Match Box Meet-in-the-Middle Attack against KATAN

Thomas Fuhr and Brice Minaud

ANSSI, France

FSE, March 3-5 2014
(1) Match Box

Meet-in-the-Middle Attacks
Sieve-in-the-Middle Framework Match Box
(2) Cryptanalysis of KATAN

Description
Cryptanalysis
Summary of results

Match Box

Meet-in-the-Middle Attack

Meet-in-the-Middle Attack

Knowledge of a portion K_{1} of the key allows to compute a part \vec{v} of the internal state at some intermediate round.

Meet-in-the-Middle Attack

Assume this same \vec{v} can be computed from the ciphertext using K_{2}. Then a meet-in-the-middle attack is possible.

Meet-in-the-Middle Attack

Assume this same \vec{v} can be computed from the ciphertext using K_{2}. Then a meet-in-the-middle attack is possible.

This generally assumes a simple key schedule. Lightweight ciphers are prime targets.

Meet-in-the-Middle Attack

(1) Guess $K_{\cap}=K_{1} \cap K_{2}$.

- For each $K_{1}^{\prime}=K_{1}-K_{n}$, compute \vec{v}. Store $\vec{v} \rightarrow\left\{K_{1}^{\prime}\right\}$ in a table T.
- For each $K_{2}^{\prime}=K_{2}-K_{n}$, compute \vec{v}. Retrieve $K_{1}^{\prime \prime}$'s that lead to the same \vec{v} from T. Each of these $K_{1}^{\prime \prime}$'s, merged with K_{2}^{\prime}, yields a candidate master key.
(2) Test candidate master keys against a few plaintext/ciphertext pairs.

Meet-in-the-Middle Attack

(1) Guess $K_{\cap}=K_{1} \cap K_{2}$.

- For each $K_{1}^{\prime}=K_{1}-K_{n}$, compute \vec{v}. Store $\vec{v} \rightarrow\left\{K_{1}^{\prime}\right\}$ in a table T.
- For each $K_{2}^{\prime}=K_{2}-K_{n}$, compute \vec{v}. Retrieve $K_{1}^{\prime \prime}$'s that lead to the same \vec{v} from T. Each of these $K_{1}^{\prime \prime}$'s, merged with K_{2}^{\prime}, yields a candidate master key.
(2) Test candidate master keys against a few plaintext/ciphertext pairs.

Benefit : complexity is $\left|K_{\cap}\right| \times\left(\left|K_{1}^{\prime}\right|+\left|K_{2}^{\prime}\right|\right)$ instead of $\left|K_{\cap}\right| \times\left(\left|K_{1}^{\prime}\right| \times\left|K_{2}^{\prime}\right|\right)$.

Sieve-in-the-Middle Framework

Now we compute a distinct \vec{l} from the left and \vec{r} from the right. Compatibility is expressed by some relation $\mathcal{R}(\vec{l}, \vec{r})$.

Introduced by Canteaut, Naya-Plasencia and Vayssière at CRYPTO 2013.

Matching problem

Problem : testing the relation \mathcal{R}.

$$
\begin{aligned}
K_{1} & =K_{\cap} \oplus K_{1}^{\prime} \\
K_{2} & =K_{\cap} \oplus K_{2}^{\prime} \\
K & =K_{\cap} \oplus K_{1}^{\prime} \oplus K_{2}^{\prime}
\end{aligned}
$$

Matching problem

Problem : testing the relation \mathcal{R}.
$K_{\cap} \times K_{1}^{\prime} \times K_{2}^{\prime}=$ entire key $=$ brute force.

$$
\begin{aligned}
K_{1} & =K_{\cap} \oplus K_{1}^{\prime} \\
K_{2} & =K_{\cap} \oplus K_{2}^{\prime} \\
K & =K_{\cap} \oplus K_{1}^{\prime} \oplus K_{2}^{\prime}
\end{aligned}
$$

Matching problem

Problem : testing the relation \mathcal{R}.
$K_{\mathrm{n}} \times K_{1}^{\prime} \times K_{2}^{\prime}=$ entire key $=$ brute force.

Solution : Precomputation of compatibilities outside the loop on K_{\cap}.

$$
\begin{aligned}
K_{1} & =K_{n} \oplus K_{1}^{\prime} \\
K_{2} & =K_{\cap} \oplus K_{2}^{\prime} \\
K & =K_{\cap} \oplus K_{1}^{\prime} \oplus K_{2}^{\prime}
\end{aligned}
$$

Example

$$
\begin{aligned}
K_{1} & =K_{\cap} \oplus K_{1}^{\prime} \\
K_{2} & =K_{\cap} \oplus K_{2}^{\prime} \\
K & =K_{\cap} \oplus K_{1}^{\prime} \oplus K_{2}^{\prime}
\end{aligned}
$$

Example

Assuming the key schedule is linear, $K=K_{2} \oplus K_{1}^{\prime}$. Without loss of generality, we can assume k depends only on K_{1}^{\prime}.

$$
\begin{aligned}
K_{1} & =K_{\cap} \oplus K_{1}^{\prime} \\
K_{2} & =K_{\cap} \oplus K_{2}^{\prime} \\
K & =K_{\cap} \oplus K_{1}^{\prime} \oplus K_{2}^{\prime}
\end{aligned}
$$

Example

Assuming the key schedule is linear, $K=K_{2} \oplus K_{1}^{\prime}$. Without loss of generality, we can assume k depends only on K_{1}^{\prime}.

Compatibility : $\mathcal{R}\left(\vec{l}, \vec{r}, K_{1}^{\prime}\right) \quad$ iff $\quad S^{-1}\left(\vec{r} \oplus k\left(K_{1}^{\prime}\right)\right)_{\mid\{0,1\}}=\vec{l}$

Match box

Match box : $\left(K_{1}^{\prime} \mapsto \vec{l}\right) \mapsto\left(\vec{r} \mapsto\left\{K_{1}^{\prime}: \mathcal{R}\left(\vec{l}, \vec{r}, K_{1}^{\prime}\right)\right\}\right)$

$$
\begin{aligned}
K_{1} & =K_{\cap} \oplus K_{1}^{\prime} \\
K_{2} & =K_{\cap} \oplus K_{2}^{\prime} \\
K & =K_{\cap} \oplus K_{1}^{\prime} \oplus K_{2}^{\prime}
\end{aligned}
$$

Match box

Match box : $\left(K_{1}^{\prime} \mapsto \vec{l}\right) \mapsto\left(\vec{r} \mapsto\left\{K_{1}^{\prime}: \mathcal{R}\left(\vec{l}, \vec{r}, K_{1}^{\prime}\right)\right\}\right)$
Limited by the size of the table: $2^{|\overrightarrow{\mid}| \bar{K}_{1}^{\prime} \mid}+|\vec{r}|+\left|K_{1}^{\prime}\right|$

$$
\begin{aligned}
K_{1} & =K_{\cap} \oplus K_{1}^{\prime} \\
K_{2} & =K_{\cap} \oplus K_{2}^{\prime} \\
K & =K_{\cap} \oplus K_{1}^{\prime} \oplus K_{2}^{\prime}
\end{aligned}
$$

Cryptanalysis of KATAN

Block cipher by De Cannière, Dunkelman, Knežević, CHES 2009.

Ultralightweight. Barely more surface area than what is required to store the state and key.

Based on Non-Linear Shift Feedback Registers. 254 rounds.
Accomodates three block sizes : 32, 48 or 64 bits. 80-bit key.

Previous work on KATAN

KATAN32

- Conditional differential : 78 rounds by Knellwolf, Meier, Naya-Plasencia, ASIACRYPT 2010.
- Exhaustive differential : 115 rounds by Albrecht and Leander, SAC 2012.
- Meet-in-middle : 110 rounds by Isobe and Shibutani, SAC 2013.

KATAN32

80-bit key loaded into an LFSR $\rightarrow k_{0}, k_{1}$ every round.

KATAN32

80-bit key loaded into an LFSR $\rightarrow k_{0}, k_{1}$ every round. Irregular rounds scheduled by another LFSR.

Formal description of KATAN32

Definition

Bit a_{i} enters register A at round i.
Bit b_{i} enters register B at round i.
\Longrightarrow At round n :
A contains $\left(a_{n-12}, \ldots, a_{n}\right)$, B contains $\left(b_{n-18}, \ldots, b_{n}\right)$.

Formal description of KATAN32

Definition

Bit a_{i} enters register A at round i.
Bit b_{i} enters register B at round i.
\Longrightarrow At round n :
A contains $\left(a_{n-12}, \ldots, a_{n}\right)$, B contains $\left(b_{n-18}, \ldots, b_{n}\right)$.
Plaintext $=\left(a_{-13}, \ldots, a_{-1}, b_{-19}, \ldots, b_{-1}\right)$.
Encryption $\left\{\begin{array}{l}a_{n}=b_{n-19} \oplus b_{n-8} \oplus b_{n-11} \cdot b_{n-13} \oplus b_{n-4} \cdot b_{n-9} \oplus r k_{2 n+1} \\ b_{n}=a_{n-13} \oplus a_{n-8} \oplus c_{n} \cdot a_{n-4} \oplus a_{n-6} \cdot a_{n-9} \oplus r k_{2 n}\end{array}\right.$
Ciphertext $=\left(a_{241}, \ldots, a_{253}, b_{235}, \ldots, b_{253}\right)$.

Meet-in-the-Middle Attack on KATAN

Small extras :

- Simultaneous matching : on several plaintext/ciphertext pairs.
- Indirect matching : removes key bits whose contribution is linear.

Meet-in-the-Middle Attack on KATAN

Small extras :

- Simultaneous matching : on several plaintext/ciphertext pairs.
- Indirect matching : removes key bits whose contribution is linear.

Result : attack on 121 rounds of KATAN32.
$K_{1}: 75$ bits, $K_{2}: 75$ bits, $K_{n}: 70$ bits forward : 69 rounds, backward : 52 rounds 4 known plaintexts, complexity $2^{77.5}$.

Meet-in-the-Middle Attack on KATAN

Addition of a biclique.
Originally introduced to attack SKEIN and AES [BKR11].
Makes it possible to extend a meet-in-the-middle attack. Either an accelerated key search, or a classical attack (we use the latter).

Meet-in-the-Middle Attack on KATAN

Addition of a biclique.
Originally introduced to attack SKEIN and AES [BKR11].
Makes it possible to extend a meet-in-the-middle attack. Either an accelerated key search, or a classical attack (we use the latter).

Result : attack on 131 rounds of KATAN32.
Chosen plaintexts, low data requirements.

Meet-in-the-middle attack on KATAN

Addition of a < match box».

Match Box on KATAN

Meeting in the middle at b_{62} :

$$
\begin{array}{ll}
b_{62}=x_{0} \oplus b_{68} \cdot b_{70}, & x_{0}=a_{81} \oplus b_{73} \oplus b_{72} \cdot b_{77} \oplus r k_{163} \\
b_{68}=x_{1} \oplus r k_{175}, & x_{1}=a_{87} \oplus b_{89} \oplus b_{76} \cdot b_{74} \oplus b_{83} \cdot b_{78} \\
b_{70}=x_{2} \oplus r k_{179}, & x_{2}=a_{89} \oplus b_{91} \oplus b_{78} \cdot b_{76} \oplus b_{85} \cdot b_{80}
\end{array}
$$

Match Box on KATAN

Meeting in the middle at b_{62} :

$$
\begin{array}{ll}
b_{62}=x_{0} \oplus b_{68} \cdot b_{70}, & x_{0}=a_{81} \oplus b_{73} \oplus b_{72} \cdot b_{77} \oplus r k_{163} \\
b_{68}=x_{1} \oplus r k_{175}, & x_{1}=a_{87} \oplus b_{89} \oplus b_{76} \cdot b_{74} \oplus b_{83} \cdot b_{78} \\
b_{70}=x_{2} \oplus r k_{179}, & x_{2}=a_{89} \oplus b_{91} \oplus b_{78} \cdot b_{76} \oplus b_{85} \cdot b_{80}
\end{array}
$$

Let us decompose $r k_{n}=r k_{n}^{2} \oplus r k_{n}^{1^{\prime}}$ along $K_{2} \oplus K_{1}^{\prime}$.

$$
\vec{l}\left\{l_{0}=b_{62} \quad \vec{r}\left\{\begin{array}{l}
r_{0}=x_{0} \\
r_{1}=x_{1} \oplus r k_{175}^{2} \\
r_{2}=x_{2} \oplus r k_{179}^{2}
\end{array}\right.\right.
$$

Compatibility $\mathcal{R}\left(\vec{I}, \vec{r}, K_{1}^{\prime}\right)$:

$$
I_{0}=r_{0} \oplus\left(r_{1} \oplus r k_{175}^{1_{17}^{\prime}}\right) \cdot\left(r_{2} \oplus r k_{179}^{1^{\prime}}\right)
$$

Match Box on KATAN

$$
\vec{l}\left\{l_{0}=b_{62} \quad \vec{r}\left\{\begin{array}{l}
r_{0}=x_{0} \\
r_{1}=x_{1} \oplus r k_{175}^{2} \\
r_{2}=x_{2} \oplus r k_{179}^{2}
\end{array}\right.\right.
$$

Compatibility $\mathcal{R}\left(\vec{l}, \vec{r}, K_{1}^{\prime}\right)$:

$$
I_{0}=r_{0} \oplus\left(r_{1} \oplus r k_{175}^{1^{\prime}}\right) \cdot\left(r_{2} \oplus r k_{179}^{1^{\prime}}\right)
$$

Benefit :

We no longer need to know $k_{175}^{1^{\prime}}$ and $r k_{179}^{1^{\prime}}$ from the right.
$\Rightarrow K_{2}$ shrinks by 2.
\Rightarrow We can add two brand new round keys to K_{2} to add one more round to the attack.

Summary of results

	Rounds	Model	Data	Memory	Time	Reference
K32	78	CP	2^{22}	-	2^{22}	[KMN10]
	115	CP	2^{32}	-	2^{79}	[AL12]
	110	KP	2^{7}	2^{75}	2^{77}	[IS13]
	121	KP	2^{2}	-	$2^{77.5}$	Base
	131	CP	2^{7}	-	$2^{77.5}$	Biclique
	153	CP	2^{5}	2^{76}	$2^{78.5}$	M. box
K48	70	CP	2^{34}	-	2^{34}	[KMN10]
	100	KP	2^{7}	2^{78}	2^{78}	[IS13]
	110	KP	2^{2}	-	$2^{77.5}$	Base
	114	CP	2^{6}	-	$2^{77.5}$	Biclique
	129	CP	2^{5}	2^{76}	$2^{78.5}$	M. box
K64	68	CP	2^{35}	-	2^{35}	[KMN10]
	94	KP	2^{7}	$2^{77.5}$	$2^{77.5}$	[IS13]
	102	KP	2^{2}	-	$2^{77.5}$	Base
	107	CP	2^{7}	-	$2^{77.5}$	Biclique
	119	CP	2^{5}	2^{74}	$2^{78.5}$	M. box

Conclusion

Thank you for your attention.

Questions?

Biclique

Biclique : $\forall i, j, \quad \operatorname{Enc}_{\mathrm{K}_{\mathrm{i}, \mathrm{j}}}^{0 \rightarrow \mathrm{~b}}\left(A_{i}\right)=B_{j}$.

Biclique

Biclique : $\forall i, j, \quad \operatorname{Enc}_{\mathrm{K}_{\mathrm{i}, \mathrm{j}}}^{0 \rightarrow \mathrm{~b}}\left(A_{i}\right)=B_{j}$.
$K_{i, *}=$ information on the key common to $K_{i, j} \forall j$. $K_{*, j}=$ information on the key common to $K_{i, j} \forall i$.
Compatibility : v can be computed from ($B_{j}, K_{*, j}$), and also $\left(C_{i}, K_{i, *}\right)$.

