Improved Single-Key Attacks on 9-Round AES-192/256

Leibo Li^{1}, Keting Jia ${ }^{2}$ and Xiaoyun Wang ${ }^{1,3}$
${ }^{1}$ Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, China
${ }^{2}$ Department of Computer Science and Technology, Tsinghua University, China
${ }^{3}$ Institute for Advanced Study, Tsinghua University, China
Fast Software Encryption 2014

Outline

Preliminaries
A Brief Description of AES
Related Works
The Improved Attacks on 9-Round AES-192
Key-Dependent Sieve and 5-Round Distinguisher of AES-192
The Key Recovery Attack on 9-Round AES-192
The Attack on 9-round AES-192 from the Third Round
Reducing the Memory Complexity with Weak-Key Attacks
Reducing the Memory Complexities of the Attacks on AES-192
Reducing the Memory Complexity of the Attack on AES-256
Conclusion

Outline

Preliminaries

A Brief Description of AES

Related Works
The Improved Attacks on 9－Round AES－192
Key－Dependent Sieve and 5－Round Distinguisher of AES－192
The Key Recovery Attack on 9－Round AES－192
The Attack on 9－round AES－192 from the Third Round
Reducing the Memory Complexity with Weak－Key Attacks
Reducing the Memory Complexities of the Attacks on AES－192
Reducing the Memory Complexity of the Attack on AES－256

A Brief Description of AES

- Designed by Daemen and Rijmen in 1997
- Selected as the Advanced Encryption Standard (AES) in 2001 by NIST
- AES is a 128 -bit block cipher with SPN structure
- Rounds: 10 rounds for AES-128, 12 rounds for AES-192, 14 rounds for AES-256
- The round function:

A Brief Description of AES

The key schedule of AES:

- For $i=N_{k}$ to $4 \times N_{r}+3$ do the following:
- If $i \equiv 0 \bmod N_{k}$, then

$$
w[i]=w\left[i-N_{k}\right] \oplus S B(w[i-1] \lll 8) \oplus \operatorname{Rcon}\left[i / N_{k}\right]
$$

- else if $N_{k}=8$ and $i \equiv 4 \bmod 8$, then

$$
w[i]=w\left[i-N_{k}\right] \oplus S B(w[i-1])
$$

- Otherwise $w[i]=w\left[i-N_{k}\right] \oplus w[i-1]$.
N_{r} is the number of rounds. N_{k} is the number of the words for master key, for AES-192, $N_{k}=6$.

AES - 192

AES - 256

Outline

Preliminaries
A Brief Description of AES
Related Works
The Improved Attacks on 9-Round AES-192
Key-Dependent Sieve and 5-Round Distinguisher of AES-192
The Key Recovery Attack on 9-Round AES-192
The Attack on 9-round AES-192 from the Third Round
Reducing the Memory Complexity with Weak-Key Attacks
Reducing the Memory Complexities of the Attacks on AES-192
Reducing the Memory Complexity of the Attack on AES-256

MITM Attacks on AES

- The MITM attack on AES introduced by Demirci and Selçuk at FSE 2008 to improve the collision attack proposed by Gilbert and Minier.
- Dunkelman, Keller and Shamir exploited the differential enumeration and multiset ideas to reduce the high memory complexity at ASIACRYPT 2010.
- Derbez and Fouque give a way to automatically model SPN block cipher and meet-in-the-middle attacks on AES at FSE 2013.
- Derbez, Fouque and Jean further improved Dunkelman et al.'s attack using the rebound-like idea to reduce the complexity at EUROCRYPT 2013.

Demirci and Selçuk attack (FSE 2008)

Divide the cipher E as $E_{K}=E_{K_{2}}^{2} \circ E^{m} \circ E_{K_{1}}^{1}$
Built a distinguisher in E^{m}

- Let $X_{1}[0]$ be the input variable and the output $X_{5}[0]$ are determined by 200-bit variable $X_{2}[0,1,2,3]\left\|X_{3}[0, \cdots, 15]\right\| X_{4}[0,5,10,15] \| X_{5}[0]$.
- For X_{1}, construct a δ-set, where $X_{1}[0]$ is the active bytes.
- There are 2^{200} values for 2048-bit sequence $E_{m}\left(X^{0}\right)[5]\|\cdots\| E_{m}\left(X^{255}\right)[5]$

δ-set $=\left(X^{0}, \cdots, X^{255}\right)$, where there is a bytes traversing all values (active byte) and the other bytes are the same.

Demirci and Selçuk attack (FSE 2008)

The attack procedure:

1. Precomputation phase: compute all 2^{200} values
$E_{m}\left(X^{0}\right)[5]\|\cdots\| E_{m}\left(X^{255}\right)[5]$, and store them in a hash table.
2. Online phase:
2.1 Guess values of the related subkeys in E_{1}, and construct a δ-set. Then partially decrypt to get the corresponding 256 plaintexts.
2.2 Obtain the corresponding plaintext-ciphertext pairs from the collection data. Then guess the related subkeys in E_{2}, and partially decrypt the ciphertexts to get the corresponding 256 -byte value of the output sequence of E_{m}.
2.3 If a sequence value lies in the precomputation table, the guessed related subkeys in E_{1} and E_{2} may be right key.

Dunkelman et al.'s Attack (Asiacrypt 2010)

The number of the values of parameter \mathcal{V} is reduced to 2^{128}

1. Use the multiset of $\Delta X_{5}[1]$ to replace the ordered sequence. $X_{5}[1]$ is not used for the multiset:

$$
\left\{E_{m}\left(X^{0}\right)[5] \oplus E_{m}\left(X^{0}\right)[5], E_{m}\left(X^{0}\right)[5] \oplus E_{m}\left(X^{1}\right)[5], \cdots, E_{m}\left(X^{0}\right)[5] \oplus E_{m}\left(X^{255}\right)[5]\right\}
$$

2. Apply the differential enumeration technique to fix some values of intermediate parameters.

- 2^{64} values for $X_{3}[0, \ldots \cdots, 15]$

A step to find a pair satisfying the truncated differential is added, and the δ-set is constructed only for such pair.

Derbez et al.'s Attack (Eurocrypt 2013)

- When $\Delta X_{1}[1] \neq 0, \Delta X_{1}[j]=0, j=2, \ldots, 15 . \Delta X_{5}[1]$ is determined by 10 -byte variable

$$
\Delta Z_{1}[0]\left\|X_{2}[0,1,2,3]\right\| \Delta X_{5}[0] \| Z_{4}[0,1,2,3] .
$$

- They proposed to use a 5 -round distinguisher to attack 9 -round AES-256, where the value of multiset is determined by 26 -byte parameters (2^{208} values).

Outline

Preliminaries
A Brief Description of AES
Related Works
The Improved Attacks on 9-Round AES-192
Key-Dependent Sieve and 5-Round Distinguisher of AES-192
The Key Recovery Attack on 9-Round AES-192
The Attack on 9-round AES-192 from the Third Round
Reducing the Memory Complexity with Weak-Key Attacks
Reducing the Memory Complexities of the Attacks on AES-192
Reducing the Memory Complexity of the Attack on AES-256

Key-Dependent Sieve

- Apply key relationship to filter the wrong states of multiset.
- $u_{2}[0,7,10,13]\left\|k_{3}[0, \cdots, 15]\right\| k_{4}[0,5,10,15]$ is deduced for every sequence.
- $u_{2}[0]=M C^{-1}\left(\left(S\left(k_{3}[4 \sim 7]\right) \ll 8\right) \oplus k_{3}[8 \sim 11] \oplus R c o n\right)[0]$.
- $u_{2}[7]=M C^{-1}\left(k_{3}[8,9,10,11] \oplus k_{3}[12,13,14,15]\right)[7]$.
- For AES-192, there are only about $2^{192}\left(\frac{2^{208}}{2^{16}}\right)$ values of multiset.

5-Round Distinguisher of AES-192

The truncated differential characteristic of our distinguisher.

5-Round Distinguisher of AES-192

Proposition 1. Consider the encryption of the first 2^{5} values ($W_{0}^{0}, \cdots, W_{0}^{31}$) of the δ-set through 5 -round AES-192, in the case of that a message pair $\left(W_{0}, W_{0}^{\prime}\right)$ of the δ-set conforms to the truncated differential characteristic outlined in Fig. 3, then the corresponding 256-bit ordered sequence $Y_{6}^{0}[6]\|\cdots\| Y_{6}^{31}[6]$ only takes about 2^{192} values (out of 2^{256} theoretically value).

Our improvements:

- Propose a 5-round distinguisher for AES-192.
- Deduce more information of subkeys: $k_{0}[12], k_{1}[12,13,14,15], u_{2}[3,6,9,12], k_{3}[0, \cdots, 15], k_{4}[3,4,9,14], k_{5}[6]$.
- Use an ordered sequence instead of the multiset.

Outline

Preliminaries
A Brief Description of AES
Related Works
The Improved Attacks on 9-Round AES-192
Key-Dependent Sieve and 5-Round Distinguisher of AES-192
The Key Recovery Attack on 9-Round AES-192
The Attack on 9-round AES-192 from the Third Round
Reducing the Memory Complexity with Weak-Key Attacks Reducing the Memory Complexities of the Attacks on AES-192
Reducing the Memory Complexity of the Attack on AES-256
Conclusion

The Key Recovery Attack on 9-Round AES-192

The attack is mounted by adding one round on the top and three rounds on the bottom of the 5-round distinguisher.

The Key Recovery Attack on 9-Round AES-192

The attack procedure:

1. Precomputation phase: Get $2^{192} 256$-bit sequences described in Proposition 1.
2. Online phase:
2.1 Encrypt 2^{81} structures of 2^{32} plaintexts, and collect 2^{144} pairs.
2.2 For each pair, guess the difference $\Delta Y_{7}[12,13,14,15]$ and deduce the subkey $u_{7}[3,6,9,12] \| u_{8}$.
2.3 Guess the difference $\Delta W_{0}[12]$, and deduce $k_{-1}[1,6,11,12]$.
3. Construct the δ-set and get the corresponding sequence $Y_{6}^{0}[6]\|\cdots\| Y_{6}^{31}[6]$. Check whether the sequence lies in precomputation table.

The Key Recovery Attack on 9-Round AES-192

The complexities of the attack:

1. Precomputation phase: The time complexity of this phase is about $2^{192} \times 2^{5} \times 2^{-2.2}=2^{194.8} 9$-round AES encryptions, the memory complexity is about $2^{193} 128$-bit words.
2. Online phase: The time complexity of this phase is equivalent to $2^{144} \times 2^{32} \times 2^{5} \times 2^{-2.6}=2^{178.4} 9$-round encryptions. The data complexity is about 2^{113} chosen plaintexts.
Data/time/memory tradeoff: Only precompute a fraction 2^{-8} of possible sequences, and repeat the attack 2^{8} times in the online phase. Then the data complexity is 2^{121} chosen plaintexts. Time complexity, including the precomputation phase, is approximately $2^{187.5}$. The memory complexity reduces to $2^{193 \times 2^{-8}}=2^{185}$.

Outline

Preliminaries
A Brief Description of AES
Related Works
The Improved Attacks on 9-Round AES-192
Key-Dependent Sieve and 5-Round Distinguisher of AES-192
The Key Recovery Attack on 9-Round AES-192
The Attack on 9-round AES-192 from the Third Round
Reducing the Memory Complexity with Weak-Key Attacks
Reducing the Memory Complexities of the Attacks on AES-192
Reducing the Memory Complexity of the Attack on AES-256
Conclusion

The Attack on 9-round AES-192 from the Third Round There are only about $\frac{2^{208}}{2^{24}}=2^{184}$ possible sequences for 5 -round distinguisher starting from 3 -rd round

- $u_{4}[3,6,9,12]\left\|k_{5}[0, \cdots, 15]\right\| k_{6}[3,4,9,14]$ is deduced for each sequence
- $u_{4}[3]=\left(M C^{-1} k_{5}\right)[7] \oplus\left(M C^{-1} k_{5}\right)[11]$
- $u_{4}[6]=\left(M C^{-1} k_{5}\right)[10] \oplus\left(M C^{-1} k_{5}\right)[14]$
- $k_{6}[9]=k_{5}[1] \oplus S\left(k_{6}[9]\right) \oplus$ Rcon

Reducing the Memory Complexity with Weak-Key Attacks

- There exists a subkey k^{\prime} for every sequence in precomputation table.
- There exist some linear relations in k^{\prime} and guessed subkey in the online phase (\widehat{k}), i.e., there exist $\widetilde{k} \subset\left(k^{\prime} \cap \widehat{k}\right)$.
- The precomputation table could be split into 2^{m} sub-tables with the index of m bit value \widetilde{k}.
- The sequences computed in the online phase could also be split into 2^{m} subsets with the same index \widetilde{k}.
- The whole attack could be sorted into 2^{m} weak-key attacks. Each weak-key attack contains a sub-table of precomputation, and all of these attacks are independent each other.
- If all weak-key attacks are worked in the streaming model, the memory complexity could be reduced by 2^{m} times.

Outline

Preliminaries
A Brief Description of AES
Related Works

The Improved Attacks on 9-Round AES-192
Key-Dependent Sieve and 5-Round Distinguisher of AES-192
The Key Recovery Attack on 9-Round AES-192
The Attack on 9-round AES-192 from the Third Round
Reducing the Memory Complexity with Weak-Key Attacks
Reducing the Memory Complexities of the Attacks on AES-192
Reducing the Memory Complexity of the Attack on AES-256

Reducing the Complexities of the Attacks on AES-192

- Use 8-bit information $k_{-1}[6]$ as the index to split the attack to 2^{8} weak-key attacks, where

$$
k_{-1}[6]=S B\left(k_{3}[1] \oplus k_{3}[5]\right) \oplus k_{3}[10] \oplus k_{3}[14] \oplus R \operatorname{con}[2][2] .
$$

- The memory complexity could be reduced to $2^{177} 128$-bit words.
- For the attack starting from the third round, use the 16 -bit information $k_{1}[6,11]$ to split the attack, and the memory complexity reduce to $2^{165.5}$.
- $k_{1}[6]=k_{5}[2] \oplus k_{5}[6] \oplus k_{5}[14]$
- $k_{1}[11]=k_{5}[7] \oplus k_{5}[11] \oplus k_{6}[3]$

Outline

Preliminaries
A Brief Description of AES
Related Works
The Improved Attacks on 9-Round AES-192
Key-Dependent Sieve and 5-Round Distinguisher of AES-192
The Key Recovery Attack on 9-Round AES-192
The Attack on 9-round AES-192 from the Third Round
Reducing the Memory Complexity with Weak-Key Attacks
Reducing the Memory Complexities of the Attacks on AES-192
Reducing the Memory Complexity of the Attack on AES-256
Conclusion

Reducing the Complexities of the Attack on AES-256

Our improvements:

- Propose a new distinguisher which only compute 32 values of the δ-set.
- Use the 32-bit subkey $k_{-1}[10,15]$ and $k_{4}[9,14]$ to split the attack.
- The memory complexity is only about $2^{169.9} 128$-bit words. Note that Derbez et al. attack (Eurocrpyt 2013) needs about $2^{203} 128$-bit words.

Conclusion

Our contribution in this paper:

- Proposed to use the subkeys involved in distinguisher as the filter conditions to reduce the size of precomputation table.
- Constructed a 5-round distinguisher of AES-192 and mounted an attack on 9-round AES-192.
- Showed that the whole attack is able to be sorted into a series of weak-key attacks, then reduce the memory complexity of the attack.

Conclusion

Our results and some major previous results.

Cipher	Rounds	Attack Type	Data	Time	Memory	Source
AES-192	8	MITM	2^{113}	2^{172}	2^{129}	[DKS Asiacrypt 2010]
	8	MITM	2^{113}	2^{172}	2^{82}	[DFG Eurocrypt 2013]
	8	MITM	2^{113}	2^{140}	2^{130}	[DFG FSE 2013]
	9	Bicliques	2^{80}	$2^{188.8}$	2^{8}	[BKR Asiacrypt 2011]
	9	MITM	2^{121}	$2^{186.5}$	$2^{177.5}$	this paper
	9 (3-11)	MITM	2^{117}	$2^{182.5}$	$2^{165.5}$	this paper
	Full	Bicliques	2^{80}	$2^{189.4}$	2^{8}	[BKR Asiacrypt 2011]
AES-256	8	MITM	2^{113}	2^{196}	2^{129}	[DKS Asiacrypt 2010]
	8	MITM	2^{113}	2^{196}	2^{82}	[DFG Eurocrypt 2013]
	8	MITM	$2^{102.83}$	2^{156}	$2^{140.17}$	[DFG FSE 2013]
	9	Bicliques	2^{120}	$2^{251.9}$	2^{8}	[BKR Asiacrypt 2011]
	9	MITM	2^{120}	2^{203}	2^{203}	[DFG Eurocrypt 2013]
	9	MITM	2^{121}	$2^{203.5}$	$2^{169.9}$	this paper
	Full	Bicliques	240	$2^{254.4}$	2^{8}	[BKR Asiacrypt 2011]

Thank you for your attentions!

