
.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

LS-Designs
Bitslice Encryption for Efficient Masked Software Implementations

Vincent Grosso1 Gaëtan Leurent1,2

FrançoisXavier Standert1 Kerem Varici1

1UCL, Belgium  2Inria, France

FSE 2014

G. Leurent (UCL,Inria) LS-Designs FSE 2014 1 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Secure communications

▶ Cryptography aims to provide secure communications
in the presence of an adversary.

▶ Classical model: adversary controls the communication channel:

...

Alice

. E. D....

Bob

.
P

.
C

.
P

.

▶ Recovering the plaintext without the key should be hard.
▶ Mathematical properties of the cipher E.

G. Leurent (UCL,Inria) LS-Designs FSE 2014 2 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Side-channel analysis
▶ In practice, the cryptography is implemented by a physical system

▶ Smart card (credit card, SIM), computer, mechanical machine ...

▶ The adversary can measure physical properties of the system
▶ Time to encrypt data
▶ Power consumption
▶ Electromagnetic radiations
▶ Sound
▶ ...

.....

▶ Information about values during the computation
can break the system even if the algorithm is good.

G. Leurent (UCL,Inria) LS-Designs FSE 2014 3 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Side-channel protection

▶ Implement crypto carefully:
▶ Constant time operations (avoid SPA attacks)
▶ No secret branches
▶ No secret table access (avoid cache timing)

▶ Power consumption depend on the value of the operands
▶ Correlated with Hamming weight/distance of values
in bus/registers/...

▶ Exploited in DPA attacks

▶ Masking
▶ Best understood countermeasure

G. Leurent (UCL,Inria) LS-Designs FSE 2014 4 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Side-channel protection

▶ Implement crypto carefully:
▶ Constant time operations (avoid SPA attacks)
▶ No secret branches
▶ No secret table access (avoid cache timing)

▶ Power consumption depend on the value of the operands
▶ Correlated with Hamming weight/distance of values
in bus/registers/...

▶ Exploited in DPA attacks

▶ Masking
▶ Best understood countermeasure

G. Leurent (UCL,Inria) LS-Designs FSE 2014 4 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Side-channel protection

▶ Implement crypto carefully:
▶ Constant time operations (avoid SPA attacks)
▶ No secret branches
▶ No secret table access (avoid cache timing)

▶ Power consumption depend on the value of the operands
▶ Correlated with Hamming weight/distance of values
in bus/registers/...

▶ Exploited in DPA attacks

▶ Masking
▶ Best understood countermeasure

G. Leurent (UCL,Inria) LS-Designs FSE 2014 4 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Masking

▶ Split the sensitive data in r shares (secret sharing)
▶ k1 ← $, ...
▶ kr−1 ← $
▶ kr ← k − ∑ ki

▶ Use MPClike techniques to avoid manipulating the secret itself
▶ Linear operations are easy

▶ Perform operation on each share
▶ Nonlinear operations are expansive

▶ Need interaction, and randomness
▶ Cost increase with r2

▶ Sidechannel adversary must combine rmeasures
(for an ideal implementation...)

▶ Data complexity is exponential in r: (𝜎2n)r

G. Leurent (UCL,Inria) LS-Designs FSE 2014 5 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Motivation
Main question

How to have secure crypto on 8bit microcontrollers?

▶ Sidechannel resistance necessary in many lightweight settings
▶ Avoid your car keys / credit card being cloned

▶ Usual approach:
1 Design a secure cipher (AES, PRESENT, Noekeon, ...)
2 Implement with sidechannel countermeasures

▶ Can we reverse the problem?
1 Use operations that are easy to mask
2 In order to design a secure cipher

▶ Previous work: Zorro, PICARO

G. Leurent (UCL,Inria) LS-Designs FSE 2014 6 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Choice of operations

Important remark

Logic gates are easier to mask than tablebased Sboxes
(If we target Boolean masking)

▶ Use bitsliced Sboxes (SERPENT, Noekeon, ...)
▶ One word contains the msb (resp. 2nd bit, ...) of every Sbox
▶ Bitwise operations: 8 Sboxes in parallel using 8bit words
▶ Use a small number of nonlinear gates

▶ We can use tables for the diffusion layer!
▶ Efficient, good diffusion
▶ Easy to mask (linear)

G. Leurent (UCL,Inria) LS-Designs FSE 2014 7 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Choice of operations

Important remark

Logic gates are easier to mask than tablebased Sboxes
(If we target Boolean masking)

▶ Use bitsliced Sboxes (SERPENT, Noekeon, ...)
▶ One word contains the msb (resp. 2nd bit, ...) of every Sbox
▶ Bitwise operations: 8 Sboxes in parallel using 8bit words
▶ Use a small number of nonlinear gates

▶ We can use tables for the diffusion layer!
▶ Efficient, good diffusion
▶ Easy to mask (linear)

G. Leurent (UCL,Inria) LS-Designs FSE 2014 7 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

LS-designs
▶ Mathematical description: SPN network

▶ Sboxes (with simple gate representation)
▶ Linear diffusion layer (binary matrix)
▶ Good design criterion: widetrail

..S. S. S. S. S. S. S. S. S.

L

.

S

.

S

.

S

.

S

.

S

.

S

.

S

.

S

.

S

.
L

▶ Bitslice implementation:
▶ Sbox as a series of bitwise operations
▶ Lbox tables for diffusion layer
▶ Easy to mask (simple nonlinear ops., complex linear ops.)

G. Leurent (UCL,Inria) LS-Designs FSE 2014 8 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

LS-designs

x ← P ⊕ K
for 0 ≤ r < Nr do

▷ Sbox layer:
for 0 ≤ i < l do

x[i, ⋆] = 𝘚[x[i, ⋆]]
▷ Lbox layer:
for 0 ≤ j < s do

x[⋆, j] = 𝘓[x[⋆, j]]
▷ Key addition:
x ← x ⊕ kr

return x

..
State as a bitmatrix

.

Sbox layer

.

Lbox layer

G. Leurent (UCL,Inria) LS-Designs FSE 2014 8 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

S-box: 4-bit

▶ Exhaustive search possible for 4bit Sbox [UCIKMP11]
▶ Optimal Sbox with 4 nonlinear gates: Prlin = 2−1, Prdiff = 2−2

..................

Class13 from [UCIKMP11]

..................

Involution with same prob.
G. Leurent (UCL,Inria) LS-Designs FSE 2014 9 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

S-box: 8-bit

▶ Exhaustive search not possible
▶ Use constructions from a 4bit Sbox:

..

S3

.

S4

.

L

.

S1

.

S2

.
Whirlpool-like

..

S3

.

S2

.

S1

.......
Feistel

..
S3

.

S2

.

S1

.....
MISTY-like

▶ Test properties

G. Leurent (UCL,Inria) LS-Designs FSE 2014 10 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Best S-Boxes

size #AND #XOR Invol. deg(𝘚) Prdiff Prlin

NOEKEON 4 4 7 Yes 3 2−2 2−1

Class 13 4 4 No 3 2−2 2−1

Figure (b) 4 4 Yes 3 2−2 2−1

AES 8 32 83 No 7 2−6 2−3

Whirlpool + Class 13 16 41 No 6 2−4.68 2−2

Whirlpool + Figure (b) 16 42 No 6 2−4.68 2−2

Feistel + Class13 12 24 Yes 6 2−4 2−2

Feistel + Figure (b) 12 24 Yes 5 2−4 2−2

MISTY + 3/5bit 11 25 No 5 2−4 2−2

Feistel2 + Class13 16 36 96 Yes 13 2−8 2−4

G. Leurent (UCL,Inria) LS-Designs FSE 2014 11 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Best S-Boxes

size #AND #XOR Invol. deg(𝘚) Prdiff Prlin

NOEKEON 4 4 7 Yes 3 2−2 2−1

Class 13 4 4 No 3 2−2 2−1

Figure (b) 4 4 Yes 3 2−2 2−1

AES 8 32 83 No 7 2−6 2−3

Whirlpool + Class 13 16 41 No 6 2−4.68 2−2

Whirlpool + Figure (b) 16 42 No 6 2−4.68 2−2

Feistel + Class13 12 24 Yes 6 2−4 2−2

Feistel + Figure (b) 12 24 Yes 5 2−4 2−2

MISTY + 3/5bit 11 25 No 5 2−4 2−2

Feistel2 + Class13 16 36 96 Yes 13 2−8 2−4

G. Leurent (UCL,Inria) LS-Designs FSE 2014 11 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

L-box choice
▶ Wide trail strategy: maximum branch number

▶ At least B active Sboxes every two rounds
▶ Use coding theory results

8-bit Exhaustive search possible
▶ Maximum branch number is 5
▶ Reachable with involutions

16-bit Optimal codes known
▶ Optimal distance is 8
▶ ReedMuller(2,5) gives an involution

32-bit Optimal codes not known
▶ Best known code have a distance 12
▶ Upper bound is 16

G. Leurent (UCL,Inria) LS-Designs FSE 2014 12 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Which S-box with which L-box?
▶ We want to design a 128bit cipher
▶ Compare implementation cost with best trail ≤ 2−128

▶ 8-bit L-box, 16-bit S-box
At least 16 active Sboxes, i.e. 6 rounds
984 operations: 216 nonlinear, 672 linear, 96 tablelookups

▶ 16-bit L-box, 8-bit S-box
At least 32 active Sboxes, i.e. 8 rounds
1088 operations: 192 nonlinear, 640 linear, 256 tablelookups

▶ 32-bit L-box, 4-bit S-box
At least 64 active Sboxes, i.e. 12 rounds
1920 operations: 192 nonlinear, 960 linear, 768 tablelookups

▶ Best tradeoff: 16bit Lbox, 8bit Sbox
▶ Further analysis allows to decrease the number of rounds

G. Leurent (UCL,Inria) LS-Designs FSE 2014 13 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Product states

▶ Special states can be written as a tensor product:

𝛼 ⊗ x =

⎡
⎢
⎢
⎢
⎣

𝛼0x0 𝛼0x1 𝛼0x2 𝛼0x3 ⋯ 𝛼0xl
𝛼1x0 𝛼1x1 𝛼1x2 𝛼1x3 𝛼1xl
⋮ ⋮ ⋱ ⋮

𝛼sx0 𝛼sx1 𝛼sx2 𝛼sx3 ⋯ 𝛼sxl

⎤
⎥
⎥
⎥
⎦

▶ All active Sboxes have the same input 𝛼
▶ All active Lboxes have the same input x

▶ 𝘚-𝘭𝘢𝘺𝘦𝘳 (𝛼 ⊗ x) = 𝘚(𝛼) ⊗ x, 𝘓-𝘭𝘢𝘺𝘦𝘳 (𝛼 ⊗ x) = 𝛼 ⊗ 𝘓(x).
▶ If components are involutive, product trails are iterative, optimal:
.. .. SB. LB. SB. LB. ..

x ⊗ 𝛼 x ⊗ 𝛽 y ⊗ 𝛽 y ⊗ 𝛼 x ⊗ 𝛼

G. Leurent (UCL,Inria) LS-Designs FSE 2014 14 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Non-involutive L-box
▶ With noninvolutive Lbox, no obvious trails reach the bound

▶ For a given Lbox, we run a search for optimal trails:
1 Consider truncated trails (active/nonactive Sboxes)

2 Compute all possible transitions for the Llayer
▶ Including nonlinear transitions, e.g.

.. .. LB. ..

𝟶𝟶𝟷𝟶𝟷𝟶𝟶𝟶 ; 𝟶𝟶𝟷𝟷𝟶𝟷𝟷𝟶

.. .. LB. ..

𝟶𝟶𝟷𝟶𝟷𝟶𝟶𝟶 ; 𝟶𝟷𝟷𝟷𝟶𝟷𝟷𝟷

3 Search shortest paths in the graph
▶ lbit state
▶ weighted with number of active Sboxes
▶ Feasible for l ≤ 16

▶ We use random permutations of a known good code

G. Leurent (UCL,Inria) LS-Designs FSE 2014 15 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Non-involutive L-box
▶ The best Lbox we found allow to reduce the number of rounds:

.. ..

Involutive Non-involutive

Number of active S-boxes

Rounds 1 2 3 4 5 6 7 8 9 10 11 12

Involutive 1 8 9 16 17 24 25 32 33 40 41 48
Noninv. 1 8 12 20 24 30 34 40 46 52 58 64
AES 1 5 9 25 26 30 34 50 51 55 59 75

G. Leurent (UCL,Inria) LS-Designs FSE 2014 16 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Instances

.. ..

G. Leurent (UCL,Inria) LS-Designs FSE 2014 17 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Instances

..

FANTOMAS

▶ 128bit block, 128bit key
▶ ki = K ⊕ ci

▶ Noninvolutive components
▶ 12 rounds

..
S5
.

S3

.

S5

.....
S-box

.

..

.
L-box

..

ROBIN

▶ 128bit block, 128bit key
▶ ki = K ⊕ ci

▶ Involutive components
▶ 16 rounds

..
S4

.

S4

.

S4

.......
S-box

.

..

.
L-box

G. Leurent (UCL,Inria) LS-Designs FSE 2014 17 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Implementation: AVR micro-controller

...
..

0

.

1

.

2

.

3

.0 .

2

.

4

.

6

.

⋅105

.

security order

.

nu
m
be
ro

fc
yc
le
s

.

. ..AES

. ..AES

. ..Zorro

. ..PICARO

. ..NOEKEON

. ..𝘙𝘰𝘣𝘪𝘯

. ..𝘍𝘢𝘯𝘵𝘰𝘮𝘢𝘴

▶ Very good performances for masked implementations
▶ Noekeon also very good (similar components)

G. Leurent (UCL,Inria) LS-Designs FSE 2014 18 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Implementation: High-end CPUs
▶ Also efficient on highend CPUs with vector engines

▶ Use large registers (128bit) for bitsliced Sbox
▶ Use vector permute instructions for Lbox

▶ 4bit to 8bit table with pshufb in SSSE3, vtbl in NEON
▶ 16bit to 16bit table as 8 small tables
▶ Constant time (no cache timing sidechannel)

𝘍𝘢𝘯𝘵𝘰𝘮𝘢𝘴 𝘙𝘰𝘣𝘪𝘯 AES

w/o AESNI w/AESNI

ARM Cortex A15 14.2 18.1 17.8 N/A
Atom 33.3 43.5 17 N/A

Core i7 Nehalem 6.3 8.1 6.9 N/A
Core i7 Ivy Bridge 4.2 5.5 5.4 1.3

G. Leurent (UCL,Inria) LS-Designs FSE 2014 19 / 20

.
Motivation

.
LS-Designs

. . .
Security Analysis

. . .
Instances Conclusion

Conclusion
LS-designs

▶ Bitslice Sbox easy to mask
▶ Lbox: tablebased linear layer for good diffusion

▶ Simple and regular SPN structure
▶ Avoid irregularities of Zorro
▶ Bound for differential/linear trails (wide trail)

▶ Efficient, easy to mask
▶ Good performances for masked implementations
▶ Good performances on highend CPUs

▶ Future work:
▶ Better Sbox?
▶ Consider relatedkey attacks
▶ CAESAR submission?

G. Leurent (UCL,Inria) LS-Designs FSE 2014 20 / 20

Simple Code (16-bit)
void C13(uint16_t X[4], uint16_t Y[4]) {

uint16_t a, b, c, d;
Y[0] ^= a = (X[0] & X[1]) ^ X[2];
Y[2] ^= c = (X[1] | X[2]) ^ X[3];
Y[3] ^= d = (a & X[3]) ^ X[0];
Y[1] ^= b = (c & X[0]) ^ X[1];

}
#define Sbox(x) C13(x+4, x), C13(x, x+4), C13(x+4, x)
extern uint16_t L1[256], L2[256];

void Encrypt(uint16_t x[8], uint16_t k[8]) {
for (int j=0; j<8; j++) x[j] ^= k[j]; // Initial key adition
for (int i=0; i<16; i++) {

x[0] ^= L1[i+1]; // Round constant
Sbox(x); // S-box
for (int j=0; j<8; j++) {

x[j] = L2[x[j]>>8] ^ L1[x[j]&0xff]; // L-box
x[j] ^= k[j]; // Key adition

}
}

} G. Leurent (UCL,Inria) LS-Designs FSE 2014 21 / 20

	Motivation
	LS-Designs
	Security Analysis
	Instances
	Appendix

