Pipelineable On-Line Encryption (POE) FSE 2014

Farzaneh Abed² Scott Fluhrer¹ John Foley¹ <u>Christian Forler</u>² Eik List² Stefan Lucks² David McGrew¹ Jakob Wenzel²

¹ Cisco Systems, ² Bauhaus-Universität Weimar

March 3, 2014

London, UK

Agenda

Section 1

Scenario

Cisco Systems, Bauhaus-Universität Weimar

Pipelineable On-Line Encryption (POE)

FSE 2014

Task:

secure network traffic

Task:

- secure network traffic
- of real-time applications

Task:

- secure network traffic
- of real-time applications
- in an Optical Transport Network (OTN)

Task:

- secure network traffic
- of real-time applications
- in an Optical Transport Network (OTN)
 - High throughput (40 100 Gbit/s)
 - Low latency

- (few clock cycles)
- Large message frames (64 KB) (usually consist of multiple TCP/IP or UDP/IP packages)

Task:

- secure network traffic
- of real-time applications
- in an Optical Transport Network (OTN)
 - High throughput (40 100 Gbit/s)
 - Low latency (few clock cycles)
 - Large message frames (64 KB) (usually consist of multiple TCP/IP or UDP/IP packages)

Security requirements:

- Data privacy (IND-CPA), and
- Data integrity (INT-CTXT)

Task:

- secure network traffic
- of real-time applications
- in an Optical Transport Network (OTN)
 - High throughput (40 100 Gbit/s)
 - Low latency (few clock cycles)
 - Large message frames (64 KB) (usually consist of multiple TCP/IP or UDP/IP packages)

Security requirements:

- Data privacy (IND-CPA), and
- Data integrity (INT-CTXT)

Functional requirements:

On-line encryption/decryption

Problem and Workarounds

Problem: High Latency of Authenticated Decryption

- 1 Decryption of the *entire* message
- 2 Verification of the authentication tag

For 64-kB frames we have 4,096 ciphertext blocks (128 bits)

Workarounds:

- Decrypt-then-mask? [Fouque et al. 03] ⇒ latency again
- Pass plaintext beforehand and hope...

Problem and Workarounds

Problem: High Latency of Authenticated Decryption

- 1 Decryption of the *entire* message
- 2 Verification of the authentication tag

For 64-kB frames we have 4,096 ciphertext blocks (128 bits)

- Workarounds:
 - Decrypt-then-mask? [Fouque et al. 03] ⇒ latency again
 - Pass plaintext beforehand and hope...
- Drawbacks:
 - Plaintext information would leak if authentication tag invalid
 - Literature calls this setting *decryption-misuse* [Fleischmann, Forler, and Lucks 12]

How Severe is Decryption-Misuse?

- Puts security at high risk
- CCA-adversary may inject controlled manipulations
- Particularly, CTR-mode based encryption schemes

How Severe is Decryption-Misuse?

- Puts security at high risk
- CCA-adversary may inject controlled manipulations
- Particularly, CTR-mode based encryption schemes

Decryption-misuse is not covered by existing CCA3-security proofs

Decryption Misuse Resistance

Best to wish for:

- Manipulation of ciphertext block C_i
 - \Rightarrow completely random plaintext
- Contradiction to on-line requirement

Decryption Misuse Resistance

Best to wish for:

- Manipulation of ciphertext block C_i
 - \Rightarrow completely random plaintext
- Contradiction to on-line requirement
- What can we achive with an on-line encryption scheme?
 - Manipulation of $C_i \Rightarrow$ random (M_i, M_{i+1}, \ldots)
 - Adversary sees at best common message prefixes

Decryption Misuse Resistance

Best to wish for:

- Manipulation of ciphertext block C_i
 - \Rightarrow completely random plaintext
- Contradiction to on-line requirement
- What can we achive with an on-line encryption scheme?
 - Manipulation of $C_i \Rightarrow$ random (M_i, M_{i+1}, \ldots)
 - Adversary sees at best common message prefixes
- The security notion of OPERM-CCA covers this behaviour

OPERM-CCA

Definition (OPERM-CCA Advantage)

Let P be a random on-line permutation, $\Pi = (K, E, D)$ an encryption scheme, and A be an adversary. Then we have

$$\mathbf{Adv}_{\Pi}^{\mathsf{OPERM-CCA}}(\mathcal{A}) = \left| \mathsf{Pr}\left[k \stackrel{\$}{\leftarrow} \mathcal{K}() : \mathcal{A}^{E_{k}(.), D_{k}(.)} \right] - \left[\mathcal{A}^{P(.), P^{-1}(.)} \right] \right|$$

On-Line Permutation

On-Line Permutation (OPerm)

Like a PRP with the following property: Plaintexts with common prefix \rightarrow ciphertexts with common prefix

(Bellare et al..; "Online Ciphers and the Hash-CBC Construction"; CRYPTO'01)

Intermediate (Authentication) Tags

Assume an OPERM-CCA secure encryption scheme

- **Recap:** Modifying $C_i \implies M_i, M_{i+1}, \ldots, M_M$ random garbage
- Redundancy in the plaintext (e.g., checksum)

Intermediate (Authentication) Tags

Assume an OPERM-CCA secure encryption scheme

- **Recap:** Modifying $C_i \implies M_i, M_{i+1}, \ldots, M_M$ random garbage
- Redundancy in the plaintext (e.g., checksum)

 \implies intermediate authentication tags

Intermediate (Authentication) Tags

Assume an OPERM-CCA secure encryption scheme

- **Recap:** Modifying $C_i \implies M_i, M_{i+1}, \ldots, M_M$ random garbage
- Redundancy in the plaintext (e.g., checksum)

 \implies intermediate authentication tags

Common network packets (TCP/IP, UDP/IP) have a checksum
 OTN: 16-bit integrity for free (per packet)

Promising Candidate: TC3

- TC3 [Rogaway & Zhang 11] is IND-CCA
- McOE [Fleischmann et al. 12] is based on TC3

Promising Candidate: TC3

- TC3 [Rogaway & Zhang 11] is IND-CCA
- McOE [Fleischmann et al. 12] is based on TC3
- Why not using TC3?

Promising Candidate: TC3

- TC3 [Rogaway & Zhang 11] is IND-CCA
- MCOE [Fleischmann et al. 12] is based on TC3
- Why not using TC3?
 - ⇒ Inherently sequential

Comparison of Common On-line Encryption Schemes

	Sequential	Non-Sequential
CCA- insecure	ABC, CBC, CFB, HCBC1, IGE, OFB, TC1	COPE, CTR, ECB, TIE, XTS
CCA- secure	APE, CMC, HCBC2, MCBC, MHCBC, TC2/3	

Comparison of Common On-line Encryption Schemes

	Sequential	Non-Sequential
CCA- insecure	ABC, CBC, CFB, HCBC1, IGE, OFB, TC1	COPE, CTR, ECB, TIE, XTS
CCA- secure	APE, CMC, HCBC2, MCBC, MHCBC, TC2/3	

It seems that there is still some place for a new encryption scheme.

Section 2

POE/POET

Cisco Systems, Bauhaus-Universität Weimar

Pipelineable On-Line Encryption (POE)

FSE 2014

Pipelineable On-Line Encryption (POE)

- Well pipelineable
- OPERM-CCA-secure
- 1 BC + 2 *e*-AXU hash-function (*F*) calls per block

Instantiations of the ϵ -AXU Hash Function F

4-Round-AES

- 10 + 4 + 4 = 18 AES rounds/block
- ϵ -AXU with $\epsilon \approx 1.88 \cdot 2^{-114}$ [Daemen & Rijmen 98]

Instantiations of the ϵ -AXU Hash Function F

4-Round-AES

- 10 + 4 + 4 = 18 AES rounds/block
- ϵ -AXU with $\epsilon \approx 1.88 \cdot 2^{-114}$ [Daemen & Rijmen 98]

GF(2¹²⁸)-multiplication

- 1 BC call + 2 multiplications with $\epsilon \approx 2^{-128}$
- POE can be parallelized

Given
$$p^{i} = K^{i} + K^{i-1} \cdot M_{1} + \ldots + K \cdot M_{i-1} + M_{i}$$

Core 1:
$$K \cdot p^i + M_{i+1}$$

Core 2:
$$K^2 \cdot p^i + K \cdot M_{i+1} + M_{i+2}$$

Instantiations of the ϵ -AXU Hash Function F

4-Round-AES

- 10 + 4 + 4 = 18 AES rounds/block
- ϵ -AXU with $\epsilon \approx 1.88 \cdot 2^{-114}$ [Daemen & Rijmen 98]

GF(2¹²⁸)-multiplication

- 1 BC call + 2 multiplications with $\epsilon \approx 2^{-128}$
- POE can be parallelized

Given
$$p^{i} = K^{i} + K^{i-1} \cdot M_{1} + \ldots + K \cdot M_{i-1} + M_{i}$$

Core 1:
$$K \cdot p^i + M_{i+1}$$

- Core 2: $K^2 \cdot p^i + K \cdot M_{i+1} + M_{i+2}$
- **.**..
- Increases number of multiplications
- Decreases latency $(O(c) \rightarrow O(\log c))$

Key Derivation

■ 3 keys: *K* for *E* and K_1 , K_2 for *F* in the top and bottom row ■ $K = E_L(0)$, $K_1 = E_L(1)$, $K_2 = E_L(2)$

POE with Tag (POET)

- Prepends H
- CCA3-secure
- Borrows tag-splitting procedure from McOE
- Robust against nonce- and decryption-misuse

Section 3

Security of POE/POET

POET: OCCA3-Security

OCCA3

For an adversary A, asking at most q messages, consisting of at most ℓ total blocks, which runs in time at most t, it holds that

 $\mathsf{Adv}_{\Pi}^{\mathsf{OCCA3}}(\mathcal{A}) \, \leq \, \mathsf{Adv}_{\Pi}^{\mathsf{OPERM}\text{-}\mathsf{CCA}}(q,\ell,t) + \mathsf{Adv}_{\Pi}^{\mathsf{INT}\text{-}\mathsf{CTXT}}(q,\ell,t).$

POE: OPERM-CCA-Security

■ *A* instantly wins if a **bad event** occurs

1. A can distinguish E from random permutation

A instantly wins if a bad event occurs

- 1. A can distinguish *E* from random permutation
- 2. Collision in top row

A instantly wins if a bad event occurs

- 1. A can distinguish *E* from random permutation
- 2. Collision in top row
- 3. Collision in bottom row

1. Assume *E* is secure:

 $\mathbf{Adv}_{E,E^{-1}}^{\mathsf{IND}\text{-}\mathsf{SPRP}}(\ell,O(t))$

1. Assume *E* is secure:

$$\mathsf{Adv}_{E,E^{-1}}^{\mathsf{IND-SPRP}}(\ell,O(t))$$

2. Collision in top row

$$\frac{\epsilon \cdot \ell(\ell-1)}{2} \leq \frac{\epsilon \cdot \ell^2}{2}$$

1. Assume *E* is secure:

$$\mathsf{Adv}_{E,E^{-1}}^{\mathsf{IND-SPRP}}(\ell,O(t))$$

2. Collision in top row

$$\frac{\epsilon \cdot \ell(\ell-1)}{2} \leq \frac{\epsilon \cdot \ell^2}{2}$$

3. Collision in bottom row (see 2.)

If no bad event occurs we have

$$\frac{\ell^2}{2^n-\ell}$$

The total probability is given by the sum

OPERM-CCA Advantage

$$\mathsf{Adv}_{\mathsf{POET}}^{\mathsf{OPERM-CCA}}(q,\ell,t) \leq \epsilon \ell^2 + \frac{\ell^2}{2^n - \ell} + \mathsf{Adv}_{E,E^{-1}}^{\mathsf{IND-SPRP}}(\ell,O(t))$$

Filling the Gap

	Sequential	Non-Sequential
CCA- insecure	ABC, CBC, CFB, HCBC1, IGE, OFB, TC1	COPE, CTR, ECB, TIE, XTS
CCA- secure	APE, CMC, HCBC2, MCBC, MHCBC, TC2/3	POE

POET: INT-CTXT-Security

- INT-CTXT proof is game-based
- Combines the ideas from its OPERM-CCA proof and the INT-CTXT proof from McOE
- Details (\rightarrow Paper)

Security of POE/POET

POET: INT-CTXT-Security

INT-CTXT Advantage

$$\mathsf{Adv}_{\mathsf{POET}}^{\mathsf{INT-CTXT}}(q,\ell,t) \leq (\ell+2q)^2 \epsilon + \frac{q}{2^n - (\ell+2q)} + \mathsf{Adv}_{E,E^{-1}}^{\mathsf{IND-SPRP}}(\ell+2q,O(t))$$

Cisco Systems, Bauhaus-Universität Weimar

Pipelineable On-Line Encryption (POE)

Conclusion

POE: Non-sequential on-line cipher

- Simple design
- Support for intermediate tags
- Provably OPERM-CCA-secure
- High throughput: non-sequential, on-line
- Robust against nonce- and decryption-misuse

Conclusion

POE: Non-sequential on-line cipher

- Simple design
- Support for intermediate tags
- Provably OPERM-CCA-secure
- High throughput: non-sequential, on-line
- Robust against nonce- and decryption-misuse

POET: On-line AE built on POE

- Security: Provably OCCA3-secure
- Fulfills the demanding requirements of high-speed networks

Thank you

Questions?

OPERM-CCA Attack Against COPE (1)

- $Y_a = E_K(M_a \oplus 3L) \oplus L \text{ and } Y_b = E_K(M_b \oplus 3L) \oplus L$ • Query: (M_a, M_c) ; Result: $(C_a, C_{(a,c)})$
 - Query: (M_b, M_c) ; Result: $(C_b, C_{(b,c)})$

OPERM-CCA Attack Against COPE (2)

$$Y_{a} = E_{K}(M_{a} \oplus 3L) \oplus L \text{ and } Y_{b} = E_{K}(M_{b} \oplus 3L) \oplus L$$

$$\blacksquare \text{ Query: } (C_{a}, C_{(b,c)}); \text{ Result: } (M_{a}, M_{(a,bc)})$$

$$\blacksquare \text{ Query: } (C_{b}, C_{(a,c)}); \text{ Result } (M_{b}, M_{(b,ac)})$$

$$Y_{(a,c)} = E_{K}^{-1}(C_{(a,c)} \oplus 4L), \quad X_{(b,ac)} = Y_{(a,c)} \oplus Y_{b} = X_{(a,bc)}$$

$$\implies M_{(a,bc)} = M_{(b,ac)}$$

FSE 2014