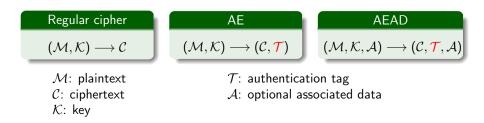
Cryptanalysis of FIDES

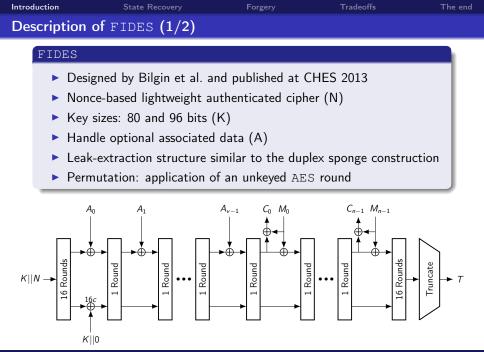
Itai Dinur¹ <u>Jérémy Jean^{1,2}</u>

¹École Normale Supérieure, France

²Nanyang Technological University, Singapore

FSE 2014 - March 3, 2014





Introduction	State Recovery	Forgery	Tradeoffs	The end
Authenticated	Encryption (AE)			

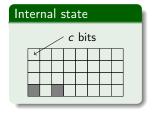
Motivations

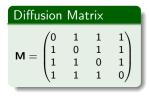
- Crypto is not *only* about encryption
- Integrity and authenticity are often required
- Existing solutions (modes, MAC)
- Few dedicated ciphers
- Recent focus on this topic with the CAESAR competition

FSE 2014 - Itai Dinur, Jérémy Jean - Cryptanalysis of FIDES

Introduction	State Recovery	Forgery	Tradeoffs	The end
Description o	f FIDES (2/2)			

Internal state:


- Internal state of $4 \times 8 \times c$ bits
- ► Nibble size *c*:
 - ▶ c = 5 for FIDES-80
 - ▶ c = 6 for FIDES-96


One Round of the Internal Permutation:

Extract 2*c*-bit mask

M;

- 2c-bit message injection
- ► AES-like operations: SB, SR, MC, AC.
- Suboptimal diffusion matrix (non MDS)

RC;

Introduction	State Recovery	Forgery	Tradeoffs	The end
Leakage and S	Security Claims			

Leakage

- The same positions are used to leak and inject nibbles
- 2c out of 32c bits are leaked before each round

Security Claims

- Nonce-respecting adversary assumption
- ► Attack scenarios: state recovery, key recovery and forgery
- ► FIDES advertises 16*c*-bit security against all scenarios

Our Attack

- State recovery can be done in 2^{15c} operations
- We can forge any message after a state recovery

Introduction	State Recovery		Forgery	Tradeoffs	The end
Similar desig	gns				
FIDES	is reminiscent of other AE	S-	based design	using leak-extracti	ion.
	LEX [Bir06]		А	LE [BMR ⁺ 13]	
► 4/16 k	t key stream cipher eaked nibbles per round ection (stream cipher)		► 4/16 le	t AE cipher eaked nibbles per r 16 nibbles every 4	

Alpha-MAC [DR05]

- ▶ 128-bit MAC
- 4 nibbles injected per round
- No extraction

ASC-1 [JK11]

- 128-bit AE cipher
- ▶ 4/16 leaked nibbles per round
- Inject 16 nibbles every 4 rounds
- Whitening key before leakage

Introduction	State Recovery	Forgery	Tradeoffs	The end
Similar desi	gns			
FIDES	is reminiscent of other AES	5- based des	ign using <mark>leak-extractio</mark>	n.
	LEX [Bir06]		ALE [BMR ⁺ 13]	
► 4/16 ► No inj	t key stream cipher eaked nibbles per round ection (stream cipher) en [DK13, BDF11]	▶ 4/	8-bit AE cipher 16 leaked nibbles per rc ect 16 nibbles every 4 r <mark>Broken [KR13]</mark>	
Al	oha-MAC [DR05]		ASC-1 [JK11]	
► 128-bi	t MAC	▶ 12	8-bit AE cipher	

- 4 nibbles injected per round
- No extraction

Broken [YWJ⁺09, BDF11]

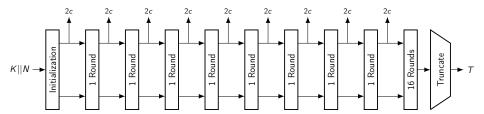
- ▶ 4/16 leaked nibbles per round
- Inject 16 nibbles every 4 rounds
- Whitening key before leakage

Introduction	State Recovery	Forgery	Tradeoffs	The end
Results on FIL	ES			

Results					
Cipher	Data	Time	Memory	Generic	Ref
FIDES-80	1 KP	2 ⁷⁵	2 ¹⁵	2 ⁸⁰	This paper
LIDE2-00	2 ⁶⁴ KP	2 ⁷³	2 ⁶⁴	2 ⁸⁰	Long version
EIDEC OC	1 KP	2 ⁹⁰	2 ¹⁸	2 ⁹⁶	This paper
FIDES-96	2 ⁷⁷ KP	2 ⁸⁸	2 ⁷⁷	2 ⁹⁶	Long version

Notes:

- Guess-and-determine attacks
- Recover the internal state
- Allow to forge arbitrary messages


 Introduction
 State Recovery
 Forgery
 Tradeoffs
 The end

 Preliminaries (1/2)

How many leaked nibbles are needed to recover the state faster than exhaustive search?

Information theoretically speaking:

- The state consists of 32 nibbles
- Known-plaintext scenario
- ▶ 15 rounds would leak a total $(15 + 1) \times 2 = 32$ state nibbles
- Uniquely determine the state
- But analyzing 15 consecutive AES-like rounds is difficult

Introduction	State Recovery	Forgery	Tradeoffs	The end
Preliminaries (2	2/2)			

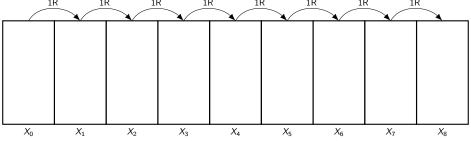
With $n \in [0, 14]$ rounds:

- Reduce the analysis to n consecutive AES-like rounds
- A total of $(n + 1) \times 2$ state nibbles are leaked
- Unicity of the state no longer true: about 2^{(32-2n-2)×c} different initial states would leak the same sequence
- ▶ Goal: Generating all of them in less than 2¹⁶ computations

►
$$32 - 2n - 2 < 16 \implies n \ge 8$$
.

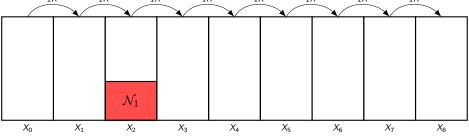
Introduction	State Recovery	Forgery	Tradeoffs	The end
Preliminaries (2	2/2)			

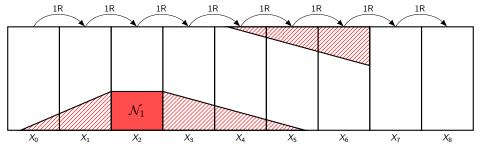
With $n \in [0, 14]$ rounds:

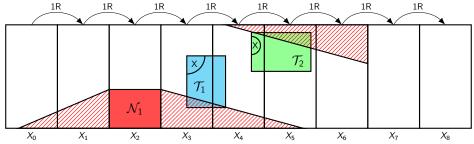

- Reduce the analysis to n consecutive AES-like rounds
- A total of $(n + 1) \times 2$ state nibbles are leaked
- Unicity of the state no longer true: about 2^{(32-2n-2)×c} different initial states would leak the same sequence
- ▶ Goal: Generating all of them in less than 2^{16c} computations

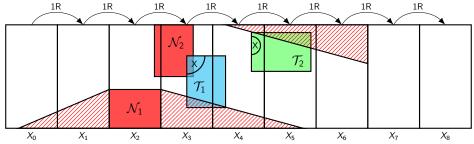
►
$$32 - 2n - 2 < 16 \implies n \ge 8$$
.

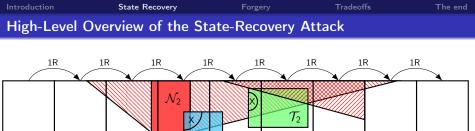
Our Attack


- We use the knowledge of 18 leaked nibbles, in 9 consecutive states linked by n = 8 rounds (in fact, only 17 nibbles)
- Data: less than 16 bytes of a single known plaintext
- Time: about 2^{15c} computations to enumerate the 2^{(32-17)c} = 2^{15c} state candidates
- Check: additional leaked bytes, or authentication tag T.


FSE 2014 - Itai Dinur, Jérémy Jean - Cryptanalysis of FIDES

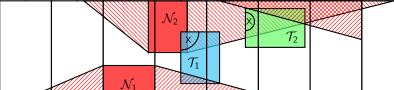

1. Guess the 12 nibbles in the set \mathcal{N}_1


- 1. Guess the 12 nibbles in the set \mathcal{N}_1
- 2. Determine other nibble values (\mathcal{N}'_1)



- 1. Guess the 12 nibbles in the set \mathcal{N}_1
- 2. Determine other nibble values (\mathcal{N}'_1)
- 3. Construct two tables \mathcal{T}_1 and \mathcal{T}_2 (independently)

- 1. Guess the 12 nibbles in the set \mathcal{N}_1
- 2. Determine other nibble values (\mathcal{N}'_1)
- 3. Construct two tables \mathcal{T}_1 and \mathcal{T}_2 (independently)
- 4. Guess the 3 nibbles in the set \mathcal{N}_2



X₄

 X_5

 X_6

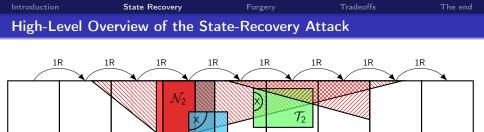
 X_7

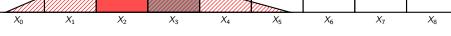
Steps of the Guess-and-determine Procedure

1. Guess the 12 nibbles in the set \mathcal{N}_1

 X_2

 X_0

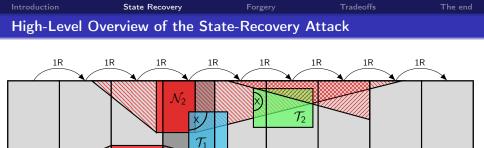

 X_1


- 2. Determine other nibble values (\mathcal{N}'_1)
- 3. Construct two tables \mathcal{T}_1 and \mathcal{T}_2 (independently)

 X_3

- 4. Guess the 3 nibbles in the set \mathcal{N}_2
- 5. Determine new nibble values (\mathcal{N}'_2)

 X_8


1. Guess the 12 nibbles in the set \mathcal{N}_1

 \mathcal{N}_1

- 2. Determine other nibble values (\mathcal{N}'_1)
- 3. Construct two tables \mathcal{T}_1 and \mathcal{T}_2 (independently)

 \mathcal{T}_1

- 4. Guess the 3 nibbles in the set \mathcal{N}_2
- 5. Determine new nibble values (\mathcal{N}'_2)
- 6. Use the tables \mathcal{T}_1 and \mathcal{T}_2 to fully recover a middle state

X₄

 X_5

 X_6

 X_7

Steps of the Guess-and-determine Procedure

1. Guess the 12 nibbles in the set \mathcal{N}_1

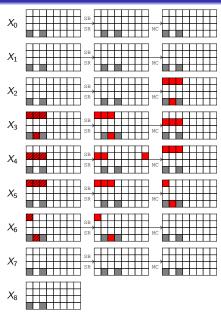
 \mathcal{N}_1

 X_2

 X_0

 X_1

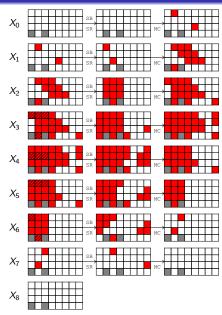
- 2. Determine other nibble values (\mathcal{N}'_1)
- 3. Construct two tables \mathcal{T}_1 and \mathcal{T}_2 (independently)


 X_3

- 4. Guess the 3 nibbles in the set \mathcal{N}_2
- 5. Determine new nibble values (\mathcal{N}'_2)
- 6. Use the tables \mathcal{T}_1 and \mathcal{T}_2 to fully recover a middle state

 X_8

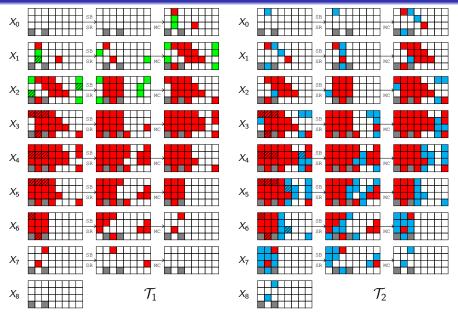
Introduction	State Recovery	Forgery	Tradeoffs	The end
Main Prope	rty			
0	nd-determine algorithm vhich has a <mark>branching n</mark> AES: 5).		${f M}=egin{pmatrix} 0 & 1\ 1 & 0\ 1 & 1\ 1 & 1\ 1 & 1 \end{pmatrix}$	$ \begin{array}{ccc} 1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{array} $
Let $\mathbf{x} = [x_0, x_1, x_2, x_3]$ and $\mathbf{y} = [y_0, y_1, y_2, y_3]$. There are linear dependencies between 4 nibbles of \mathbf{x} and $\mathbf{y} = \mathbf{M}\mathbf{x}$.				
Property	1			
F	or all $i, j \in \{0, 1, 2, 3\}$ s	uch that $i \neq j$: x_i	$\oplus x_j = y_i \oplus y_j.$	
Property	2			
For a	II $i \in \{0, 1, 2, 3\}$: x_{i+3} y_{i+3}	$y_{i} = y_{i} \oplus x_{i+1} \oplus x_{i-1}$ $y_{i+1} \oplus y_{i+1} \oplus y_{i+1} \oplus y_{i-1}$		4)


Step 1

$\mathcal{N}_{\mathbf{1}}$

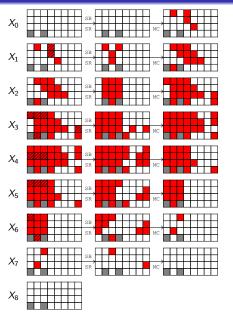
$$\begin{split} &X_3[0,0], X_3[0,1], X_3[0,2], X_3[3,1], \\ &X_4[1,0], X_4[1,1], X_4[1,2], \\ &X_5[0,0], X_5[0,1], X_5[0,2], \\ &X_6[0,0], X_6[3,1] \end{split}$$

Step 1

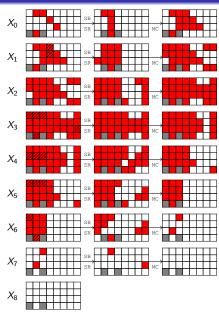

$$\mathsf{Propagate}(\mathcal{N}_1) \Longrightarrow \mathcal{N}_1'$$

\mathcal{N}'_1

 $X_1[0,1] X_1[2,4] X_2[0,1] X_2[0,2] X_2[0,3]$ $X_2[1,2] X_2[1,3] X_2[1,4] X_2[2,3] X_2[2,4]$ $X_2[2,5] X_2[3,1] X_3[0,3] X_3[1,1] X_3[1,2]$ $X_3[1,3] X_3[1,4] X_3[2,1] X_3[2,2] X_3[2,3]$ $X_3[2,4] X_3[2,5] X_3[3,3] X_3[3,7] X_4[0,0]$ $X_4[0,1] X_4[0,2] X_4[0,3] X_4[0,4] X_4[0,7]$ $X_4[1,3] X_4[1,4] X_4[1,5] X_4[1,7] X_4[2,0]$ $X_4[2,1] X_4[2,2] X_4[2,3] X_4[2,4] X_4[2,5]$ $X_4[3,1] X_4[3,3] X_4[3,7] X_5[0,3] X_5[1,0]$ $X_5[1,1] X_5[1,2] X_5[1,3] X_5[2,0] X_5[2,1]$ $X_5[2,2] X_5[2,3] X_5[2,4] X_5[3,1] X_5[3,3]$ $X_5[3,7] X_6[0,1] X_6[0,2] X_6[1,0] X_6[1,1]$ $X_6[1,2] X_6[2,0] X_6[2,1] X_6[2,2] X_7[0,2]$ $X_7[2,1]$


The end

Step 2: Construction of \mathcal{T}_1 and \mathcal{T}_2


FSE 2014 - Itai Dinur, Jérémy Jean - Cryptanalysis of FIDES

Step 3

\mathcal{N}_2	
X1[0,3],	
$X_1[1,3],$	
X ₃ [2, 7]	

Step 3

$\mathsf{Propagate}(\mathcal{N}_2) \Longrightarrow \mathcal{N}_2'$

\mathcal{N}_2'

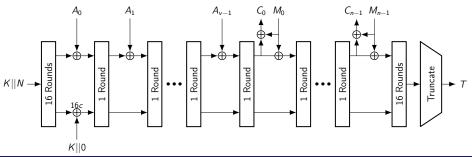
$$\begin{split} &X_1[2,3], X_2[2,1], X_1[1,2], X_2[1,1], X_2[2,2], \\ &X_3[1,0], X_3[2,0], X_4[2,7], X_3[3,6], X_2[0,0], \\ &X_2[3,7], X_3[0,7], X_2[3,6], X_2[0,7], X_3[1,7], \\ &X_2[1,0], X_1[2,2], X_1[0,2], X_1[3,1], X_1[1,4], \\ &X_1[2,5], X_2[3,3], X_3[0,4], X_3[1,5], X_3[2,6], \\ &X_4[3,4], X_3[1,6], X_2[0,6], X_0[0,1], X_0[0,2], \\ &X_0[1,3], X_0[2,4], X_0[3,1] \end{split}$$

Introduction	State Recovery	Forgery	Tradeoffs	The end
Final Step: I	Post-Filtering			

The guess-and-determine algorithm:

- Requires $2^{(12+3)c} = 2^{15c}$ computations
- Generates 2^{15c} possible internal states
- We post-filter all those states against extra variables
- we expect only the correct state to remain

Attack Complexity


- Data: 17 consecutive leaked nibbles of a KP + additional values
- Memory: 2^{3c} elements in tables \mathcal{T}_1 and \mathcal{T}_2
- ▶ **Time:** 2^{15c} computations

Finalization

The initialization of FIDES does not depend on the message. The finalization of FIDES does not depend on the key.

Consequently, once the state is recovered:

- we know the state Init(K||N) after the 16-round initialization
- we can simulate the encryption of any arbitrary message and produce a valid tag

Introduction	State Recovery	Forgery	Tradeoffs	The end
Tradeoffs (Long	g Version)			

Requirements for the tradeoffs

Obtain a *t*-way collision ($t \ge 2$) on 17 consecutive leaked nibbles.

A t-way collision on the n-bit output of a random map requires about :

 $(t!)^{1/t} \cdot 2^{n(t-1)/t}$ evaluations.

[STKT06]

Tradeoffs Points $(n = 17c)$				
	FIDES-80 (c = 5)		FIDES-96 (<i>c</i> = 6)	
t	Data (KP)	Time	Data (KP)	Time
2	2 ^{42.50}	274.00	2 ^{51.00}	2 ^{89.00}
3	2 ^{56.67}	2 ^{73.42}	2 ^{68.00}	2 ^{88.42}
4	2 ^{63.75}	2 ^{73.00}	2 ^{76.50}	2 ^{88.00}
5	2 ^{68.00}	2 ^{72.68}	281.60	2 ^{87.68}
6	2 ^{70.83}	2 ^{72.42}	2 ^{85.00}	287.42
KP: known plaintext				

Introduction	State Recovery	Forgery	Tradeoffs	The end
Conclusion				
Cryptana	alysis:			
•	ss-and-determine attac State recovery attack Forgery attack Difficult to extend to			
 Very 	v low data complexity:	few bytes of a s	single KP	
Low	memory complexity: I	ess than 2 ²⁴ sto	ored elements	
	e complexity: 2 ⁷⁵ computations for	FIDES-80		

▶ 2⁹⁰ computations for FIDES-96

Possible countermeasures:

- Optimal branching of 5
- Leak (keyed) functions of the state nibbles
- Key-dependent finalization (forgery only)

Introduction	State Recovery	Forgery	Tradeoffs	The end
Conclusion				
Cryptan	alysis:			
► Gue	ess-and-determine attac	ks on FIDES A	E algorithm	
•	State recovery attack			
•	Forgery attack			
•	Difficult to extend to	key-recovery (1	6-round initialization)	
► Ver	y low data complexity:	few bytes of a s	single KP	
Low	<i>i</i> memory complexity: I	ess than 2 ²⁴ sto	red elements	
► Tim	ne complexity:			
•	2 ⁷⁵ computations for	FIDES-80		
•	2 ⁹⁰ computations for	FIDES-96		

Possible countermeasures:

- Optimal branching of 5
- Leak (keyed) functions of the state nibbles
- Key-dependent finalization (forgery only)

Thank you!

Bibliography I

Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic search of attacks on round-reduced AES and applications. In Phillip Rogaway, editor, *CRYPTO 2011*, volume 6841 of *LNCS*, pages 169–187. Springer, August 2011.

Alex Biryukov.

The design of a stream cipher LEX.

In Eli Biham and Amr M. Youssef, editors, *SAC 2006*, volume 4356 of *LNCS*, pages 67–75. Springer, August 2006.

Andrey Bogdanov, Florian Mendel, Francesco Regazzoni, Vincent Rijmen, and Elmar Tischhauser.

ALE: AES-based lightweight authenticated encryption.

In FSE, Lecture Notes in Computer Science, 2013.

to appear.

Orr Dunkelman and Nathan Keller. Cryptanalysis of the stream cipher LEX. Des. Codes Cryptography, 67(3):357–373, 2013.

Bibliography II

Joan Daemen and Vincent Rijmen. A new MAC construction ALRED and a specific instance ALPHA-MAC. In Henri Gilbert and Helena Handschuh, editors, *FSE 2005*, volume 3557 of *LNCS*, pages 1–17. Springer, February 2005.

Goce Jakimoski and Samant Khajuria. ASC-1: An authenticated encryption stream cipher. In Ali Miri and Serge Vaudenay, editors, *SAC 2011*, volume 7118 of *LNCS*, pages 356–372. Springer, August 2011.

Dmitry Khovratovich and Christian Rechberger. The LOCAL attack: Cryptanalysis of the authenticated encryption scheme ALE. In SAC, Lecture Notes in Computer Science, 2013. to appear.

Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday paradox for multi-collisions.

In Min Surp Rhee and Byoungcheon Lee, editors, *ICISC 06*, volume 4296 of *LNCS*, pages 29–40. Springer, November / December 2006.

Bibliography III

Zheng Yuan, Wei Wang, Keting Jia, Guangwu Xu, and Xiaoyun Wang. New birthday attacks on some MACs based on block ciphers. In Shai Halevi, editor, *CRYPTO 2009*, volume 5677 of *LNCS*, pages 209–230. Springer, August 2009.