintexts.
- Related-key differential usually has less active S-boxes and applicable on more rounds [Kelsey et al 97].
 - But usually it is not a realistic model.
- Probabilistic reflection attack is applicable on block ciphers with almost symmetric rounds [Soleimany et al 13].
 - But its application is limited to involutional block ciphers.

- Slide cryptanalysis requires known plaintexts.
 - But it is limited to the ciphers with identical rounds.
- Differential cryptanalysis is usually applicable on any round functions [Biham Shamir 90].
 - But there exists a lower bound for active S-boxes and it usually requires chosen plaintexts.
- Related-key differential usually has less active S-boxes and applicable on more rounds [Kelsey et al 97].
 - But usually it is not a realistic model.
- Probabilistic reflection attack is applicable on block ciphers with almost symmetric rounds [Soleimany et al 13].
 - But its application is limited to involutional block ciphers.

This Work

Exploit previous ideas to take advantage of the positive properties and overcome the negative aspects!

- Assume there exists a sequence of differences $\mathcal{D} = \{\Delta_0, \dots, \Delta_{s-1}\}$ such that $\Pr[F_r(x) \oplus F_{r-1}(x \oplus \Delta_{r-2}) = \Delta_{r-1}] = 2^{-p_{r-1}}$ where $0 \le p_r$.
- A differential-type characteristic with input difference Δ_{in} = Δ₀ and output difference Δ_{out} = Δ_{s-1} can be obtained with probability 2^{-p} = Π^{s-1}_{r=1}2^{-p_r}.

 $P' \oplus F_1(P \oplus K) = \Delta_{in}$

 $P'\oplus F_1(P\oplus K)=\Delta_{in}$

 $C \oplus F_s^{-1}(C' \oplus K) = \Delta_{\text{out}}$

The right slid pair satisfies the relation

$$C' \oplus F_s(C \oplus \Delta_{out}) = K = P \oplus F_1^{-1}(\Delta_{in} \oplus P',)$$

The right slid pair satisfies the relation

$$C' \oplus F_1^{-1}(\Delta_{\operatorname{in}} \oplus P') = P \oplus F_s(C \oplus \Delta_{\operatorname{out}}).$$

The right slid pair satisfies the relation

$$C' \oplus F_1^{-1}(\Delta_{\operatorname{in}} \oplus P') = P \oplus F_s(C \oplus \Delta_{\operatorname{out}}).$$

For given $2^{(n+p)/2}$ known (P, C):

Step 1 For all pairs (P, C) compute $C \oplus F_1^{-1}(P \oplus \Delta_{in})$ and store the computed value with *C* in the hash table T_1 .

The right slid pair satisfies the relation

$$C' \oplus F_1^{-1}(\Delta_{\operatorname{in}} \oplus P') = P \oplus F_s(C \oplus \Delta_{\operatorname{out}}).$$

For given $2^{(n+p)/2}$ known (P, C):

- Step 1 For all pairs (P, C) compute $C \oplus F_1^{-1}(P \oplus \Delta_{in})$ and store the computed value with *C* in the hash table T_1 .
- Step 2 For all pairs (P, C) compute $P \oplus F_s(\Delta_{out} \oplus C)$ and store the computed value with *C* in the hash table T_2 .

The right slid pair satisfies the relation

$$C' \oplus F_1^{-1}(\Delta_{\operatorname{in}} \oplus P') = P \oplus F_s(C \oplus \Delta_{\operatorname{out}}).$$

For given $2^{(n+p)/2}$ known (P, C):

- Step 1 For all pairs (P, C) compute $C \oplus F_1^{-1}(P \oplus \Delta_{in})$ and store the computed value with *C* in the hash table T_1 .
- Step 2 For all pairs (P, C) compute $P \oplus F_s(\Delta_{out} \oplus C)$ and store the computed value with *C* in the hash table T_2 .
- Step 3 For each collision in T_1 and T_2 find corresponding ciphertexts C and C' then compute a key candidate $K = C' \oplus F_s(C \oplus \Delta_{out}).$

More Output Differences

 $P' = F_1(P \oplus \Delta_{in}) \qquad \qquad C' = F_s(C \oplus \Delta_{out}^i), 1 \le i \le L$ $\Pr[P' = F_1(P \oplus \Delta_{in})] = 2^{-n}$ $\Pr[P' = F_1(P \oplus \Delta_{in}), C' = F_s(C \oplus \Delta_{out}^i)] = 2^{-n} \sum_{i=1}^{L} 2^{-p_i}$

- Decrease the data requirement by increasing the total probability.
- This comes with the cost of repeating the attack algorithm L times.

Introduction

Slide Cryptanalysis Even-Mansour Scheme with a Single Key

Probabilistic Slide Cryptanalysis

Applications on LED-64 and Zorro

Conclusion

Thanks to cancellation, the characteristic has 13 active S-boxes while normal differential characteristic has at least 25 S-boxes.

Slide Cryptanalysis of Zorro

State	Difference			
$\Delta_{in} = X'_5 \oplus P'$	0000000d52c6f72120a92b50c8c2eee			
$X_5^S \oplus X_1^{\prime S}$	0000000d52c6f72120a92b50c8c2eee			
$X_5^A \oplus X_1^A$	04040420d52c6f72120a92b50c8c2eee			
$X_5^R \oplus X_1'^R$	040404202c6f72d592b5120aee0c8c2e			
÷	: :			
$X_{16}^A \oplus X_{12}^{\prime A}$	1c17980d447ad32bfbc96dc0a06a35cc			
$X_{16}^R \oplus X_{12}^{\prime R}$	1c17980d7ad32b446dc0fbc9cca06a35			
$\Delta_{out} = X_{16}^M \oplus X_{12}'^M$	1720c72a9351b2f0f3a4e09fb071b7f0			

- Differential characteristic for 3 steps (probability 2^{-119.24}).
- Key-recovery cryptanalysis on 4 steps.
- This result improves the best cryptanalysis presented by the designers one step (four rounds).

Results

Cipher	Attack Type	Steps	Data	Time	Memory	Source
Zorro	Impossible differential Meet-in-the-middle Probabilistic slide Probabilistic slide Internal differential [†] Differential	2.5 3 4 6 6	2 ¹¹⁵ CP 2 ² KP 2 ^{123.62} KP 2 ^{121.59} KP 2 ^{54.25} CP 2 ^{112.4} CP	2 ¹¹⁵ 2 ¹⁰⁴ 2 ^{123.8} 2 ^{124.23} 2 ^{54.25} 2 ¹⁰⁸	2 ¹¹⁵ - 2123.62 2 ^{121.59} 2 ^{54.25}	[Gérard et al 13] [Gérard et al 13] This work This work [Guo et al 13] [Wang et al 13]
LED-64	Meet-in-the-middle Generic Meet-in-the-middle Meet-in-the-middle Probabilistic slide Probabilistic slide Generic	2 2 2 2 2 2 2 2 3	2 ⁸ CP 2 ⁴⁵ KP 2 ¹⁶ CP 2 ⁴⁸ KP 2 ^{45.5} KP 2 ^{41.5} KP 2 ⁴⁹ KP	2 ⁵⁶ 2 ^{60.1} 2 ⁴⁸ 2 ⁴⁸ 2 ⁴⁸ 2 ^{46.5} 2 ^{51.5} 2 ^{60.2}	2 ¹¹ 2 ⁶⁰ 2 ¹⁷ 2 ⁴⁸ 2^{46.5} 2^{42.5} 2 ⁶⁰	[Isobe et al 12] [Dinur et al 13] [Dinur et al 14] [Dinur et al 14] This work This work [Dinur et al 13]

 \dagger – this attack is applicable just on 2^{64} keys (out of $2^{128}),$ CP – Chosen Plaintexts, KP – Known Plaintext.

Introduction

Slide Cryptanalysis Even-Mansour Scheme with a Single Key

Probabilistic Slide Cryptanalysis

Applications on LED-64 and Zorro

Conclusion

Conclusion and Future Work

Conclusion

- Framework of probabilistic slide cryptanalysis on EMS which requires known-plaintext in the single-key model.
- The relation between round constants should be taken into account.
- Applications of the probabilistic slide cryptanalysis on LED-64 and Zorro.

Future Work

- Application on other EMS block ciphers.
- Improve the results on Zorro and LED-64 by exploiting differential instead of differential characteristic.

Thanks for your attention!

