Probabilistic Slide Cryptanalysis and Its Applications to LED-64 and Zorro

Hadi Soleimany

Department of Information and Computer Science, Aalto University School of Science, Finland

FSE 2014

Outline

Introduction

Slide Cryptanalysis
Even-Mansour Scheme with a Single Key

Probabilistic Slide Cryptanalysis

Applications on LED-64 and Zorro

Conclusion

Introduction

Slide Cryptanalysis
Even-Mansour Scheme with a Single Key

Probabilistic Slide Cryptanalysis

Applications on LED-64 and Zorro

Conclusion

Iterated Block Cipher

Block cipher:

$$
E_{K}(P):\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

Iterated block cipher:

$$
\begin{gathered}
P \rightarrow \Re_{k_{1}} \rightarrow \Re_{k_{2}} \rightarrow \Re_{k_{3}} \rightarrow \Re_{k_{4}} \rightarrow \cdots \rightarrow \Re_{k_{n-1}} \rightarrow \Re_{k_{n}} \rightarrow C \\
C=\Re_{k_{n}} \circ \cdots \circ \Re_{k_{2}} \circ \Re_{k_{1}}(P)
\end{gathered}
$$

Iterated Block Cipher with Periodic Subkeys

$$
P \rightarrow \mathfrak{R}_{k_{1}} \rightarrow \cdots \rightarrow \mathfrak{R}_{k_{m}} \rightarrow \mathfrak{R}_{k_{1}} \rightarrow \cdots \rightarrow \mathfrak{R}_{k_{m}} \rightarrow \cdots \rightarrow \mathfrak{R}_{k_{1}} \rightarrow \cdots \rightarrow \rightarrow \mathfrak{R}_{k_{m}} \rightarrow C
$$

Iterated Block Cipher with Periodic Subkeys

- The cipher can be presented as a cascade of identical functions F_{k}.

Slide Cryptanalysis [Biryukov Wagner 99]

Slide Cryptanalysis [Biryukov Wagner 99]

$$
\begin{aligned}
P \longrightarrow & F_{k} \xrightarrow{ } \rightarrow F_{k} \rightarrow \cdots \rightarrow F_{k} \rightarrow F_{k} \rightarrow C \\
& P^{\prime} \xrightarrow{\rightarrow} \rightarrow F_{k} \rightarrow F_{k} \rightarrow \cdots \rightarrow F_{k} \rightarrow F_{k} \rightarrow C^{\prime} \\
& P^{\prime}=F_{k}(P)
\end{aligned}
$$

Slide Cryptanalysis [Biryukov Wagner 99]

Slide Cryptanalysis [Biryukov Wagner 99]

$$
\begin{gathered}
P \longrightarrow F_{k} \xrightarrow{P} \longrightarrow F_{k} \longrightarrow \cdots \longrightarrow F_{k} \longrightarrow F_{k} \rightarrow C \\
\\
P^{\prime} \rightarrow F_{k} \longrightarrow F_{k} \longrightarrow \cdots \rightarrow F_{k} \rightarrow F_{k} \longrightarrow C^{\prime} \\
P^{\prime}=F_{k}(P) \quad C^{\prime}=F_{k}(C) \quad \text { (Slid pair) } \\
\operatorname{Pr}\left[P^{\prime}=F_{k}(P)\right]=2^{-n} \quad \operatorname{Pr}\left[C=F_{k}^{-1}\left(C^{\prime}\right), P^{\prime}=F_{k}(P)\right]=2^{-n}>2^{-2 n} \\
\Longrightarrow 2^{n} \text { pairs }\left((P, C),\left(P^{\prime}, C^{\prime}\right)\right) \text { are expected to find a slid pair. }
\end{gathered}
$$

Slide Cryptanalysis [Biryukov Wagner 99]

Typical countermeasures: Key-schedule or round constants.

Slide Cryptanalysis [Biryukov Wagner 99]

$$
\begin{aligned}
& P \longrightarrow F_{k} \xrightarrow{P} \longrightarrow F_{k} \longrightarrow \cdots \longrightarrow F_{k} \longrightarrow F_{k} \rightarrow C \\
& \\
& P^{\prime} \xrightarrow{ } \rightarrow F_{k} \longrightarrow F_{k} \longrightarrow \cdots \rightarrow F_{k} \rightarrow F_{k} \longrightarrow C^{\prime} \\
& P^{\prime}=F_{k}(P) \quad C^{\prime}=F_{k}(C) \quad \text { (Slid pair) } \\
& \operatorname{Pr}\left[P^{\prime}=F_{k}(P)\right]=2^{-n} \quad \operatorname{Pr}\left[C=F_{k}^{-1}\left(C^{\prime}\right), P^{\prime}=F_{k}(P)\right]=2^{-n}>2^{-2 n} \\
& \Longrightarrow 2^{n} \text { pairs }\left((P, C),\left(P^{\prime}, C^{\prime}\right)\right) \text { are expected to find a slid pair. }
\end{aligned}
$$

Typical countermeasures: Key-schedule or round constants.
This Work:
Probabilistic technique to overcome round constants in block ciphers based on the Even-Mansour scheme with a single key.

Even-Mansour Scheme with a Single Key

Even-Mansour Scheme with a Single Key

- Block ciphers like LED-64, PRINCE ${ }_{\text {core }}$, Zorro and PRINTcipher.

LED-64

- Presented at CHES 2011 [Guo et al 11]
- 64-bit block cipher and supports 64-bit key
- 6 steps
- Each step consists of four rounds.

Zorro

- Presented at CHES 2013 [Gérard et al 13]
- 128-bit block cipher and supports 128-bit key
- 6 steps
- Each step consists of four rounds

Introduction

Slide Cryptanalysis
Even-Mansour Scheme with a Single Key

Probabilistic Slide Cryptanalysis

Applications on LED-64 and Zorro

Conclusion

School of Science

Overview of Previous Attacks

- Slide cryptanalysis requires known plaintexts.

Overview of Previous Attacks

- Slide cryptanalysis requires known plaintexts.
- But it is limited to the ciphers with identical rounds.

Overview of Previous Attacks

- Slide cryptanalysis requires known plaintexts.
- But it is limited to the ciphers with identical rounds.
- Differential cryptanalysis is usually applicable on any round functions [Biham Shamir 90].

Overview of Previous Attacks

- Slide cryptanalysis requires known plaintexts.
- But it is limited to the ciphers with identical rounds.
- Differential cryptanalysis is usually applicable on any round functions [Biham Shamir 90].
- But there exists a lower bound for active S-boxes and it usually requires chosen plaintexts.

Overview of Previous Attacks

- Slide cryptanalysis requires known plaintexts.
- But it is limited to the ciphers with identical rounds.
- Differential cryptanalysis is usually applicable on any round functions [Biham Shamir 90].
- But there exists a lower bound for active S-boxes and it usually requires chosen plaintexts.
- Related-key differential usually has less active S-boxes and applicable on more rounds [Kelsey et al 97].

Overview of Previous Attacks

- Slide cryptanalysis requires known plaintexts.
- But it is limited to the ciphers with identical rounds.
- Differential cryptanalysis is usually applicable on any round functions [Biham Shamir 90].
- But there exists a lower bound for active S-boxes and it usually requires chosen plaintexts.
- Related-key differential usually has less active S-boxes and applicable on more rounds [Kelsey et al 97].
- But usually it is not a realistic model.

Overview of Previous Attacks

- Slide cryptanalysis requires known plaintexts.
- But it is limited to the ciphers with identical rounds.
- Differential cryptanalysis is usually applicable on any round functions [Biham Shamir 90].
- But there exists a lower bound for active S-boxes and it usually requires chosen plaintexts.
- Related-key differential usually has less active S-boxes and applicable on more rounds [Kelsey et al 97].
- But usually it is not a realistic model.
- Probabilistic reflection attack is applicable on block ciphers with almost symmetric rounds [Soleimany et al 13].

Overview of Previous Attacks

- Slide cryptanalysis requires known plaintexts.
- But it is limited to the ciphers with identical rounds.
- Differential cryptanalysis is usually applicable on any round functions [Biham Shamir 90].
- But there exists a lower bound for active S-boxes and it usually requires chosen plaintexts.
- Related-key differential usually has less active S-boxes and applicable on more rounds [Kelsey et al 97].
- But usually it is not a realistic model.
- Probabilistic reflection attack is applicable on block ciphers with almost symmetric rounds [Soleimany et al 13].
- But its application is limited to involutional block ciphers.

Overview of Previous Attacks

- Slide cryptanalysis requires known plaintexts.
- But it is limited to the ciphers with identical rounds.
- Differential cryptanalysis is usually applicable on any round functions [Biham Shamir 90].
- But there exists a lower bound for active S-boxes and it usually requires chosen plaintexts.
- Related-key differential usually has less active S-boxes and applicable on more rounds [Kelsey et al 97].
- But usually it is not a realistic model.
- Probabilistic reflection attack is applicable on block ciphers with almost symmetric rounds [Soleimany et al 13].
- But its application is limited to involutional block ciphers.

This Work
Exploit previous ideas to take advantage of the positive properties and overcome the negative aspects!

Probabilistic Slide Distinguisher

- Assume there exists a sequence of differences
$\mathcal{D}=\left\{\Delta_{0}, \ldots, \Delta_{s-1}\right\}$ such that
$\operatorname{Pr}\left[F_{r}(x) \oplus F_{r-1}\left(x \oplus \Delta_{r-2}\right)=\Delta_{r-1}\right]=2^{-p_{r-1}}$ where $0 \leq p_{r}$.
- A differential-type characteristic with input difference $\Delta_{\text {in }}=\Delta_{0}$ and output difference $\Delta_{\text {out }}=\Delta_{s-1}$ can be obtained with probability $2^{-p}=\Pi_{r=1}^{s-1} 2^{-p_{r}}$.

Probabilistic Slide Distinguisher

Probabilistic Slide Distinguisher

Probabilistic Slide Distinguisher

$P^{\prime} F^{\prime}(P \oplus K)=$ probability $^{2-p}$

$$
C \oplus F_{s}^{-1}\left(C^{\prime} \oplus K\right)=\Delta_{\text {out }}
$$

$\operatorname{Pr}\left[P^{\prime} \oplus F_{1}(P \oplus K)=\Delta_{\text {in }}\right]=2^{-n}$
$\operatorname{Pr}\left[C \oplus F_{s}^{-1}\left(C^{\prime} \oplus K\right)=\Delta_{\text {out }}, P^{\prime} \oplus F_{1}(P \oplus K)=\Delta_{\text {in }}\right]=2^{-n-p}$
$\Longrightarrow 2^{(n+p)}$ pairs $\left((P, C),\left(P^{\prime}, C^{\prime}\right)\right)$ are expected to find a right slid pair

Key Recovery

- The right slid pair satisfies the relation

$$
C^{\prime} \oplus F_{s}\left(C \oplus \Delta_{\text {out }}\right)=K=P \oplus F_{1}^{-1}\left(\Delta_{\text {in }} \oplus P^{\prime},\right)
$$

Key Recovery

- The right slid pair satisfies the relation

$$
C^{\prime} \oplus F_{1}^{-1}\left(\Delta_{\text {in }} \oplus P^{\prime}\right)=P \oplus F_{s}\left(C \oplus \Delta_{\mathrm{out}}\right)
$$

Key Recovery

- The right slid pair satisfies the relation

$$
C^{\prime} \oplus F_{1}^{-1}\left(\Delta_{\text {in }} \oplus P^{\prime}\right)=P \oplus F_{s}\left(C \oplus \Delta_{\mathrm{out}}\right)
$$

For given $2^{(n+p) / 2}$ known (P, C) :
Step 1 For all pairs (P, C) compute $C \oplus F_{1}^{-1}\left(P \oplus \Delta_{\text {in }}\right)$ and store the computed value with C in the hash table T_{1}.

Key Recovery

- The right slid pair satisfies the relation

$$
C^{\prime} \oplus F_{1}^{-1}\left(\Delta_{\text {in }} \oplus P^{\prime}\right)=P \oplus F_{s}\left(C \oplus \Delta_{\mathrm{out}}\right)
$$

For given $2^{(n+p) / 2}$ known (P, C) :
Step 1 For all pairs (P, C) compute $C \oplus F_{1}^{-1}\left(P \oplus \Delta_{\text {in }}\right)$ and store the computed value with C in the hash table T_{1}.
Step 2 For all pairs (P, C) compute $P \oplus F_{s}\left(\Delta_{\text {out }} \oplus C\right)$ and store the computed value with C in the hash table T_{2}.

Key Recovery

- The right slid pair satisfies the relation

$$
C^{\prime} \oplus F_{1}^{-1}\left(\Delta_{\mathrm{in}} \oplus P^{\prime}\right)=P \oplus F_{s}\left(C \oplus \Delta_{\mathrm{out}}\right)
$$

For given $2^{(n+p) / 2}$ known (P, C) :
Step 1 For all pairs (P, C) compute $C \oplus F_{1}^{-1}\left(P \oplus \Delta_{\text {in }}\right)$ and store the computed value with C in the hash table T_{1}.
Step 2 For all pairs (P, C) compute $P \oplus F_{s}\left(\Delta_{\text {out }} \oplus C\right)$ and store the computed value with C in the hash table T_{2}.
Step 3 For each collision in T_{1} and T_{2} find corresponding ciphertexts C and C^{\prime} then compute a key candidate $K=C^{\prime} \oplus F_{S}\left(C \oplus \Delta_{\text {out }}\right)$.

More Output Differences

$$
P^{\prime}=F_{1}\left(P \oplus \Delta_{\text {in }}\right) \quad C^{\prime}=F_{s}\left(C \oplus \Delta_{\text {out }}^{i}\right), 1 \leq i \leq L
$$

$\operatorname{Pr}\left[P^{\prime}=F_{1}\left(P \oplus \Delta_{\text {in }}\right)\right]=2^{-n}$
$\operatorname{Pr}\left[P^{\prime}=F_{1}\left(P \oplus \Delta_{\text {in }}\right), C^{\prime}=F_{s}\left(C \oplus \Delta_{\text {out }}^{i}\right)\right]=2^{-n} \sum_{i=1}^{L} 2^{-p_{i}}$

- Decrease the data requirement by increasing the total probability.
- This comes with the cost of repeating the attack algorithm L times.

Introduction

Slide Cryptanalysis
Even-Mansour Scheme with a Single Key

Probabilistic Slide Cryptanalysis

Applications on LED-64 and Zorro

Conclusion

School of Science

Slide Cryptanalysis of LED-64

0	2	5	0
0	6	0	b
3	3	0	1
0	7	0	0

Slide Cryptanalysis of LED-64

0	2			0	AC	0	1	5				0	7	-		0	SR	0	7		c	0	MC	0	1		0	0
0	6		-	b		0	0	0				0	0		0	8		0	0	0	8	0		0	5		1	0
3	3		-	1		3	0	0		,		6	0	0	0	7		0	7	7	6	0		0	7		0	0
0	7		-	0		0	1	0		-		0	9		0	0		0		0	9	0		0	5		0	0

Slide Cryptanalysis of LED-64

0	2	5	0	AC	0	1	5				0		7	c	0	SR	0	7		c		0	1			0
0	6	0	b		0	0	0				0		0	0	8		0	0		8		0	5			0
3	3	0	1		3	0	0		1		6		0	0	7		0	7		6		0	7			0
0	7	0	0		0	1	0				0		9	0	0		0	0		9		0	5			0
					0	6	0		0	SC	0		c 0	0	0	SR	0	c		0	MC	0	8		0	
				AC	0	0	1				0		0	d	0		0	d		0		0	2			0
					0	0	0		0		0		0	0	0		0	0		0		0	7			0
					0	0	0		0		0		0	0	0		0			0		0	2			0

Slide Cryptanalysis of LED-64

Slide Cryptanalysis of LED-64

Slide Cryptanalysis of LED-64

- Thanks to cancellation, the characteristic has 13 active S-boxes while normal differential characteristic has at least 25 S-boxes.

Slide Cryptanalysis of LED-64

- $a_{i} \in \mathcal{A}_{i}$ where $\mathcal{A}_{1}=\{3,5,6, \mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}, \mathcal{A}_{2}=\{2,5,7,8,9, \mathrm{a}, \mathrm{e}\}$, $\mathcal{A}_{3}=\{1,2,3,4,7, \mathrm{a}, \mathrm{b}\}$ and $\mathcal{A}_{4}=\{2,6,8, \mathrm{~b}, \mathrm{c}, \mathrm{f}\}$

Slide Cryptanalysis of Zorro

State	Difference
$\Delta_{\text {in }}=X_{5}^{I} \oplus P^{\prime}$	$00000000 \mathrm{d52c6f72120a92b50c8c2eee}$
$X_{5}^{S} \oplus X_{1}^{\prime S}$	$00000000 \mathrm{d52c6f72120a92b50c8c2eee}$
$X_{5}^{A} \oplus X_{1}^{A}$	04040420 d 52 c 6 f 72120 a 92 b 50 c 8 c 2 eee
$X_{5}^{R} \oplus X_{1}^{\prime R}$	040404202 c 6 f 72 d 592 b 5120 aee 0 c 8 c 2 e
\vdots	\vdots
$X_{16}^{A} \oplus X_{12}^{\prime A}$	$1 \mathrm{c} 17980 \mathrm{~d} 447 \mathrm{ad32bfbc} 96 \mathrm{dc} 0 \mathrm{a} 06 \mathrm{a} 35 \mathrm{cc}$
$X_{16}^{R} \oplus X_{12}^{\prime P}$	1 c 17980 d 7 ad 32 b 446 dc 0 fbc 9 cca 06 a 35
$\Delta_{\text {out }}=X_{16}^{M} \oplus X_{12}^{\prime M}$	$1720 \mathrm{c} 72 \mathrm{a} 9351 \mathrm{~b} 2 \mathrm{f0f3a4e09fb071b7f00}$

- Differential characteristic for 3 steps (probability $2^{-119.24}$).
- Key-recovery cryptanalysis on 4 steps.
- This result improves the best cryptanalysis presented by the designers one step (four rounds).

Results

Cipher	Attack Type	Steps	Data	Time	Memory	Source
Zorro	Impossible differential	2.5	$2^{115} \mathrm{CP}$	2^{115}	2^{115}	[Gérard et al 13]
	Meet-in-the-middle	3	$2^{2} \mathrm{KP}$	2^{104}	-	[Gérard et al 13]
	Probabilistic slide	$\mathbf{4}$	$\mathbf{2}^{123.62} \mathrm{KP}$	$\mathbf{2}^{123.8}$	$\mathbf{2}^{123.62}$	This work
	Probabilistic slide	$\mathbf{4}$	$\mathbf{2}^{121.59} \mathrm{KP}$	$\mathbf{2}^{124.23}$	$\mathbf{2}^{121.59}$	This work
	Internal differential ${ }^{\dagger}$	6	$2^{54.25} \mathrm{CP}$	$2^{54.25}$	$2^{54.25}$	[Guo et al 13]
	Differential	6	$2^{112.4} \mathrm{CP}$	2^{108}	-	[Wang et al 13]
	Meet-in-the-middle	2	$2^{8} \mathrm{CP}$	2^{56}	2^{11}	[Isobe et al 12]
	Generic	2	$2^{45} \mathrm{KP}$	$2^{60.1}$	2^{60}	[Dinur et al 13]
	Meet-in-the-middle	2	$2^{24} \mathrm{CP}$	2^{48}	2^{17}	[Dinur et al 14]
	Meet-in-the-middle	2	$2^{48} \mathrm{KP}$	2^{48}	2^{48}	[Dinur et al 14]
	Probabilistic slide	$\mathbf{2}$	$\mathbf{2}^{45.5} \mathrm{KP}$	$\mathbf{2}^{46.5}$	$\mathbf{2}^{46.5}$	This work
	Probabilistic slide	$\mathbf{2}$	$\mathbf{2}^{41.5} \mathrm{KP}$	$\mathbf{2}^{51.5}$	$\mathbf{2}^{42.5}$	This work
	Generic	3	$2^{49} \mathrm{KP}$	$2^{60.2}$	2^{60}	[Dinur et al 13]

\dagger - this attack is applicable just on 2^{64} keys (out of 2^{128}), CP - Chosen Plaintexts, KP - Known Plaintext.

Introduction

Slide Cryptanalysis
Even-Mansour Scheme with a Single Key

Probabilistic Slide Cryptanalysis

Applications on LED-64 and Zorro

Conclusion

School of Science

Conclusion and Future Work

Conclusion

- Framework of probabilistic slide cryptanalysis on EMS which requires known-plaintext in the single-key model.
- The relation between round constants should be taken into account.
- Applications of the probabilistic slide cryptanalysis on LED-64 and Zorro.

Future Work

- Application on other EMS block ciphers.
- Improve the results on Zorro and LED-64 by exploiting differential instead of differential characteristic.

Thanks for your attention!

School of Science

