
Higher-Order Masking Schemes for S-Boxes

Claude Carlet1, Louis Goubin2, Emmanuel Prouff3, Michael Quisquater2, and
Matthieu Rivain4

1 LAGA, Université de Paris 8
claude.carlet@univ-paris8.fr

2 Université de Versailles St-Quentin-en-Yvelines
louis.goubin@prism.uvsq.fr

michael.quisquater@prism.uvsq.fr
3 Oberthur Technologies
e.prouff@oberthur.com

4 CryptoExperts
matthieu.rivain@cryptoexperts.com

Abstract. Masking is a widely used countermeasure against side-channel attacks. The principle
is to randomly split every sensitive intermediate variable occurring in the computation into d + 1
shares, where d is called the masking order and plays the role of a security parameter. The main
issue while applying masking to protect a block cipher implementation is to design an efficient
scheme for the s-box computations. Actually, masking schemes with arbitrary order only exist for
Boolean circuits and for the AES s-box. Although any s-box can be represented as a Boolean circuit,
applying such a strategy leads to inefficient implementation in software. The design of an efficient
and generic higher-order masking scheme was hence until now an open problem. In this paper, we
introduce the first masking schemes which can be applied in software to efficiently protect any s-box
at any order. We first describe a general masking method and we introduce a new criterion for an
s-box that relates to the best efficiency achievable with this method. Then we propose concrete
schemes that aim to approach the criterion. Specifically, we give optimal methods for the set of
power functions, and we give efficient heuristics for the general case. As an illustration we apply
the new schemes to the DES and PRESENT s-boxes and we provide implementation results.

1 Introduction

Side-channel analysis is a class of cryptanalytic attacks that exploit the physical environment
of a cryptosystem to recover some leakage about its secrets. It is often more efficient than a
cryptanalysis mounted in the so-called black-box model where no leakage occurs. In particular,
continuous side-channel attacks in which the adversary gets information at each invocation of
the cryptosystem are especially threatening. Common attacks as those exploiting the running-
time [19], the power consumption [20] or the electromagnetic radiations [12] of a cryptographic
computation fall into this class.

Many implementations of block ciphers have been practically broken by continuous side-
channel analysis — see for instance [6,20,22,24] — and securing them has been a longstanding
issue for the embedded systems industry. A sound approach is to use secret sharing [3,32], often
called masking in the context of side-channel attacks. This approach consists in splitting each
sensitive variable of the implementation (i.e. variables depending on the secret key) into d + 1
shares, where d is called the masking order. It has been shown that the complexity of mounting
a successful side-channel attack against a masked implementation increases exponentially with
the masking order [7]. Starting from this observation, the design of efficient masking schemes
for different ciphers has become a foreground issue.

The DES cipher has been the focus of first designs, with the notable work of Goubin
and Patarin in [14]. Further schemes have been subsequently published, in particular for the
AES cipher, applying masking in hardware or software with different area-time-memory trade-
offs [2,4,23,25,28,31]. All these schemes deal with first-order masking, namely the intermediate

variables are split in two shares (a mask and a masked variable). As a result, they only thwart
first order side-channel attacks in which the adversary exploits the leakage of a single interme-
diate computation. During the last years, several works have demonstrated that this defense
strategy was not sufficient for long term security purpose and that higher-order attacks could
be successfully performed against cryptographic implementations (see e.g. [24]). This has raised
the need for secure and efficient higher-order masking schemes.

Higher-Order Masking. The principle of higher-order masking is to split every sensitive
variable x occurring during the computation into d+ 1 shares x0, . . . , xd in such a way that the
following relation is satisfied for a group operation ⊥:

x0 ⊥ x1 ⊥ · · · ⊥ xd = x . (1)

In the rest of the paper, we shall consider that ⊥ is the addition over some field of characteristic
2. Usually, the d shares x1, . . . , xd (called the masks) are randomly picked up and the last one
x0 (called the masked variable) is processed such that it satisfies (1). When d random masks are
involved per sensitive variable the masking is said to be of order d. The tuple (xi)i is further
called a dth-order encoding of x.

When higher-order masking is involved to protect a block cipher implementation, a so-called
masking scheme must be designed to enable the computation on masked data. Such a scheme
must ensure that the final shares correspond to the expected ciphertext on the one hand, and
it must ensure the dth-order security property for the chosen order d on the other hand. The
latter property states that every tuple of d or less intermediate variables is independent of any
sensitive variable. When satisfied, it guarantees that no attack of order lower than or equal to d
is possible.

Most block cipher structures (e.g. AES or DES) are iterative, meaning that they apply several
times a same transformation, called round, to an internal state initially filled with the plaintext.
The round itself is composed of a key addition, one or several linear transformation(s) and one
or several non-linear s-box(es). Key addition and linear transformations are easily handled as
linearity enables to process each share independently. The main difficulty in designing masking
schemes for block ciphers hence lies in masking the s-box(es).

Masking and S-Boxes. Whereas many solutions have been proposed to deal with the case of
first-order masking (see e.g. [2, 4, 23, 27]), only a few solutions exist for the higher-order case.
A scheme has been proposed by Schramm and Paar in [31] which generalizes the (first-order)
table recomputation method described in [2,23]. Although the authors apply their method in the
particular case of an AES implementation, it is generic and can be applied to protect any s-box.
Unfortunately, this scheme has been shown to be vulnerable to a 3rd-order attack whatever the
chosen masking order [8]. In other words, it only provides 2nd-order security. Further schemes
were proposed by Rivain, Dottax and Prouff in [28] with formal security proofs but still limited
to 2nd-order security.

The first scheme achieving dth-order security for an arbitrary chosen d has been designed by
Ishai, Sahai and Wagner in [15]. The here-called ISW scheme consists in masking the Boolean
representation of an algorithm which is composed of logical operations NOT and AND. Securing
a NOT for any order d is straightforward since x =

⊕
i xi implies NOT(x) = NOT(x0)⊕x1 · · ·⊕

xd. The main contribution of [15] is a method to secure the AND operation for any arbitrary
order d (the description of this scheme is recalled in Section 2.1). Although the ISW scheme
is an important theoretical result, its practical application faces some issues. At the hardware
level, the obtained circuits may have prohibitive area requirements, especially for being used
in embedded systems (privileged targets of side-channel attacks). Moreover, Mangard et al.

have shown in [21, 22] that masking at the hardware level is sensitive to glitches which induce
unpredicted flaws in masked circuits. Preventing glitches can be done thanks to synchronization
elements (e.g. registers or latches) [26] or by performing additional sharing [25] but in both
cases, the circuit size is still significantly increased. On the other hand, a direct application of
the ISW scheme to secure an s-box computation in software would consist in taking the Boolean
representation of the s-box and in processing every logical operation successively in a masked
way. Since the Boolean representation of common s-boxes involves a huge number of logical
operations, the resulting implementation would likely be inefficient.

In the particular case of AES, a solution has been proposed by Rivain and Prouff in [29]
to efficiently mask the s-box processing at any order. Specifically, the authors use the algebraic
structure of the AES s-box, which is the composition of an affine function over F8

2 with the
power function x 7→ x254 over F256, and they show that it can be expressed as a sequence of
operations involving a few linear functions over F8

2 (easy to mask) and four multiplications over
F256. The latter are secured by applying the ISW scheme (generalized to F256). Subsequently,
Kim, Hong and Lim have presented in [16] an extension of Rivain and Prouff’s scheme, which is
based on the tower-field approach from [30]. On the other hand, Genelle, Prouff and Quisquater
have proposed in [13] a higher-order scheme based on the alternate use of Boolean masking and
multiplicative masking. Although schemes in [16] and [13] achieve better performances than [29],
they are still restricted to the AES s-box and their generalization to any s-box (or subclasses)
is an open issue.

Our Contribution. The present paper introduces the first higher-order masking scheme which
can be applied to efficiently protect any s-box processing in software. We first give a general
method that extends the Rivain and Prouff approach to mask any s-box and we introduce a
new criterion for an s-box that relates to the best efficiency achievable with our method. Then
we give concrete schemes that aim to approach the so-called masking complexity. Specifically,
we give optimal methods for the set of power functions, and we give efficient heuristics for the
general case. As an illustration we apply our scheme to the DES and PRESENT s-boxes and we
provide implementation results.

2 Higher-Order Masking of any S-Box

In this section, we describe a general method to mask any s-box and we introduce a related
masking complexity criterion.

2.1 General Method

An s-box is a function from {0, 1}n to {0, 1}m with m ≤ n and n small (typically n ∈ {4, 6, 8}).
We shall use the terminology of (n,m) s-box when the dimensions need to be specified. To design
a higher-order masking scheme for such a function, our approach is to express it as a sequence
of affine functions over Fn2 , and multiplications over F2n . Such a strategy is always possible since
any (n,m) s-box can be represented by a polynomial function x 7→

∑2n−1
i=0 aix

i over F2n where
the ai are constant coefficients in F2n . The ai can be obtained from the s-box look-up table by
applying Lagrange’s Interpolation Theorem. When m is strictly lower than n, the m-bit outputs
can be embedded into F2n by padding them to n-bit outputs (e.g. by setting most significant
bits to 0). The padding is then removed after the polynomial evaluation. We recall hereafter the
Lagrange Interpolation Theorem applied to our context.

Theorem 1 (Lagrange Interpolation). Let S be a function F2n → F2n. Then, for every
x ∈ F2n, we have:

S(x) =
∑
α∈F2n

S(α)`α(x) , (2)

where, for every α ∈ F2n, `α is defined as:

`α(x) =
∏
β∈F2n
β 6=α

x− β
α− β

. (3)

Remark 1. The `α are called the Lagrange basis polynomials and satisfy `α(x) = 1 if x = α and
`α(x) = 0 otherwise. In particular, every `α is a monic polynomial of degree 2n− 1, and we have
`α(x) = (x + α)2

n−1 + 1. Moreover, the coefficients of S(x) can be directly computed from the
Mattson-Solomon polynomial by:

ai =


S(0) if i = 0∑2n−2

k=0 S(αk)α−ki if 1 ≤ i ≤ 2n − 2

S(1) +
∑2n−2

i=0 ai if i = 2n − 1

for every primitive element α of F2n .

The polynomial representation of an s-box is based on four kinds of operations over F2n :
additions, scalar multiplications (i.e. multiplications by constants), squares, and regular multi-
plications (i.e. of two different variables). Except for the latter, all these operations are Fn2 -linear
(or Fn2 -affine), that is the corresponding function over Fn2 are linear (resp. affine). The processing
of any s-box can then be performed as a sequence of Fn2 -affine functions (themselves composed
of additions, squares and scalar multiplications over F2n) and of regular multiplications over
F2n , called nonlinear multiplications in the following. Masking an s-box processing can hence
be done by masking every affine function and every nonlinear multiplication independently. We
recall hereafter how this can be done for each category.

Masking of Fn2 -affine functions. Let x =
∑

i xi be a shared variable. Every affine function g with
additive part cg satisfies:

g(x) =

{∑d
i=0 g(xi) if d is even,

cg +
∑d

i=0 g(xi) if d is odd.

The masked processing of g then simply consists in evaluating g for every share xi, and possibly
correcting one of them by addition of cg. Such a processing clearly achieves dth-order security
as the shares are all processed independently.

Masking of nonlinear multiplications. Every nonlinear multiplication can be processed by using
the ISW scheme. Let a, b ∈ F2n and let (ai)0≤i≤d and (bi)0≤i≤d be dth-order encoding of a and
b. To securely compute a dth-order encoding (ci)0≤i≤d of c = ab, the ISW method over F2n

performs as follows:5

1. For every 0 ≤ i < j ≤ d, pick up a random value ri,j in F2n .
2. For every 0 ≤ i < j ≤ d, compute rj,i = (ri,j + aibj) + ajbi.
3. For every 0 ≤ i ≤ d, compute ci = aibi +

∑
j 6=i ri,j .

5 The use of brackets indicates the order in which the operations are performed, which is mandatory for the
security of the scheme.

It can be checked that the obtained shares are a sound encoding of c. Namely, we have:

d∑
i=0

ci =
(d∑
i=0

ai
)(d∑

i=0

bi
)

= ab = c.

In [15] it is shown that the above computation achieves (d/2)th-order security. A tighter security
proof is given in [29] which shows that dth-order security is actually achieved as long as the
masks of the two inputs are independent. Therefore, we shall refresh the masks before a masked
multiplication when necessary. This can be done using a refreshing procedure as proposed in [29]
(see Algorithm 2 in appendix).

Remark 2. Another method to process a masked multiplication at an arbitrary order is used
in [10] to achieve provable security under specific leakage assumptions. However this method
requires more operations and more random bits than the ISW scheme does. For this reason, the
ISW scheme should be preferred in a usual dth-order security model.

2.2 Masking Complexity

The scheme described in the previous section secures the computation of any (n,m) s-box S
by masking its polynomial representation over F2n . The evaluation of such a polynomial is
composed of Fn2 -affine functions g and of nonlinear multiplications. The masked processing of
each Fn2 -affine function g merely involves d+ 1 evaluations of g itself, while it involves (d+ 1)2

field multiplications, 2d(d + 1) field additions and the generation of nd(d + 1)/2 random bits
for each nonlinear multiplication. The masked processing of Fn2 -affine functions hence quickly
becomes negligible compared to the masked processing of nonlinear multiplications as d grows.
This observation motivates the following definition of the masking complexity for an s-box.

Definition 1 (Masking Complexity). Let m and n be two integers such that m ≤ n. The
masking complexity of a (n,m) s-box is the minimal number of nonlinear multiplications required
to evaluate its polynomial representation over F2n.

The following proposition directly results from this definition.

Proposition 1. The masking complexity of an s-box is invariant when composed with Fn2 -affine
bijections in input and/or in output.

Remark 3. Since field isomorphisms are F2-linear bijections, the choice of the irreducible poly-
nomial to represent field elements does not impact the masking complexity of an s-box.

In the next sections, we address the issue of finding polynomial evaluations of an s-box that
aim at minimizing the number of nonlinear multiplications. Those constructions will enable us
to deduce upper bounds on the masking complexity of an s-box. We first study the case of
power functions whose polynomial representation has a single monomial (e.g. the AES s-box).
For these functions, we exhibit the exact masking complexity by deriving addition chains with
minimal number of nonlinear multiplications. We then address the general case and provide
efficient heuristics to evaluate any s-box with a low number of nonlinear multiplications.

3 Optimal Masking of Power Functions

In this section, we consider s-boxes for which the polynomial representation over F2n is a single
monomial. These s-boxes are usually called power functions in the literature. We describe a
generic method to compute the masking complexity of such s-boxes. Our method involves the
notion of cyclotomic class.

Definition 2. Let α ∈ [0; 2n − 2]. The cyclotomic class of α is the set Cα defined by:

Cα = {α · 2i mod 2n − 1; i ∈ [0;n− 1]}.

We have the following proposition.

Proposition 2. Let µ(m) denote the multiplicative order of 2 modulo m and let ϕ denote the
Euler’s totient function. For every divisor δ of 2n− 1, the number of distinct cyclotomic classes
Cα ⊆ [0; 2n− 2] with gcd(α, 2n− 1) = δ is ϕ

(
2n−1
δ

)
/µ
(
2n−1
δ

)
. It follows that the total number of

distinct cyclotomic classes of [0; 2n − 2] equals:∑
δ|(2n−1)

ϕ(δ)

µ(δ)
.

Proof. Proposition 2 can be deduced from the following facts:

– An integer α ∈ [0; 2n−2] satisfies gcd(α, 2n−1) = δ if and only if α = δβ, with gcd(β, 2
n−1
δ) =

1. There are thus ϕ
(
2n−1
δ

)
integers α ∈ [0; 2n − 2] such that gcd(α, 2n − 1) = δ.

– For any α such that gcd(α, 2n − 1) = δ (hence of the form α = δβ with gcd(β, 2
n−1
δ) = 1),

we have α · 2i ≡ α · 2j mod 2n − 1 if and only if β · 2i ≡ β · 2j mod 2n−1
δ , that is, if and only

if 2i ≡ 2j mod 2n−1
δ . Hence Cα has cardinality #Cα = µ

(
2n−1
δ

)
.

The set of integers α ∈ [0; 2n − 2] such that gcd(α, 2n − 1) = δ is partitioned into cyclotomic
classes, each of them having cardinality µ

(
2n−1
δ

)
. Hence the number of such cyclotomic classes

is ϕ
(
2n−1
δ

)
/µ
(
2n−1
δ

)
. It follows that the total number of distinct cyclotomic classes of [0; 2n− 2]

equals
∑

δ|(2n−1) ϕ
(
2n−1
δ

)
/µ
(
2n−1
δ

)
=
∑

δ|(2n−1) ϕ(δ)/µ(δ).
�

The study of cyclotomic classes is interesting in our context since a power xα can be computed
from a power xβ without any nonlinear multiplication if and only if α and β lie in the same
cyclotomic class. Hence, all the power functions with exponents within a given cyclotomic class
have the same masking complexity and computing the masking complexity for all the power
functions over F2n thus amounts to compute this complexity for each cyclotomic class over F2n .
In what follows, we perform such a computation for fields F2n of small dimensions n.

To compute the masking complexity for an element in a cyclotomic class, we use the following
observation: determining the masking complexity of a power function x 7→ xα amounts to find
the addition chain for α with the least number of additions which are not doublings (see [17] for
an introduction to addition chains). This kind of addition chain is usually called a 2-addition
chain.6 Let (αi)i denote some addition chain. At step i, it is possible to obtain any element
within the cyclotomic classes (Cαj)j≤i using doublings only. As we are interested in finding the
addition chain with the least number of additions which are not doublings, the problem we need
to solve is the following: given some α ∈ Cα, find the shortest chain Cα0 → Cα1 → · · · → Cαk
where Cα0 = C1, Cαk = Cα and for every i ∈ [1; k], there exists j, ` < i such that αi = α′j + α′`
where α′j ∈ Cαj and α′` ∈ Cα` .

We shall denote byMn
k the class of exponents α such that x 7→ xα has a masking complexity

equal to k. The family of classes (Mn
k)k is a partition of [0; 2n− 2] and eachMn

k is the union of
one or several cyclotomic classes. For a small dimension n, we can proceed by exhaustive search

6 This problem has been studied in the general setting where the multiplication by q (and not specifically by
2) is considered free and the obtained addition chains are called q-addition chains [33]. The purpose is to find
efficient exponentiation methods in Fq (as in such field the Frobenius map x 7→ xq is efficient). To the best
of our knowledge, apart from a specific application to the SFLASH signature algorithm in [1], the case of
2-addition chains has not been particularly investigated.

to determine the shortest 2-addition chain(s) for each cyclotomic class. We implemented such
an exhaustive search from which we obtained the masking complexity classes Mn

k for n ≤ 11
(note that in practice most s-boxes have dimension n ≤ 8). Table 1 summarizes the obtained
results for n ∈ {4, 6, 8} (usual dimensions). Results for other dimensions are summarized in
Appendix A. Additionally, Table 2 gives the optimal 2-addition chains (in exponential notation)
corresponding to every cyclotomic class for n = 8.

Table 1. Cyclotomic classes for n ∈ {4, 6, 8} w.r.t. the masking complexity k.

k Cyclotomic classes in Mn
k

n = 4

0 C0 = {0}, C1 = {1, 2, 4, 8}
1 C3 = {3, 6, 12, 9}, C5 = {5, 10}
2 C7 = {7, 14, 13, 11}

n = 6

0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32}
1 C3 = {3, 6, 12, 24, 48, 33}, C5 = {5, 10, 20, 40, 17, 34}, C9 = {9, 18, 36}
2 C7 = {7, 14, 28, 56, 49, 35}, C11 = {11, 22, 44, 25, 50, 37},

C13 = {13, 26, 52, 41, 19, 38}, C15 = {15, 30, 29, 27, 23},
C21 = {21, 42}, C27 = {27, 54, 45}

3 C23 = {23, 46, 29, 58, 53, 43}, C31 = {31, 62, 61, 59, 55, 47}
n = 8

0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32, 64, 128}
1 C3 = {3, 6, 12, 24, 48, 96, 192, 129}, C5 = {5, 10, 20, 40, 80, 160, 65, 130},

C9 = {9, 18, 36, 72, 144, 33, 66, 132}, C17 = {17, 34, 68, 136}
2 C7 = {7, 14, 28, 56, 112, 224, 193, 131}, C11 = {11, 22, 44, 88, 176, 97, 194, 133},

C13 = {13, 26, 52, 104, 208, 161, 67, 134}, C15 = {15, 30, 60, 120, 240, 225, 195, 135},
C19 = {19, 38, 76, 152, 49, 98, 196, 137}, C21 = {21, 42, 84, 168, 81, 162, 69, 138},

C25 = {25, 50, 100, 200, 145, 35, 70, 140}, C27 = {27, 54, 108, 216, 177, 99, 198, 141},
C37 = {37, 74, 148, 41, 82, 164, 73, 146}, C45 = {45, 90, 180, 105, 210, 165, 75, 150},

C51 = {51, 102, 204, 153}, C85 = {85, 170}
3 C23 = {23, 46, 92, 184, 113, 226, 197, 139}, C29 = {29, 58, 116, 232, 209, 163, 71, 142},

C31 = {31, 62, 124, 248, 241, 227, 199, 143}, C39 = {39, 78, 156, 57, 114, 228, 201, 147},
C43 = {43, 86, 172, 89, 178, 101, 202, 149}, C47 = {47, 94, 188, 121, 242, 229, 203, 151},
C53 = {53, 106, 212, 169, 83, 166, 77, 154}, C55 = {55, 110, 220, 185, 115, 230, 205, 155},
C59 = {59, 118, 236, 217, 179, 103, 206, 157}, C61 = {61, 122, 244, 233, 211, 167, 79, 158},
C63 = {63, 126, 252, 249, 243, 231, 207, 159}, C87 = {87, 174, 93, 186, 117, 234, 213, 171},
C91 = {91, 182, 109, 218, 181, 107, 214, 173}, C95 = {95, 190, 125, 250, 245, 235, 215, 175},

C111 = {111, 222, 189, 123, 246, 237, 219, 183}, C119 = {119, 238, 221, 187}
4 C127 = {127, 254, 253, 251, 247, 239, 223, 191}

It is interesting to note that for every n, the inverse function x 7→ x2
n−2 related to the

cyclotomic class C2n−1−1 always has the highest masking complexity. In particular, the inverse
function x 7→ x254 (for n = 8) used in the AES has a masking complexity of 4 as it was
conjectured in [29].

4 Efficient Heuristics for General S-Boxes

We now address the general case of an s-box having a polynomial representation
∑2n−1

j=0 ajx
j over

F2n . A straightforward solution is to successively compute every power xj using xj = (xj/2)2

if j is even and xj = xj−1x if j is odd, while updating the polynomial value by adding the
monomial ajx

j at every step. Such a method requires 2n−1 − 1 nonlinear multiplications. As

Table 2. Optimal 2-addition chains (in exponential notation) for cyclotomic classes for n = 8.

k 2-addition chains with k nonlinear multiplications

1 x3 ← x× x2 – x5 ← x× x4

x9 ← x× x8 – x17 ← x× x16

x7 ← x× x2 × x4 – x11 ← x× x2 × x8

x13 ← x× x4 × x8 – x15 ← x3 × (x3)4

2 x19 ← x× x2 × x16 – x21 ← x× x4 × x16

x27 ← x3 × (x3)8 – x37 ← x× x4 × x32

x45 ← x5 × (x5)8 – x51 ← x3 × (x3)16

x85 ← x5 × (x5)16

x23 ← x× x2 × x4 × x16 – x29 ← x× x4 × x8 × x16

x31 ← x3 × (x3)4 × x16 – x29 ← x× x2 × x4 × x32

x43 ← x× x2 × x8 × x32 – x47 ← x3 × (x3)4 × x32

3 x53 ← x× x2 × x16 × x32 – x55 ← x3 × x4 × (x3)16

x59 ← x3 × (x3)8 × x32 – x59 ← x5 × x16 × (x5)8

x63 ← x7 × (x7)8 – x87 ← x2 × x5 × (x5)16

x91 ← x3 × (x3)8 × x64 – x95 ← x5 × (x5)2 × (x5)16

x111 ← x3 × (x3)4 × (x3)32 – x63 ← x7 × (x7)16

4 x127 ← x3 × (x3)4 × (x3)16 × x64

we show hereafter, less naive methods exist that substantially lower the number of nonlinear
multiplications. We propose two different methods and then compare their efficiency.

4.1 Cyclotomic Method

Let q denote the number of distinct cyclotomic classes of [0; 2n − 2]. The polynomial represen-
tation of S can be written as:

S(x) = a0 +
(q∑
i=1

Qi(x)
)

+ a2n−1 x
2n−1 ,

where the Qi are polynomials such that every Qi has powers from a single cyclotomic class
Cαi , namely we can write Qi(x) =

∑
j ai,jx

αi2
j

for some coefficients ai,j in F2n . Let us then

denote Li the linearized polynomial Li(x) =
∑

j ai,jx
2j which is a Fn2 -linear function of x.

We have Qi(x) = Li(x
αi) by definition. The cyclotomic method simply consists in deriving

the powers xαi for each cyclotomic class Cαi as well as x2
n−1 if a2n−1 6= 0, and in evaluating

S(x) = a0 +
(∑q

i=1 Li(x
αi)
)

+ a2n−1 x
2n−1. The powers xαi can each be derived with a single

nonlinear multiplication. This is obvious for the αi lying inMn
1 . Then it is clear that every power

xαi with αi ∈Mn
k+1 can be derived with a single multiplication from the powers (xαi)αi∈Mn

k
. The

power x2
n−1 can then be derived with a single nonlinear multiplication from the power x2

n−2.
The cyclotomic method hence involves a number of nonlinear multiplications equal to the number
of cyclotomic classes, minus 2 (as x0 and x1 are obtained without nonlinear multiplication), plus
1 (to derive x2

n−1). By Proposition 2, we then have the following result.

Proposition 3 (Cyclotomic Method). Let m and n be two positive integers such that m ≤ n.
The masking complexity of every (n,m) s-box is upper-bounded by:∑

δ|(2n−1)

ϕ(δ)

µ(δ)
− 1 .

An (n,m) s-box S is said to be balanced if for every y ∈ {0, 1}m, the number of preimages of
y for S is constant to 2n−m. The following lemma gives a well-known folklore result.

Lemma 1. Let m and n be two positive integers such that m ≤ n. The polynomial representation
of every balanced (n,m) s-box has degree strictly lower than 2n − 1.

Proof. Since Lagrange basis polynomials are all monic of degree 2n − 1, the coefficient a of the
power to the 2n − 1 in the polynomial representation of S satisfies a =

∑
α∈F2n

S(α), which
equals 0 if S is balanced. �

When the polynomial representation of the s-box has degree strictly lower than 2n − 1, the
cyclotomic method saves one nonlinear multiplication since the power x2

n−1 is not required.
Namely, we have the following corollary of Proposition 3.

Corollary 1 (Cyclotomic Method). Let m and n be two positive integers such that m ≤ n
and let S be a (n,m) s-box. If S is balanced, then the masking complexity of S is upper-bounded
by: ∑

δ|(2n−1)

ϕ(δ)

µ(δ)
− 2 .

4.2 Parity-Split Method

The parity-split method is composed of two stages. The first stage derives a set of powers (xj)j≤q
for some q using the straightforward method described in the introduction of this section. The
second stage essentially consists in an application of the Knuth-Eve polynomial evaluation al-
gorithm [9,18] which is based on a recursive use of the following lemma.

Lemma 2. Let n and t be two positive integers and let Q be a polynomial of degree t over F2n [x].
There exist two polynomials Q1 and Q2 of degree upper-bounded by bt/2c over F2n [x] such that:

Q(x) = Q1(x
2) +Q2(x

2)x . (4)

By applying Lemma 2 to the polynomial representation of S, we get S(x) = Q1(x
2)+Q2(x

2)x,
where Q1 and Q2 are two polynomials of degrees upper-bounded by 2n−1 − 1. We deduce that
S can be computed based on the set of powers (x2j)j≤2n−1−1 plus a single multiplication by x.
Then, applying Lemma 2 again to the polynomials Q1 and Q2 both of degrees upper bounded
by 2n−1− 1, we get two new pairs of polynomials (Q11, Q12) and (Q21, Q22) such that Q1(x

2) =
Q11(x

4) + Q12(x
4)x2 and Q2(x

2) = Q21(x
4) + Q22(x

4)x2. The degrees of the new polynomials
are upper bounded by 2n−2 − 1. We then deduce that S can be computed based on the set
of powers (x4j)j≤2n−2−1 plus 1 multiplication by x and 2 multiplications by x2. Eventually, by

applying Lemma 2 recursively r times, we get an evaluation of S involving evaluations in x2
r

of polynomials of degrees upper-bounded by 2n−r − 1, plus
∑r−1

i=0 2i = 2r − 1 multiplications

by powers of x of the form x2
i

with i ≤ r − 1. The overall evaluation of S hence requires
2r − 1 nonlinear multiplications (the x2

i
being obtained with squares only) plus the evaluation

in x2
r

of polynomials of degrees upper-bounded by 2n−r − 1. The latter evaluation can be
performed by first deriving all the powers (x2

rj)j≤2n−r−1 and then evaluating the polynomials
(which only involves scalar multiplications and additions once the powers have been derived).
For every j ≤ 2n−r − 1, the powers (x2

rj)j≤2n−r−1 can be computed successively from y = x2
r

by yj = (yj/2)2 if j is even and yj = yj−1x if j is odd. This takes some squares plus 2n−r−1 − 1
nonlinear multiplications (i.e. one per odd integer in [3, 2n−r − 1]).

We then deduce the following proposition.

Proposition 4. Let m and n be two positive integers such that m ≤ n. The masking complexity
of every (n,m) s-box is upper-bounded by:

min
0≤r≤n

(2n−r−1 + 2r)− 2 =

{
3 · 2(n/2)−1 − 2 if n is even,

2(n+1)/2 − 2 if n is odd.
(5)

Note that the value of r for which the minimum is reached in (5) is r = bn2 c.

4.3 Comparison

Table 3 summarizes the number of nonlinear multiplications obtained by the cyclotomic method
(for balanced s-boxes) and by the parity-split method. We see that the cyclotomic method works
better for small dimensions (n ≤ 5) and the parity-split method for higher dimensions (n ≥ 6).
Furthermore, the superiority of the parity-split method becomes significant as n grows.

Table 3. Number of nonlinear multiplications w.r.t. the evaluation method.

Method \ n 3 4 5 6 7 8 9 10 11

Cyclotomic 1 3 5 11 17 33 53 105 192

Parity-Split 2 4 6 10 14 22 30 46 62

We emphasize that these bounds may not be optimal, namely they may be higher than the
maximum masking complexity of (n,m) s-boxes. We let open the issue of finding more efficient
(or provably optimal) methods in the general case for further research.

5 Application to DES and PRESENT

In this section we apply the proposed methods to the s-boxes of two different block ciphers:
the well-known and still widely used Data Encryption Standard (DES) [11], and the lightweight
block cipher PRESENT [5]. The former uses eight different (6, 4) s-boxes and the latter uses a
single (4, 4) s-box. According to Table 3, we shall prefer the parity-split method for the DES
s-boxes (10 nonlinear multiplications), and the cyclotomic method for the PRESENT s-box (3
nonlinear multiplications).

5.1 Parity-Split Method on DES S-boxes

The parity-split method on a DES s-box uses a polynomial representation of the s-box over F64

which satisfies:

S : x 7−→ Q0(x
8) +Q1(x

8) · x4 +
(
Q2(x

8) +Q3(x
8) · x4

)
· x2

+
(
Q4(x

8) +Q5(x
8) · x4 +

(
Q6(x

8) +Q7(x
8) · x4

)
· x2
)
· x (6)

where the Qi are degree-7 polynomials, namely, there exist coefficients ai,j for 0 ≤ i, j ≤ 7 such
that:

Qi(x
8) = ai,0 + ai,1x

8 + ai,2x
16 + ai,3x

24 + ai,4x
32 + ai,5x

40 + ai,6x
48 + ai,7x

56 .

We first derive the powers x8j for j = 1, 2, . . . , 7, which is done at the cost of 3 nonlinear
multiplications by:

x8 ← ((x2)2)2; x16 ← (x8)2; x24 ← x8 · x16; x32 ← (x16)2;

x40 ← x8 · x32; x48 ← (x24)2; x56 ← x8 · x48;

Then we evaluate each polynomial Qi(x
8) as a linear combination of the above powers. Finally,

we evaluate (6) at the cost of 7 nonlinear multiplications and a few additions. The nonlinear
multiplications are computed using the ISW scheme over F64 such as recalled in Section 2.1. A
detailed algorithm for the overall masked s-box evaluation is given in Appendix B. Moreover
the log/alog tables for the multiplication over F64 and for the ai,j coefficients for the first DES
s-box are given in Appendix C.

5.2 Cyclotomic Method on PRESENT S-box

The cyclotomic method on the PRESENT s-box starts from the straightforward polynomial
representation of the s-box over F16:

S : x 7−→ a0 + a1x+ a2x
2 + · · ·+ a14x

14 ,

(where the degree is indeed strictly lower than 15 by Lemma 1). We then have:

S(x) = a0 + L1(x) + L3(x
3) + L5(x

5) + L7(x
7) . (7)

where:

L1 : x 7→ a1x+ a2x
2 + a4x

4 + a8x
8

L3 : x 7→ a3x+ a6x
2 + a12x

4 + a9x
8

L5 : x 7→ a5x+ a10x
2

L7 : x 7→ a7x+ a14x
2 + a13x

4 + a11x
8

and the Li are F4
2-linear.

We first derive the powers x3, x5, and x7, which is done at the cost of 3 nonlinear multipli-
cations by: x3 ← x ·x2; x5 ← x3 ·x2; x7 ← x5 ·x2. Then we evaluate (7) which costs a few linear
transformations and additions. A detailed algorithm for the overall masked s-box evaluation is
given in Appendix B. Moreover the look-up tables for the multiplication over F16 and for the Li
transformations are given in Appendix C.

5.3 Implementation Results

In this section, we give implementation results for our scheme applied to DES and PRESENT
s-boxes. For comparison, we also give performances of some higher-order masking schemes for
the AES s-box, as well as performances of existing schemes for DES and PRESENT s-boxes at
orders 1 and 2. For the AES s-box processing, we implemented Rivain and Prouff’s method [29]
and its improvement by Kim et al. [16]. We did not implement Genelle et al. ’s scheme [13] since
it addresses the masking of an overall AES and is not interesting while focusing on a single s-box
processing. Regarding existing schemes for DES and PRESENT s-boxes, we implemented the
generic methods proposed in [27] (for d = 1) and in [28] (for d = 2). We also implemented the
improvement of these schemes described in [28, §3.3] that consists in treating two 4-bit outputs
at the same time.7 Note that we did not implement the table re-computation method (for d = 1)
since it only makes sense for an overall cipher and not for a single s-box processing.

Table 4 lists the timing/memory performances of the different implementations. We wrote the
codes in assembly language for an 8051 based 8-bit architecture with bit-addressable memory.
ROM consumptions (i.e. code sizes) are not listed since they are not prohibitive.

7 This improvement is only described in [28] for d = 2 but it can be applied likewise to the 1st-order scheme
of [27].

Table 4. Comparison of secure s-box implementations

Method Reference cycles RAM (bytes)

First Order Masking

1. AES s-box [29] 533 10
2. AES s-box [16] 320 14
3. DES s-box Simple version [27] 1096 2
4. DES s-box Improved version [27] & [28] 439 14
5. DES s-box this paper 4100 50
6. PRESENT s-box Simple Version [27] 281 2
7. PRESENT s-box Improved Version [27] & [28] 231 14
4. PRESENT s-box this paper 220 18

Second Order Masking

1. AES s-box [29] 832 18
2. AES s-box [16] 594 24
3. DES s-box Simple version [28] 1045 69
4. DES s-box Improved version [28] 652 39
5. DES s-box this paper 7000 78
6. PRESENT s-box Simple Version [28] 277 21
7. PRESENT s-box Improved Version [28] 284 15
8. PRESENT s-box this paper 400 31

Third Order Masking

1. AES s-box [29] 1905 28
2. AES s-box [16] 965 38
3. DES s-box this paper 10500 108
4. PRESENT s-box this paper 630 44

As expected, the cyclotomic method is very efficient when applied to protect the PRESENT
s-box. The small input dimension of the s-box indeed implies a low masking complexity (equal to
3). Moreover, it enables to tabulate the multiplication over F16. At first order, it is even slightly
better than the method in [27] (or its improvement). At second order, the cost of the secure
multiplications involved in the cyclotomic method is approximatively doubled, which explains
that the overall cost is multiplied by 1.8. This makes it less efficient than [27] and [28], which are
less impacted by the increase of the masking order from 1 to 2. At third order, our method is
the only one. The number of cycles staying small (630), Table 4 shows that achieving resistance
against 3rd-order side-channel analysis is realistic for an implementation of PRESENT on a
8051 architecture. For DES s-boxes, the parity-split method is less efficient than the state-of-the
art methods for d = 1, 2. This is an expected consequence of the high number of nonlinear
multiplications (here 10) achieved with the parity-split method in dimension 6 and of the fact
that the field multiplications can no longer be tabulated (and must therefore be computed thanks
to log/alog look-up tables). At third order, the timing efficiency of the method becomes very
low. The masked s-box processing is 5 (resp. 10) times slower than the efficiency of the AES
s-box protected thanks to [16] (resp. [29]), though its input dimension is smaller.

The ranking of the timing efficiencies for AES, DES and PRESENT s-boxes is correlated
to the number of nonlinear multiplications in the used scheme (3, 4-5, and 10, for PRESENT,
AES and DES respectively) which underline the soundness of the masking complexity criterion.
Therefore, while selecting an s-box for a block cipher design, one should favor an s-box with
small masking complexity if side-channel attacks are taken into account.

6 Discussion

In previous sections we have introduced the first schemes that can be used to mask any s-
box at any order with fair performances in software. In particular, these schemes enable to
apply higher-order masking on random s-boxes (e.g. the DES s-boxes) which have no specific
mathematical structure. Prior to our work, the only existing methods were the circuit-oriented
proposals of Ishai et al. [15] and of Faust et al. [10]. The main purpose of these works was a
proof of concept for applying higher-order masking to circuits with formal security proofs, but
they did not address efficient implementation. A direct application of [15] or [10] to a block
cipher consists in taking its Boolean representation and in replacing every XOR and AND with
O(d) and O(d2) logical operations respectively (where d is the masking order). Applying such a
strategy in software leads to inefficient implementation as the Boolean representation of an s-box
includes a huge number of nonlinear gates (with a O(d2) factor to be protected). Compared to
these techniques, our schemes achieve significant improvements. These are obtained by starting
from the field representation of the s-box and applying methods to significantly reduce the
number of nonlinear multiplications compared to the Boolean representation of the s-box. For
instance, we have shown that a DES s-box can be computed with 10 nonlinear multiplications
whereas its Boolean representation involves several dozens of logical AND operations.

We believe that our work opens up new avenues for research in block cipher implementa-
tions and side-channel security. In particular, the issue of designing s-boxes with low masking
complexity and good cryptographic criteria is still to be investigated. On the other hand, our
work could be extended to take into account more general definitions of the masking complexity.
Indeed Definition 1 is software oriented and hence does not encompass the hardware case. As
discussed above, the complexity of masking in hardware merely depends on the number of non-
linear gates [10, 15], that is on the number of nonlinear multiplications in the (n-variate) s-box
representation over F2, the so-called algebraic normal form. One may also want to minimize the
number of nonlinear multiplications in the (`-variate) s-box representation over F2k for some k
(and ` = dn/ke). This approach has actually already been followed in [16], where Kim et al.
speeds up the scheme in [29] by using the fact that the AES s-box can be processed with 5
nonlinear multiplications over F16 rather than 4 nonlinear multiplications over F256. Although
requiring an additional nonlinear multiplication, the resulting implementation is faster since
multiplications over F16 can be tabulated while multiplications over F256 are computed based
on the slower log/alog approach. These observations motivate the following — more general —
definition of the masking complexity.

Definition 3 (Masking Complexity). Let m, n and k be three integers such that m, k ≤
n. The masking complexity of a (n,m) s-box over F2k is the minimal number of nonlinear
multiplications required to evaluate its polynomial representation over F2k .

Here again, the masking complexity is independent of the representation of F2k since one
can go from one representation to another without any nonlinear multiplication. The issue of
finding efficient methods with respect to the masking complexity over a smaller field F2k is left
open for further researches.

7 Conclusion

In this paper we have introduced new generic higher-order masking schemes for s-boxes with effi-
cient software implementation. Specifically, we have extended the Rivain and Prouff’s approach
for the AES s-box to any s-box. The method consists in masking the polynomial representation
of the s-box over F2n where n is the input dimension. As argued, the complexity of this method

mainly depends on the number of nonlinear multiplications involved in the polynomial repre-
sentation (i.e. multiplications which are not squares nor scalar multiplications). We have then
introduced the masking complexity parameter for an s-box as the minimal number of nonlinear
multiplications required for its evaluation. We have provided the exact values of this parameter
for the set of power functions and upper bounds for all s-boxes. Namely, we have presented
optimal methods to mask power functions and efficient heuristics for the general case. Even-
tually we have applied our schemes to the DES s-boxes and to the PRESENT s-box and we
have provided implementation results. Our work stresses interesting open issues for further re-
search. Among them the design of s-boxes taking into account the masking complexity criterion
and the extension of our approach to masking over F2k with k < n (e.g. for efficient hardware
implementations) are of particular interest.

References

1. M.-L. Akkar, N. Courtois, R. Duteuil, and L. Goubin. A Fast and Secure Implementation of Sflash. In
Y. Desmedt, editor, Public Key Cryptography – PKC 2003, volume 2567 of Lecture Notes in Computer
Science, pages 267–278. Springer, 2003.

2. M.-L. Akkar and C. Giraud. An Implementation of DES and AES, Secure against Some Attacks. In Ç. Koç,
D. Naccache, and C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2001, volume
2162 of Lecture Notes in Computer Science, pages 309–318. Springer, 2001.

3. G. Blakley. Safeguarding cryptographic keys. In National Comp. Conf., volume 48, pages 313–317, New York,
June 1979. AFIPS Press.

4. J. Blömer, J. G. Merchan, and V. Krummel. Provably Secure Masking of AES. In M. Matsui and R. Zuccher-
ato, editors, Selected Areas in Cryptography – SAC 2004, volume 3357 of Lecture Notes in Computer Science,
pages 69–83. Springer, 2004.

5. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, Y. Seurin, and
C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In P. Paillier and I. Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems – CHES 2007, volume 4727 of Lecture Notes in Computer
Science, pages 450–466. Springer, 2007.

6. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage Model. In M. Joye and J.-J.
Quisquater, editors, Cryptographic Hardware and Embedded Systems – CHES 2004, volume 3156 of Lecture
Notes in Computer Science, pages 16–29. Springer, 2004.

7. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards Sound Approaches to Counteract Power-Analysis Attacks.
In M. Wiener, editor, Advances in Cryptology – CRYPTO ’99, volume 1666 of Lecture Notes in Computer
Science, pages 398–412. Springer, 1999.

8. J.-S. Coron, E. Prouff, and M. Rivain. Side Channel Cryptanalysis of a Higher Order Masking Scheme.
In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and Embedded Systems – CHES 2007,
volume 4727 of Lecture Notes in Computer Science, pages 28–44. Springer, 2007.

9. J. Eve. The evaluation of polynomials. Comm. ACM, 6(1):17–21, 1964.
10. S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting Circuits from Leakage: the

Computationally-Bounded and Noisy Cases. In H. Gilbert, editor, Advances in Cryptology – EUROCRYPT
2010, volume 6110 of Lecture Notes in Computer Science, pages 135–156. Springer, 2010.

11. FIPS PUB 46. The Data Encryption Standard. National Bureau of Standards, Jan. 1977.
12. K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic Analysis: Concrete Results. In Ç. Koç, D. Naccache,

and C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2001, volume 2162 of Lecture
Notes in Computer Science, pages 251–261. Springer, 2001.

13. L. Genelle, E. Prouff, and M. Quisquater. Thwarting Higher-Order Side Channel Analysis with Additive
and Multiplicative Maskings. In B. Preneel and T. Takagi, editors, Cryptographic Hardware and Embedded
Systems, 13th International Workshop – CHES 2011, volume 6917 of Lecture Notes in Computer Science,
pages 240–255. Springer, 2011.

14. L. Goubin and J. Patarin. DES and Differential Power Analysis – The Duplication Method. In Ç. Koç and
C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES ’99, volume 1717 of Lecture Notes
in Computer Science, pages 158–172. Springer, 1999.

15. Y. Ishai, A. Sahai, and D. Wagner. Private Circuits: Securing Hardware against Probing Attacks. In D. Boneh,
editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages
463–481. Springer, 2003.

16. H. Kim, S. Hong, and J. Lim. A Fast and Provably Secure Higher-Order Masking of AES S-Box. In B. Preneel
and T. Takagi, editors, Cryptographic Hardware and Embedded Systems, 13th International Workshop – CHES
2011, volume 6917 of Lecture Notes in Computer Science, pages 95–107. Springer, 2011.

17. D. Knuth. The Art of Computer Programming, volume 2. Addison Wesley, third edition, 1988.
18. D. E. Knuth. Evaluation of polynomials by computers. Comm. ACM, 5(12):595–599, 1962.
19. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In

N. Koblitz, editor, Advances in Cryptology – CRYPTO ’96, volume 1109 of Lecture Notes in Computer
Science, pages 104–113. Springer, 1996.

20. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor, Advances in Cryptology
– CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

21. S. Mangard, T. Popp, and B. M. Gammel. Side-Channel Leakage of Masked CMOS Gates. In A. Menezes,
editor, Topics in Cryptology – CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages
351–365. Springer, 2005.

22. S. Mangard, N. Pramstaller, and E. Oswald. Successfully Attacking Masked AES Hardware Implementations.
In J. Rao and B. Sunar, editors, Cryptographic Hardware and Embedded Systems – CHES 2005, volume 3659
of Lecture Notes in Computer Science, pages 157–171. Springer, 2005.

23. T. Messerges. Securing the AES Finalists against Power Analysis Attacks. In B. Schneier, editor, Fast Software
Encryption – FSE 2000, volume 1978 of Lecture Notes in Computer Science, pages 150–164. Springer, 2000.

24. T. Messerges. Using Second-order Power Analysis to Attack DPA Resistant Software. In Ç. Koç and C. Paar,
editors, Cryptographic Hardware and Embedded Systems – CHES 2000, volume 1965 of Lecture Notes in
Computer Science, pages 238–251. Springer, 2000.

25. S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementation of Non-linear Functions in the
Presence of Glitches. In P. J. Lee and J. H. Cheon, editors, Information Security and Cryptology – ICISC
2008, volume 5461 of Lecture Notes in Computer Science, pages 218–234. Springer, 2008.

26. T. Popp, M. Kirschbaum, T. Zefferer, and S. Mangard. Evaluation of the Masked Logic Style MDPL on a
Prototype Chip. In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and Embedded Systems
– CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages 81–94. Springer, 2007.

27. E. Prouff and M. Rivain. A Generic Method for Secure SBox Implementation. In S. Kim, M. Yung, and H.-
W. Lee, editors, Information Security Applications – WISA 2007, volume 4867 of Lecture Notes in Computer
Science, pages 227–244. Springer, 2008.

28. M. Rivain, E. Dottax, and E. Prouff. Block Ciphers Implementations Provably Secure Against Second Order
Side Channel Analysis. In T. Baignères and S. Vaudenay, editors, Fast Software Encryption – FSE 2008,
Lecture Notes in Computer Science, pages 127–143. Springer, 2008.

29. M. Rivain and E. Prouff. Provably Secure Higher-Order Masking of AES. In S. Mangard and F.-X. Standaert,
editors, Cryptographic Hardware and Embedded Systems – CHES 2010, volume 6225 of Lecture Notes in
Computer Science, pages 413–427. Springer, 2010.

30. A. Satoh, S. Morioka, K. Takano, and S. Munetoh. A Compact Rijndael Hardware Architecture with S-Box
Optimization. In E. Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes
in Computer Science, pages 239–254. Springer, 2001.

31. K. Schramm and C. Paar. Higher Order Masking of the AES. In D. Pointcheval, editor, Topics in Cryptology
– CT-RSA 2006, volume 3860 of Lecture Notes in Computer Science, pages 208–225. Springer, 2006.

32. A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, Nov. 1979.
33. J. von zur Gathen. Efficient and Optimal Exponentiation in Finite Fields. Computational Complexity, 1:360–

394, 1991.

A Masking Complexity of Power Functions

Table 5 summarizes the masking complexity classes (Mn
k)k for dimensions n in the set {3, 5, 7, 9, 10, 11}.

Table 5. Cyclotomic classes for n ∈ {3, 5, 7, 9, 10, 11} w.r.t. the masking complexity k.

k Cyclotomic classes in Mn
k

n = 3

0 C0 = {0}, C1 = {1, 2, 4}
1 C3 = {3, 6, 5}

n = 5

0 C0 = {0}, C1 = {1, 2, 4, 8, 16}
1 C3 = {3, 6, 12, 24, 17}, C5 = {5, 10, 20, 9, 18}
2 C7 = {7, 14, 28, 25, 19}, C11 = {11, 22, 13, 26, 21}, C15 = {15, 30, 29, 27, 23}

n = 7

0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32, 64}
1 C3 = {3, 6, 12, 24, 48, 96, 65}, C5 = {5, 10, 20, 40, 80, 33, 66},

C9 = {9, 18, 36, 72, 17, 34, 68}
2 C7 = {7, 14, 28, 56, 112, 97, 67}, C11 = {11, 22, 44, 88, 49, 98, 69},

C13 = {13, 26, 52, 104, 81, 35, 70}, C15 = {15, 30, 60, 120, 113, 99, 71},
C19 = {19, 38, 76, 25, 50, 100, 73}, C21 = {21, 42, 84, 41, 82, 37, 74},
C27 = {27, 54, 108, 89, 51, 102, 77}, C43 = {43, 86, 45, 90, 53, 106, 85}

3 C23 = {23, 46, 92, 57, 114, 101, 75}, C29 = {29, 58, 116, 105, 83, 39, 78},
C31 = {31, 62, 124, 121, 115, 103, 79}, C47 = {47, 94, 61, 122, 117, 107, 87},
C55 = {55, 110, 93, 59, 118, 109, 91}, C63 = {63, 126, 125, 123, 119, 111, 95}

n = 9

0 C0, C1

1 C3, C5, C9, C17

2 C7, C11, C13, C15, C19, C21, C25, C27, C35, C37, C41, C45, C51, C73, C75, C83, C85

3 C23, C29, C31, C39, C43, C47, C53, C55, C57, C59, C61,
C63, C75, C77, C79, C87, C91, C93, C95, C103, C107, C109,

C111, C117, C119, C123, C125, C127, C171, C175, C183, C187, C219

4 C191, C223, C239

n = 10

0 C0, C1

1 C3, C5, C9, C17, C33

2 C7, C11, C13, C15, C19, C21, C25, C27, C35, C37,
C41, C45, C49, C51, C69, C73, C85, C99, C147, C165

3 C23, C29, C31, C39, C43, C47, C53, C55, C57, C59, C61, C63, C71, C75, C77,
C79, C83, C87, C89, C91, C93, C95, C101, C103, C105, C107, C109, C111, C115,

C117, C119, C121, C123, C125, C149, C151, C155, C157, C167, C171, C173, C175, C179,
C181, C183, C187, C189, C205, C207, C213, C215, C219, C221, C231, C235, C237, C245,

C255, C341, C347, C363, C447, C495

4 C127, C159, C191, C223, C239, C247, C251, C253, C343,
C351, C367, C375, C379, C383, C439, C479, C511

n = 11

0 C0, C1

1 C3, C5, C9, C17, C33

2 C7, C11, C13, C15, C19, C21, C25, C27, C35, C37, C41, C45, C49, C51,
C67, C69, C73, C81, C85, C99, C137, C153, C163, C165, C293

3 C23, C29, C31, C39, C43, C47, C53, C55, C57, C59, C61, C63, C71, C75, C77,
C79, C83, C87, C89, C91, C93, C95, C101, C103, C105, C107, C109, C111, C113,
C115, C117, C119, C121, C123, C125, C139, C141, C143, C147, C149, C151, C155,
C157, C167, C169, C171, C173, C175, C179, C181, C185, C187, C189, C199, C201,

C203, C205, C207, C211, C213, C217, C219, C221, C229, C231, C243, C245,
C255, C295, C299, C301, C307, C309, C311,C315, C317, C331, C333, C335,
C343, C347, C359, C363, C365, C379, C411, C423, C427, C429, C339, C341,

C437, C439, C469, C495, C683, C703, C879, C887

4 C127, C159, C183, C191, C215, C223, C233, C235, C237, C239, C247, C249, C251,
C253, C303, C319, C349, C351, C367, C371, C373, C375, C381, C383,

C413, C415, C431, C443, C445, C447, C463, C471, C475, C477, C479, C491,
C493, C501, C503, C507, C509, C511, C687, C695, C699, C727, C731, C735, C751,

C759, C763, C767, C895, C959, C991, C1023

B Detailed Algorithms

We detail hereafter the algorithms to perform a masked DES/PRESENT s-box computation.
As in [29], both algorithms use the ISW-based masked field multiplication (SecMult) and the
mask refreshing procedure (RefreshMasks). We recall these procedures before giving the masked
s-box algorithms.

Algorithm 1 SecMult - dth-order secure multiplication over F2n

Input: shares ai satisfying
∑
i ai = a, shares bi satisfying

∑
i bi = b

Output: shares ci satisfying
∑
i ci = ab

for i = 0 to d
| for j = i + 1 to d
| | ri,j ←$ {0, 1}n
| | rj,i ← (ri,j + aibj) + ajbi
| endfor

endfor
for i = 0 to d
| ci ← aibi
| for j = 0 to d, j 6= i do ci ← ci + ri,j

endfor
return (c0, . . . , cd)

Algorithm 2 RefreshMasks
Input: shares xi satisfying

∑
i xi = x

Output: shares xi satisfying
∑
i xi = x

for i = 1 to d
| tmp←$ {0, 1}n
| x0 ← x0 + tmp
| xi ← xi + tmp

endfor

Algorithm 3 Secure higher-order PRESENT s-box evaluation

Input: a dth-order encoding (x0, . . . , xd) of x ∈ {0, 1}4, look-up tables for the Li
Output: a dth-order encoding (t0, . . . , td) of S(x)

1. for i = 0 to d do y2,i ← x2
i

2. RefreshMasks(y2,0, . . . , y2,d)
3. (y3,0, . . . , y3,d)← SecMult

(
(x0, . . . , xd), (y2,0, . . . , y2,d)

)
4. (y5,0, . . . , y5,d)← SecMult

(
(y2,0, . . . , y2,d), (y3,0, . . . , y3,d)

)
5. (y7,0, . . . , y7,d)← SecMult

(
(y2,0, . . . , y2,d), (y5,0, . . . , y5,d)

)
6. t0 ← a0 + L1(x0) + L3(y3,0) + L5(y5,0) + L7(y7,0)
7. for i = 1 to d do ti ← L1(xi) + L3(y3,i) + L5(y5,i) + L7(y7,i)
8. return (t0, . . . , td)

Algorithm 4 Secure higher-order DES s-box evaluation

Input: a dth-order encoding (x0, . . . , xd) of x ∈ {0, 1}6, a table of coefficients ai,j for Qi polynomials
Output: a dth-order encoding (t0, . . . , td) of S(x)

[Computing the x8j powers]
1. for i = 0 to d do y8,i ← x8

i

2. RefreshMasks(y8,0, . . . , y8,d)
3. for i = 0 to d do y16,i ← y2

8,i

4. RefreshMasks(y16,0, . . . , y16,d)
5. (y24,0, . . . , y24,d)← SecMult

(
(y8,0, . . . , y8,d), (y16,0, . . . , y16,d)

)
6. for i = 0 to d do y32,i ← y2

16,i

7. RefreshMasks(y32,0, . . . , y32,d)
8. (y40,0, . . . , y40,d)← SecMult

(
(y8,0, . . . , y8,d), (y32,0, . . . , y32,d)

)
9. for i = 0 to d do y48,i ← y2

24,i

10. RefreshMasks(y48,0, . . . , y48,d)
11. (y56,0, . . . , y56,d)← SecMult

(
(y8,0, . . . , y8,d), (y48,0, . . . , y48,d)

)
[Evaluating the Qi(x

8) polynomials]
12. for i = 0 to 7 do
13. | qi,0 ← ai,0
14. | for k = 1 to d do qi,k ← 0
15. | for j = 1 to 7 do
16. | | for k = 0 to d do qi,k ← qi,k + ai,j · y8j,k
17. | endfor
18. | RefreshMasks(qi,0, . . . , qi,d)
19. endfor

[Evaluating S(x)]
20. for i = 0 to d do y2,i ← x2

i

21. RefreshMasks(y2,0, . . . , y2,d)
22. for i = 0 to d do y4,i ← y2

2,i

23. RefreshMasks(y4,0, . . . , y4,d)
24. (t0, . . . , td)← SecMult

(
(y4,0, . . . , y4,d), (q7,0, . . . , q7,d)

)
25. for i = 0 to d do ti ← ti + q6,i
26. (t0, . . . , td)← SecMult

(
(y2,0, . . . , y2,d), (t0, . . . , td)

)
27. (s0, . . . , sd)← SecMult

(
(y4,0, . . . , y4,d), (q5,0, . . . , q5,d)

)
28. for i = 0 to d do ti ← ti + si + q4,i
29. (t0, . . . , td)← SecMult

(
(x0, . . . , xd), (t0, . . . , td)

)
30. (r0, . . . , rd)← SecMult

(
(y4,0, . . . , y4,d), (q3,0, . . . , q3,d)

)
31. for i = 0 to d do ri ← ri + q2,i
32. (r0, . . . , rd)← SecMult

(
(y2,0, . . . , y2,d), (r0, . . . , rd)

)
33. (p0, . . . , pd)← SecMult

(
(y4,0, . . . , y4,d), (q1,0, . . . , q1,d)

)
34. for i = 0 to d do ti ← ti + ri + pi + q0,i

35. return (t0, . . . , td)

C Look-Up Tables

We detail hereafter the different look-up tables used in our implementations (in C syntax). For
the DES s-boxes, the 4-bit outputs are embedded into F64 by padding their most significant bits
with two 0s. The used field representations are F64 ≡ F2[x]/(1 + x5 + x6) for the DES s-boxes
and F16 ≡ F2[x]/(1 + x3 + x4) for the PRESENT s-box (such that MultGF16[a||b] = a × b).
The multiplication over F64 is performed using the log/alog tables given in Figure 1 while the
multiplication over F16 is performed with the multiplication table given in Figure 2. The ai,j

coefficients for the masked computation of the first DES s-box are given in Figure 3.8 Eventually
the Li transformations for the PRESENT s-box are given in table 4.

unsigned char* LogGF64[64] = {
63, 0, 1, 58, 2, 53, 59, 39,

3, 34, 54, 18, 60, 31, 40, 48,

4, 43, 35, 22, 55, 15, 19, 26,

61, 51, 32, 29, 41, 13, 49, 11,

5, 6, 44, 7, 36, 45, 23, 8,

56, 37, 16, 46, 20, 24, 27, 9,

62, 57, 52, 38, 33, 17, 30, 47,

42, 21, 14, 25, 50, 28, 12, 10

};
unsigned char* AlogGF64[64] = {

1, 2, 4, 8, 16, 32, 33, 35,

39, 47, 63, 31, 62, 29, 58, 21,

42, 53, 11, 22, 44, 57, 19, 38,

45, 59, 23, 46, 61, 27, 54, 13,

26, 52, 9, 18, 36, 41, 51, 7,

14, 28, 56, 17, 34, 37, 43, 55,

15, 30, 60, 25, 50, 5, 10, 20,

40, 49, 3, 6, 12, 24, 48, 1

};

Fig. 1. Log/alog tables for the multiplication for the multiplication over F64.

unsigned char* MultGF16[16][16] = {
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7},
{8, 9, 10, 11, 12, 13, 14, 15, 0, 2, 4, 6, 8, 10, 12, 14, 9, 11, 13, 15},
{1, 3, 5, 7, 0, 3, 6, 5, 12, 15, 10, 9, 1, 2, 7, 4, 13, 14, 11, 8, 0, 4},
{8, 12, 9, 13, 1, 5, 11, 15, 3, 7, 2, 6, 10, 14, 0, 5, 10, 15, 13, 8, 7},
{2, 3, 6, 9, 12, 14, 11, 4, 1, 0, 6, 12, 10, 1, 7, 13, 11, 2, 4, 14, 8},
{3, 5, 15, 9, 0, 7, 14, 9, 5, 2, 11, 12, 10, 13, 4, 3, 15, 8, 1, 6, 0, 8},
{9, 1, 11, 3, 2, 10, 15, 7, 6, 14, 4, 12, 13, 5, 0, 9, 11, 2, 15, 6, 4},
{13, 7, 14, 12, 5, 8, 1, 3, 10, 0, 10, 13, 7, 3, 9, 14, 4, 6, 12, 11, 1},
{5, 15, 8, 2, 0, 11, 15, 4, 7, 12, 8, 3, 14, 5, 1, 10, 9, 2, 6, 13, 0},
{12, 1, 13, 2, 14, 3, 15, 4, 8, 5, 9, 6, 10, 7, 11, 0, 13, 3, 14, 6},
{5, 8, 12, 1, 15, 2, 10, 7, 9, 4, 0, 14, 5, 11, 10, 4, 15, 1, 13, 3, 8},
{6, 7, 9, 2, 12, 0, 15, 7, 8, 14, 1, 9, 6, 5, 10, 2, 13, 11, 4, 12, 3}

};

Fig. 2. Look-up table for the multiplication over F16.

8 Due to length constraints we could not include the coefficients for all the DES s-boxes. They will be given in
an extended version of the paper.

unsigned char* A[8][8] = {
{14, 5, 58, 31, 39, 36, 47, 54},
{52, 3, 47, 28, 1, 53, 9, 52},
{63, 7, 7, 6, 3, 1, 48, 49},
{49, 12, 0, 9, 33, 50, 49, 3},
{26, 3, 40, 0, 13, 8, 35, 59},
{35, 31, 13, 38, 27, 29, 62, 61},
{12, 27, 49, 46, 40, 50, 28, 41},
{40, 14, 36, 44, 27, 27, 33, 0}

};

Fig. 3. Look-up table for the ai,j coefficients.

unsigned char* L1[16] = {0,14,13,3,3,13,14,0,8,6,5,11,11,5,6,8};
unsigned char* L3[16] = {0,14,8,6,10,4,2,12,15,1,7,9,5,11,13,3};
unsigned char* L5[16] = {0,3,4,7,0,3,4,7,11,8,15,12,11,8,15,12};
unsigned char* L7[16] = {0,10,0,10,14,4,14,4,4,14,4,14,10,0,10,0};

Fig. 4. Look-up tables for the Li transformations.

