LS-Designs 0000000 Security Analysis

Instances

Conclusion

LS-Designs

Bitslice Encryption for Efficient Masked Software Implementations

Vincent Grosso¹ <u>Gaëtan Leurent</u>^{1,2} François-Xavier Standert¹ Kerem Varici¹

¹UCL, Belgium & ²Inria, France

FSE 2014

Secure communications

- Cryptography aims to provide secure communications in the presence of an adversary.
- Classical model: adversary controls the communication channel:

Recovering the plaintext without the key should be hard.

Mathematical properties of the cipher E.

LS-Designs 0000000 Security Analysis

Instances 000 Conclusion

Side-channel analysis

- In practice, the cryptography is implemented by a physical system
 - Smart card (credit card, SIM), computer, mechanical machine ...
- The adversary can measure physical properties of the system
 - Time to encrypt data
 - Power consumption
 - Electromagnetic radiations
 - Sound

۰...

 Information about values during the computation can break the system even if the algorithm is good.

G. Leurent (UCL, Inria)

LS-00

Motivation

Security Analysis

Instances 000 Conclusion

Side-channel protection

- Implement crypto carefully:
 - Constant time operations (avoid SPA attacks)
 - No secret branches
 - No secret table access (avoid cache timing)
- Power consumption depend on the value of the operands
 - Correlated with Hamming weight/distance of values in bus/registers/...
 - Exploited in DPA attacks
- Masking
 - Best understood countermeasure

LS-E 000

Motivation

Security Analysis

Instances 000 Conclusion

Side-channel protection

- Implement crypto carefully:
 - Constant time operations (avoid SPA attacks)
 - No secret branches
 - No secret table access (avoid cache timing)
- Power consumption depend on the value of the operands
 - Correlated with Hamming weight/distance of values in bus/registers/...
 - Exploited in DPA attacks
- Masking
 - Best understood countermeasure

LS-D 000

Motivation

Security Analysis

Instances 000 Conclusion

Side-channel protection

- Implement crypto carefully:
 - Constant time operations (avoid SPA attacks)
 - No secret branches
 - No secret table access (avoid cache timing)
- Power consumption depend on the value of the operands
 - Correlated with Hamming weight/distance of values in bus/registers/...
 - Exploited in DPA attacks
- Masking
 - Best understood countermeasure

Motivation	LS-Designs	Security Analysis	Instances	Conclusion
000●0	0000000	000	000	

Masking

- Split the sensitive data in r shares (secret sharing)
 - ► $k_1 \leftarrow$ \$, ...
 - $k_{r-1} \leftarrow \$$
 - $k_r \leftarrow k \sum k_i$
- Use MPC-like techniques to avoid manipulating the secret itself
 - Linear operations are easy
 - Perform operation on each share
 - Non-linear operations are expansive
 - Need interaction, and randomness
 - Cost increase with r²
- Side-channel adversary must combine r measures (for an ideal implementation...)
 - Data complexity is exponential in $r: (\sigma_n^2)^r$

<i>Motivation</i> 0000●	LS-Designs 0000000	Security Analysis 000	Instances 000	Conclusion
		Motivation		
Main qı	iestion			
How to have secure crypto on 8-bit micro-controllers?				
 Side-channel resistance necessary in many lightweight settings 				

Avoid your car keys / credit card being cloned

Usual approach:

1 Design a secure cipher (AES, PRESENT, Noekeon, ...)

2 Implement with side-channel countermeasures

Can we reverse the problem?

- Use operations that are easy to mask
- 2 In order to design a secure cipher

Previous work: Zorro, PICARO

LS-Designs

Security Analysis

Instances 000 Conclusion

Choice of operations

Important remark

Logic gates are easier to mask than table-based S-boxes (If we target Boolean masking)

- Use bitsliced S-boxes (SERPENT, Noekeon, ...)
 - One word contains the msb (resp. 2nd bit, ...) of every S-box
 - Bitwise operations: 8 S-boxes in parallel using 8-bit words
 - Use a small number of non-linear gates
- We can use tables for the diffusion layer!
 - Efficient, good diffusion
 - Easy to mask (linear)

LS-Designs

Security Analysis

Instances 000 Conclusion

Choice of operations

Important remark

Logic gates are easier to mask than table-based S-boxes (If we target Boolean masking)

- Use bitsliced S-boxes (SERPENT, Noekeon, ...)
 - One word contains the msb (resp. 2nd bit, ...) of every S-box
 - Bitwise operations: 8 S-boxes in parallel using 8-bit words
 - Use a small number of non-linear gates
- We can use tables for the diffusion layer!
 - Efficient, good diffusion
 - Easy to mask (linear)

LS-Designs
0000000

Security Analysis

Instance 000 Conclusion

LS-designs

- Mathematical description: SPN network
 - S-boxes (with simple gate representation)
 - Linear diffusion layer (binary matrix)
 - Good design criterion: wide-trail

Bitslice implementation:

- S-box as a series of bitwise operations
- L-box tables for diffusion layer
- Easy to mask (simple non-linear ops., complex linear ops.)

LS-Designs

Security Analysis

Instances

Conclusion

LS-designs

 $x \leftarrow P \oplus K$ for $0 \le r < N_r$ do ▷ S-box layer: for $0 \le i < l$ do $x[i, \star] = S[x[i, \star]]$ ▷ L-box layer: for $0 \le j < s$ do $x[\star,j] = L[x[\star,j]]$ ▷ Key addition: $x \leftarrow x \oplus k_r$

return x

State as a bit-matrix

S-box layer

L-box layer

Motivation 00000	LS-Designs ○●●○○○○	Security Analysis	Instances 000	Conclusion

- Exhaustive search possible for 4-bit Sbox
- Optimal S-box with 4 non-linear gates: $Pr_{lin} = 2^{-1}$, $Pr_{diff} = 2^{-2}$

Class13 from [UCIKMP11]

Involution with same prob.

G. Leurent (UCL, Inria)

LS-Designs

[UCIKMP11]

Motivation	LS-Designs	Security Analysis	Instances	Conclusion

S-box: 8-bit

- Exhaustive search not possible
- Use constructions from a 4-bit S-box:

Test properties

Motivation	LS-Designs	Security Analysis	Instances	Conclusion
	0000000			

Best S-Boxes

	size	#AND	#XOR	Invol.	deg(<i>S</i>)	Pr_{diff}	Pr _{lin}
NOEKEON	4	4	7	Yes	3	2 ⁻²	2 ⁻¹
Class 13		4	4	No	3	2 ⁻²	2 ⁻¹
Figure (b)		4	4	Yes	3	2 ⁻²	2 ⁻¹
AES	8	32	83	No	7	2 ⁻⁶	2 ⁻³
Whirlpool + Class 13		16	41	No	6	2 ^{-4.68}	2 ⁻²
Whirlpool + Figure (b)		16	42	No	6	2 ^{-4.68}	2 ⁻²
Feistel + Class13		12	24	Yes	6	2 ⁻⁴	2 ⁻²
Feistel + Figure (b)		12	24	Yes	5	2 ⁻⁴	2 ⁻²
MISTY + 3/5-bit		11	25	No	5	2 ⁻⁴	2 ⁻²
Feistel ² + Class13	16	36	96	Yes	13	2 ⁻⁸	2 ⁻⁴

Motivation	LS-Designs	Security Analysis	Instances	Conclusion
	00 00 00			

Best S-Boxes

	size	#AND	#XOR	Invol.	deg(<i>S</i>)	Pr_{diff}	Pr _{lin}
NOEKEON	4	4	7	Yes	3	2 ⁻²	2 ⁻¹
Class 13		4	4	No	3	2 ⁻²	2 ⁻¹
Figure (b)		4	4	Yes	3	2 ⁻²	2 ⁻¹
AES	8	32	83	No	7	2 ⁻⁶	2-3
Whirlpool + Class 13		16	41	No	6	2 ^{-4.68}	2 ⁻²
Whirlpool + Figure (b)		16	42	No	6	2 ^{-4.68}	2 ⁻²
Feistel + Class13		12	24	Yes	6	2 ⁻⁴	2 ⁻²
Feistel + Figure (b)		12	24	Yes	5	2 ⁻⁴	2 ⁻²
MISTY + 3/5-bit		11	25	No	5	2 ⁻⁴	2 ⁻²
Feistel ² + Class13	16	36	96	Yes	13	2 ⁻⁸	2 ⁻⁴

Iotivation	LS-Designs	Security Analysis	Instances
00000	0000000		

L-box choice

- Wide trail strategy: maximum branch number
 - At least B active S-boxes every two rounds
 - Use coding theory results
 - 8-bit Exhaustive search possible
 - Maximum branch number is 5
 - Reachable with involutions
 - 16-bit Optimal codes known
 - Optimal distance is 8
 - Reed-Muller(2,5) gives an involution
 - 32-bit Optimal codes not known
 - Best known code have a distance 12
 - Upper bound is 16

Which S-box with which L-box?

- We want to design a 128-bit cipher
- Compare implementation cost with best trail $\leq 2^{-128}$
- ▶ 8-bit L-box, 16-bit S-box
 - At least 16 active S-boxes, *i.e.* 6 rounds 984 operations: 216 non-linear, 672 linear, 96 table-lookups
- ▶ 16-bit L-box, 8-bit S-box

At least 32 active S-boxes, *i.e.* 8 rounds 1088 operations: 192 non-linear, 640 linear, 256 table-lookups

► 32-bit L-box, 4-bit S-box

At least 64 active S-boxes, *i.e.* 12 rounds 1920 operations: 192 non-linear, 960 linear, 768 table-lookups

- Best trade-off: 16-bit L-box, 8-bit S-box
 - Further analysis allows to decrease the number of rounds

Motivation	LS-Designs	Security Analysis	Instances	Conclusion
		•00		

Product states

Special states can be written as a tensor product:

$$\alpha \otimes x = \begin{bmatrix} \alpha_0 x_0 & \alpha_0 x_1 & \alpha_0 x_2 & \alpha_0 x_3 & \cdots & \alpha_0 x_l \\ \alpha_1 x_0 & \alpha_1 x_1 & \alpha_1 x_2 & \alpha_1 x_3 & & \alpha_1 x_l \\ \vdots & & \vdots & \ddots & \vdots \\ \alpha_s x_0 & \alpha_s x_1 & \alpha_s x_2 & \alpha_s x_3 & \cdots & \alpha_s x_l \end{bmatrix}$$

- All active S-boxes have the same input a
- All active L-boxes have the same input x
- S-layer($\alpha \otimes x$) = S(α) $\otimes x$, L-layer($\alpha \otimes x$) = $\alpha \otimes L(x)$.
- If components are involutive, product trails are iterative, optimal:

Non-involutive L-box

- With non-involutive L-box, no obvious trails reach the bound
- ► For a given L-box, we run a search for optimal trails:
 - 1 Consider truncated trails (active/non-active S-boxes)
 - 2 Compute all possible transitions for the L-layer

- 3 Search shortest paths in the graph
 - *l*-bit state
 - weighted with number of active S-boxes
 - Feasible for $l \leq 16$
- We use random permutations of a known good code

LS-Designs 0000000 Security Analysis 00● Instances 000 Conclusion

Non-involutive L-box

The best L-box we found allow to reduce the number of rounds:

Involutive

Non-involutive

Number of active S-boxes												
Rounds	1	2	3	4	5	6	7	8	9	10	11	12
Involutive	1	8	9	16	17	24	25	32	33	40	41	48
Non-inv.	1	8	12	20	24	30	34	40	46	52	58	64
AES	1	5	9	25	26	30	34	50	51	55	59	75

G. Leurent (UCL, Inria)

LS-Designs

Security Analysis

Instances

Conclusion

Instances

G. Leurent (UCL, Inria)

tivation	LS-Designs	Security Analysis	Instances
			● 00

Instances

FANTOMAS

- 128-bit block, 128-bit key
- $k_i = K \oplus c_i$
- Non-involutive components

12 rounds

ROBIN

128-bit block, 128-bit key

 $k_i = K \oplus c_i$

- Involutive components
- 16 rounds

- Very good performances for masked implementations
- Noekeon also very good (similar components)

G. Leurent (UCL, Inria)

LS-Designs

Implementation: High-end CPUs

- Also efficient on high-end CPUs with vector engines
- Use large registers (128-bit) for bitsliced S-box
- Use vector permute instructions for L-box
 - 4-bit to 8-bit table with pshufb in SSSE3, vtbl in NEON
 - 16-bit to 16-bit table as 8 small tables
 - Constant time (no cache timing side-channel)

	Fantomas	Robin	AES		
			w/o AES-NI	w/AES-NI	
ARM Cortex A15	14.2	18.1	17.8	N/A	
Atom	33.3	43.5	17	N/A	
Core i7 Nehalem	6.3	8.1	6.9	N/A	
Core i7 Ivy Bridge	4.2	5.5	5.4	1.3	

Motivation 00000	LS-Designs 0000000	Security Analysis	Instances 000	Conclusion				
Conclusion								
LS-designs								
Bitslice S-box easy to mask								

- L-box: table-based linear layer for good diffusion
- Simple and regular SPN structure
 - Avoid irregularities of Zorro
 - Bound for differential/linear trails (wide trail)
- Efficient, easy to mask
 - Good performances for masked implementations
 - Good performances on high-end CPUs
- Future work:
 - Better S-box?
 - Consider related-key attacks
 - CAESAR submission?

G. Leurent (UCL, Inria)

```
Simple Code (16-bit)
void C13(uint16 t X[4], uint16 t Y[4]) {
  uint16_t a, b, c, d;
  Y[0] ^{=} a = (X[0] \& X[1]) ^ X[2];
  Y[2] = c = (X[1] | X[2]) = X[3];
  Y[3] = d = (a \& X[3]) X[0];
 Y[1] = b = (c \& X[0]) = X[1];
}
#define Sbox(x) C13(x+4, x), C13(x, x+4), C13(x+4, x)
extern uint16_t L1[256], L2[256];
void Encrypt(uint16_t x[8], uint16_t k[8]) {
  for (int j=0; j<8; j++) x[j] ^= k[j];</pre>
                                                    // Initial key adition
  for (int i=0; i<16; i++) {</pre>
    x[0] = L1[i+1];
                                                    // Round constant
    Sbox(x);
                                                    // S-box
    for (int j=0; j<8; j++) {
      x[j] = L2[x[j] >> 8] \cap L1[x[j] \& 0xff];
                                             // L-box
      x[j] ^= k[j];
                                                    // Key adition
    }
  }
}
    G. Leurent (UCL.Inria)
                                   LS-Designs
                                                                 FSE 2014
                                                                         21/20
```