The Indistinguishability of the XOR of k Permutations

B. Cogliati, R. Lampe, J. Patarin

University of Versailles

March 4, 2014

We will use the following notations:
■ I_{n} is the set of n-bit strings,

- F_{n} is the set of functions from I_{n} to I_{n},
- B_{n} is the set of permutations of I_{n},
- \tilde{b} is the mean of b.
$f=f_{1} \oplus \ldots \oplus f_{k}$
$f_{1}, \ldots, f_{k} \in_{R} B_{n}$
$F \in_{R} F_{n}$

The advantage $\operatorname{adv}_{A, f}$ of an adversary A trying to distinguish the XOR f of k permutations from a truly random function F in less than q queries is:

$$
\operatorname{adv}_{A, f, q}=|\mathbb{P}(A(f)=1)-\mathbb{P}(A(F)=1)|
$$

Our goal is to upper bound the maximal advantage adv_{q} any adversary can get.

Theorem

Let $k, n \geq 1, f_{1}, \ldots, f_{k} \in_{R} B_{n}$ and $q \leq 2^{n-1} / k$ be the number of queries the adversary can ask. Then the advantage to distinguish $f=f_{1} \oplus \ldots \oplus f_{k}$ from a uniformly random function using q queries satisfies:

$$
\operatorname{adv}_{q} \leq 2^{-k(n-1)} * \sum_{0 \leq i \leq q} i^{k}=O\left(\frac{q^{k+1}}{2^{k n}}\right)
$$

The best known attacks for the XOR of k permutations give the following bounds:

- $\operatorname{adv}_{q} \geq \mathcal{O}\left(\frac{q(q-1)}{2^{k n}}\right)$ if $q \ll 2^{\frac{n}{2}}$,
- $\operatorname{adv}_{q} \geq \mathcal{O}\left(\frac{q}{2^{\left(k-\frac{1}{2}\right) n}}\right)$ if $2^{\frac{n}{2}} \ll q \ll 2^{n}$.

Theorem

Let $n \geq 1, f_{1}, f_{2} \in_{R} B_{n}$ and $q \ll 2^{n}$ be the umber of queries asked by the adversary. Then the advantage when trying to distinguish $f=f_{1} \oplus f_{2}$ from a uniformly random function in less than q queries satisfies:

$$
\operatorname{adv}_{q} \leq \mathcal{O}\left(\frac{q}{2^{n}}\right)
$$

Let a, b be two sequences of $q n$-bit strings. $H_{q}(a, b)$ corresponds to the number of $\left(f_{1}, \ldots, f_{k}\right) \in B_{n}^{k}$ such that

$$
\forall i, 1 \leq i \leq q,\left(f_{1} \oplus \ldots \oplus f_{k}\right)\left(a_{i}\right)=b_{i}
$$

Theorem

Let α, β be two positive real numbers. Let $E \subset I_{n}^{q}$ such that $|E| \geq(1-\beta) 2^{\text {nq }}$. Suppose that for every sequences $\left(a_{i}\right)_{1 \leq i \leq q}$, $\left(b_{i}\right)_{1 \leq i \leq q}$ of pairwise distincts n-bit queries such that $\left(b_{i}\right)_{1 \leq i \leq m} \in E$, one has:

$$
H_{q}(a, b) \geq(1-\alpha) \tilde{H}_{q} .
$$

Then

Let a, b be two sequences of $q n$-bit strings. $H_{q}(a, b)$ corresponds to the number of $\left(f_{1}, \ldots, f_{k}\right) \in B_{n}^{k}$ such that

$$
\forall i, 1 \leq i \leq q,\left(f_{1} \oplus \ldots \oplus f_{k}\right)\left(a_{i}\right)=b_{i}
$$

Theorem

Let α, β be two positive real numbers. Let $E \subset I_{n}^{q}$ such that $|E| \geq(1-\beta) 2^{\text {nq }}$. Suppose that for every sequences $\left(a_{i}\right)_{1 \leq i \leq q}$,
$\left(b_{i}\right)_{1 \leq i \leq q}$ of pairwise distincts n-bit queries such that
$\left(b_{i}\right)_{1 \leq i \leq m} \in E$, one has:

$$
H_{q}(a, b) \geq(1-\alpha) \tilde{H}_{q}
$$

Then

$$
\operatorname{adv}_{q} \leq \alpha+\beta
$$

$H_{q}(a, b)$ is the number of $\left(f_{1}, \ldots, f_{k}\right) \in B_{n}^{k}$ such that:

$$
\left\{\begin{array}{ccccccccccc}
f_{1}\left(a_{1}\right) & \oplus & f_{2}\left(a_{1}\right) & \oplus & \ldots & \oplus & f_{k-1}\left(a_{1}\right) & \oplus & f_{k}\left(a_{1}\right) & = & b_{1} \\
\vdots & \vdots & & & & & \vdots & \vdots & & \vdots \\
f_{1}\left(a_{q}\right) & \oplus & f_{2}\left(a_{q}\right) & \oplus & \ldots & \oplus & f_{k-1}\left(a_{q}\right) & \oplus & f_{k}\left(a_{q}\right) & = & b_{q}
\end{array}\right.
$$

Since our permutations are fixed on only q queries, what actually matters is the number $h_{q}(b)$ of solutions of the following system:

$H_{q}(a, b)$ is the number of $\left(f_{1}, \ldots, f_{k}\right) \in B_{n}^{k}$ such that:

$$
\left\{\begin{array}{ccccccccccc}
f_{1}\left(a_{1}\right) & \oplus & f_{2}\left(a_{1}\right) & \oplus & \ldots & \oplus & f_{k-1}\left(a_{1}\right) & \oplus & f_{k}\left(a_{1}\right) & = & b_{1} \\
\vdots & \vdots & & & & & \vdots & \vdots & & \vdots \\
f_{1}\left(a_{q}\right) & \oplus & f_{2}\left(a_{q}\right) & \oplus & \ldots & \oplus & f_{k-1}\left(a_{q}\right) & \oplus & f_{k}\left(a_{q}\right) & = & b_{q}
\end{array}\right.
$$

Since our permutations are fixed on only q queries, what actually matters is the number $h_{q}(b)$ of solutions of the following system:

$$
\left\{\begin{array}{ccccccccccc}
P_{1}^{1} & \oplus & P_{1}^{2} & \oplus & \ldots & \oplus & P_{1}^{k-1} & \oplus & P_{1}^{k} & = & b_{1} \\
\vdots & \vdots & & & & & \vdots & \vdots & & \vdots \\
P_{q}^{1} & \oplus & P_{q}^{2} & \oplus & \ldots & \oplus & P_{q}^{k-1} & \oplus & P_{q}^{k} & = & b_{q} \\
P_{i}^{1} \neq P_{j}^{1} \text { if } i \neq j & & & & & & & \\
\vdots \\
& & & & & & & & \\
P_{i}^{k} \neq P_{j}^{k} \text { if } i \neq j & & & & & & &
\end{array}\right.
$$

Lemma

Then for $a, b \in I_{n}^{q}$:

$$
H_{q}(a, b)=h_{q}(b)\left(\frac{\left|B_{n}\right|}{2^{n} \times \cdots \times\left(2^{n}-q+1\right)}\right)^{k} .
$$

We want to compute $\frac{H_{q}}{\tilde{H}_{q}}=\frac{h_{q}}{\overparen{h}_{q}}$.
It is done recursively : we find t such that

Hence

$$
\frac{h_{q}}{\tilde{h}_{q}} \geq(1-t)^{q} \geq 1-q t .
$$

Then, using the relationship between h_{q} and the advantage,

We want to compute $\frac{H_{q}}{\tilde{H}_{q}}=\frac{h_{q}}{\tilde{h}_{q}}$.
It is done recursively: we find t such that

$$
\frac{h_{\alpha+1}}{\tilde{h}_{\alpha+1}} \geq \frac{h_{\alpha}}{\tilde{h}_{\alpha}}(1-t) .
$$

Then, using the relationship between h_{q} and the advantage,

We want to compute $\frac{H_{q}}{\hat{H}_{q}}=\frac{h_{q}}{\tilde{h}_{q}}$.
It is done recursively: we find t such that

$$
\frac{h_{\alpha+1}}{\tilde{h}_{\alpha+1}} \geq \frac{h_{\alpha}}{\tilde{h}_{\alpha}}(1-t) .
$$

Hence

$$
\frac{h_{q}}{\tilde{h}_{q}} \geq(1-t)^{q} \geq 1-q t .
$$

Then, using the relationship between h_{q} and the advantage,

We want to compute $\frac{H_{q}}{\tilde{H}_{q}}=\frac{h_{q}}{\grave{h}_{q}}$.
It is done recursively: we find t such that

$$
\frac{h_{\alpha+1}}{\tilde{h}_{\alpha+1}} \geq \frac{h_{\alpha}}{\tilde{h}_{\alpha}}(1-t) .
$$

Hence

$$
\frac{h_{q}}{\tilde{h}_{q}} \geq(1-t)^{q} \geq 1-q t
$$

Then, using the relationship between h_{q} and the advantage,

$$
\operatorname{adv}_{q} \leq q t
$$

Our goal is to compute $h_{\alpha+1}$ from h_{α}, i.e. the number of $\left(P_{i}^{j}\right)_{1 \leq i \leq m, 1 \leq j \leq k}$ such that:

Pairwise distinct messages

$$
\begin{aligned}
& P_{\alpha+1}^{1} \oplus P_{\alpha+1}^{2} \oplus \ldots \oplus P_{\alpha+1}^{k-1} \oplus P_{\alpha+1}^{k}=b_{\alpha+1}
\end{aligned}
$$

Pairwise distinct messages

Theorem

$$
\begin{align*}
& \text { If } q<\frac{2^{n}}{12} \text { and } k \geq 3 \\
& \qquad \begin{aligned}
\operatorname{adv} & \leq \frac{k q^{2} \cdot 2^{n}}{\left(2^{n}-q\right)^{k}}+12 \frac{q^{k+2}}{\left(2^{n}-3 q\right)\left(2^{n}-q\right)^{k}} \\
& \leq \frac{k q^{2}}{2^{(k-1) n}\left(1-k \frac{q}{2^{n}}\right)}+12 \frac{q^{k+2}}{2^{(k+1) n}\left(1-(k+3) \frac{q}{2^{n}}\right)}
\end{aligned} \tag{1}
\end{align*}
$$

Theorem

Let α, β be two positive real numbers. Let $E \subset I_{n}^{q}$ such that $|E| \geq(1-\beta) 2^{\text {nq }}$. Suppose that for every sequence $\left(a_{i}\right)_{1 \leq i \leq q}$, $\left(b_{i}\right)_{1 \leq i \leq q}$ of pairwise distinct messages, $\left(b_{i}\right)_{1 \leq i \leq m} \in E$, we have:

$$
H(a, b) \geq(1-\alpha) \tilde{H}_{q} .
$$

Then

$$
\operatorname{adv}_{\boldsymbol{q}} \leq \alpha+\beta
$$

Using this theorem and the Bienaymé-Tchebitchev's inequality, we get:

$$
\begin{aligned}
\operatorname{adv}_{q} & \leq 2\left(\frac{\mathrm{~V}\left[H_{q}(a)\right]}{\tilde{H}_{q}(a)^{2}}\right)^{1 / 3}=2\left(\frac{\mathrm{~V}\left[h_{q}\right]}{\tilde{h}_{q}^{2}}\right)^{1 / 3} \\
& \leq 2\left(\frac{\lambda_{q}}{U_{q}}-1\right)^{1 / 3}
\end{aligned}
$$

where $U_{q}:=2^{n q}{\tilde{h_{q}}}^{2}$ and λ_{q} is the number of sequences $P^{1}, P^{2}, \ldots, P^{2 k}$ of q pairwise distinct messages such that $P^{1} \oplus \ldots \oplus P^{2 k}=0$

The advantage any adversary can get with q queries, where $q \leq \frac{2^{n}}{2 k}$, satisfies:
$\operatorname{adv}_{q} \leq 2\left(\left(1+\frac{q 2^{n}}{\left(2^{n}-q\right)^{2 k}}+\frac{2 k q^{2 k+1}}{\left(1-\frac{2 k q}{2^{n}}\right) 2^{n}\left(2^{n}-q\right)^{2 k}}\right)^{q}-1\right)^{1 / 3}$
i.e.

$$
\operatorname{adv}_{q} \lesssim 2\left(\frac{q^{2}}{2^{(2 k-1) n}\left(1-\frac{q}{2^{n}}\right)^{2 k}}+\frac{2 k q^{2 k+2}}{2^{(2 k+1) n}\left(1-\frac{6 k q}{2^{n}}\right)}\right)^{1 / 3}
$$

technique	S. Lucks	H	H_{σ}
security bound	$O\left(\frac{q^{k+1}}{2^{k n}}\right)$	$O\left(\frac{q^{k+2}}{2^{(k+1) n}}\right)$	$O\left(\left(\frac{q^{2 k+2}}{2^{(2 k+1) n}}\right)^{1 / 3}\right)$

Figure: Upper bound for $n=40, k=5$

Figure: Upper bound for $n=40, k=5$

Our results can be further improved by using the techniques recursively, as in the original articles from J. Patarin.

These proof techniques (especially the H_{σ} coefficients) can be used on (both balanced and unbalanced) Feistel schemes.

Open problem: what happens in the third area?

Thank you for your attention.

