
Improved Attacks on Full GOST

Itai Dinur1, Orr Dunkelman1,2 and Adi Shamir1

1 Computer Science department, The Weizmann Institute, Rehovot, Israel
2 Computer Science Department, University of Haifa, Israel

Abstract. GOST is a well known block cipher which was developed in the Soviet Union during
the 1970’s as an alternative to the US-developed DES. In spite of considerable cryptanalytic effort,
until very recently there were no published single key attacks against its full 32-round version which
were faster than the 2256 time complexity of exhaustive search. In February 2011, Isobe used the
previously discovered reflection property in order to develop the first such attack, which requires
232 data, 264 memory and 2224 time. In this paper we introduce a new fixed point property and a
better way to attack 8-round GOST in order to find improved attacks on full GOST: Given 232 data
we can reduce the memory complexity from an impractical 264 to a practical 236 without changing
the 2224 time complexity, and given 264 data we can simultaneously reduce the time complexity to
2192 and the memory complexity to 236.
Keywords: Block cipher, cryptanalysis, GOST, reflection property, fixed point property, 2D meet
in the middle attack

1 Introduction

During the 1970’s, the US decided to publicly develop the Data Encryption Standard (DES),
which was the first standardized block cipher intended for civilian applications. At roughly the
same time, the Soviet Union decided to secretly develop GOST [14], which was supposed to be
used in civilian applications as well but in a more controlled way. The general design of GOST
was finally published in 1994, but even today some of the crucial elements (e.g., the choice of
Sboxes) do not appear in the public description, and a different choice can be made for each
application.

GOST is a Feistel structure over 64-bit blocks. The round function consists of adding (modulo
232) a 32-bit round key to the right half of the block, and then applying the function f described
in Figure 1. This function has an Sbox layer consisting of eight different 4× 4 Sboxes, followed
by a rotation of the 32-bit result by 11 bits to the left using the little-endian format (i.e. the
LSB of the 32-bit word enters the rightmost entry of the first Sbox).

The full GOST has 32 rounds, and its key schedule is extremely simple: the 256-bit key is
divided into eight 32-bit words (K1,K2, ...,K8). Each round of GOST uses one of these words as
a round key in the following order: in the first 24 rounds, the keys are used in their cyclic order
(i.e. K1 in rounds 1,9,17, K2 in rounds 2,10,18, and so forth). In the final 8 rounds (25–32), the
round keys are used in reverse order (K8 in round 25, K7 in round 26, and so forth).

A major difference between the design philosophies of DES and GOST was that the pub-
licly available DES was intentionally chosen with marginal parameters (16 rounds, 56-bit keys),
whereas the secretive GOST used larger parameters (32 rounds, 256-bit keys) which seemed to
offer an extra margin of security. As a result, DES was broken theoretically (by using differential
and linear techniques) and practically (by using special purpose hardware) about 20 years ago,
whereas in the case of GOST, all the single key attacks [1, 9, 17] published before 2011 were only
applicable to reduced-round versions of the cipher.1

The first single key attack on the full 32-round version of GOST was published by Isobe at
FSE’11 [8]. It exploited a surprising reflection property which was first pointed out by Kara [9]
in 2008: Whenever the left and right halves of the state after 24 rounds are equal (which happens

1 Attacks on full GOST in the stronger related-key model are known for about a decade, see [7, 10, 11, 16, 17].

Li Ri

Li�1 Ri�1

�
Ki

S1

S2

S3

S4

S5

S6

S7

S8

≪ 11
À

1

Fig. 1. One round of GOST

with probability 2−32), the last 16 rounds become the identity mapping, and thus the effective
number of rounds is reduced from 32 to 16. Isobe developed a new key-extraction algorithm for
the remaining 16 rounds of GOST which required 2192 time and 264 memory, and used it 232

times for different plaintext/ciphertext pairs in order to get the full 256-bit key using a total of
232 data, 264 memory, and 2224 time. This is much faster than exhaustive search, but neither
the time complexity nor the memory complexity are even close to being practical.

Shortly afterwards, Courtois [4] published on ePrint a new attack on the full GOST. It uses
a very different algebraic approach, but had an inferior complexity of 264 data, 264 memory, and
2248 time. Later, Courtois and Misztal [5] described a differential attack which again used 264

data and memory, but reduced the time complexity to 2226.

In this paper we improve several aspects of these previously published attacks. We describe a
new fixed point property, and show how to use either the previous reflection property or the new
fixed point property in order to reduce the general cryptanalytic problem of attacking the full
32-round GOST into an attack on 8-round GOST with two known input-output pairs. We then
develop a new way to extract all the 2128 possible values of the full 256-bit key given only two
known 64-bit input-output pairs of 8-round GOST, which requires 2128 time and 236 memory2

(all the previously published attacks on 8-round GOST have an impractical memory complexity
of at least 264). By combining these improved elements, we can get the best known attacks on
GOST for the two previously considered data complexities of 232 and 264.

Our new results on GOST (including the fixed point based attack) use well known and easy
to analyze cryptanalytic techniques such as “Guess and Determine” and “meet-in-the-middle”.
A month after this paper appeared on eprint [6] (and more than four months after its results
were publicly disclosed in a public talk by Adi Shamir at MIT), Courtois posted to ePrint his
independently discovered attacks [3], which use several different algebraic techniques. Some of
his attacks are also based on the fixed point property, but all of them have higher claimed
complexities: Given 232 data, the best attack in [3] has a time complexity of 2224 and a memory
complexity of 2128, and given 264 data, the best attack in [3] has a time complexity of 2216 and
a negligible memory complexity. We include the results of [3] in Table 1 (which summarizes
all the previously known single-key attacks on the full GOST, our new results, and Courtois’
subsequent results) for the sake of completeness.

An important observation about Isobe’s attack is that it uses in an essential way the as-
sumption that the Sboxes are invertible. Since the GOST standard does not specify the Sboxes,
and there is no need to make them invertible in a Feistel structure, Isobe’s attack might not

2 We can reduce the memory complexity by an additional factor of 217 (to 219) if we are willing to increase the
time by a factor of 212 (to 2140). This may seem like an unattractive tradeoff since the 236 memory complexity
is already practical, but one can argue that 219 words fit into the cache whereas 236 do not, which may result
in a big performance penalty.

Reference Data Memory Time Self-Similarity 8-Round Attack Sboxes

(KP)†† Property

[8] 232 264 2224 Reflection - Bijective

[4] 264 264 2248 Other (unnamed) Algebraic Russian
Banks [15]

[5] 264 264 2226 None (differential - Russian
attack) Banks [15]

[3]††† 232 2128 2224 Reflection - any

[3]††† 264 Negligible 2216 fixed point Algebraic Russian
Banks [15]

This paper 264 236 2192† fixed point 2DMITM any

This paper 264 219 2204† fixed point low-memory any

This paper 232 236 2224† Reflection 2DMITM any

This paper 232 219 2236† Reflection low-memory any
† The time complexity can be slightly reduced by exploiting GOST’s comple-

mentation properties (as described in Appendix C)
†† Known plaintext
††† Published on ePrint after the original version of this paper [6].

Table 1. Single-key Attacks on the Full GOST

be applicable to some valid incarnations of this standard. A similar problem occurs in most
of Courtois’ attacks [3–5], as their complexities are only estimated for one particular choice of
Sboxes described in [15] which is used in the Russian banking system, and it is possible that for
other choices of Sboxes the complexities will be different. Our new attacks do not suffer from
these limitations, since they can be applied with the same complexity to any given set of Sboxes.

2 Overview of Our New Attacks on the Full GOST

The 32 rounds of GOST can be described using only two closely related 8-round encryption
functions. Let GKi1

,...,Kij
be j rounds of GOST under the subkeys Ki1 , ...,Kij (where i1, ..., ij ∈

{1, 2, ..., 8}), and let (PL, PR) be a 64-bit plaintext, such its right half, PR, enters the first round.
Then GOSTK(PL, PR) = GK8,...,K1(GK1,...,K8(GK1,...,K8(GK1,...,K8(PL, PR)))).

Our new attacks on the full GOST exploit its high degree of self-similarity using a general
framework which is shared by other attacks: the algorithm of each attack consists of an outer
loop which iterates over the given 32-round plaintext-ciphertext pairs, and uses each one of
them to obtain suggestions for two input-output pairs for GK1,...,K8 . For each suggestion of the
8-round input-output pairs, we apply an 8-round attack which gives suggestions for the 256-bit
GOST key. We then verify the key suggestions by using some of the other plaintext-ciphertext
pairs. The self-similarity properties of GOST ensure that the 8-round attack needs to be applied
a relatively small number of times, leading to attacks which are much faster than exhaustive
search.

We describe several attacks on the full GOST which belong to this common framework but
differ according to the property and the type of 8-round attack we use. The two self-similarity
properties are:

1. The reflection property which was first described in [9], where it was used to attack 30 rounds
of GOST (and 2224 weak keys of the full GOST). This property was later exploited in [8] to
attack the full GOST for all keys. We describe this property again in Section 3.1 for the sake
of completeness.

2. A new fixed point property which is described in Section 3.2.

The two properties differ according to the amount of data required to satisfy them, and thus
offer different points on a time/data tradeoff curve.

Given two 8-round input-output pairs, we describe in this paper several possible attacks of
increasing sophistication:

1. A very basic meet-in-the-middle (MITM) attack [2], which is described in Section 4.1.
2. An improved MITM attack, described in Section 4.2, which uses the idea of equivalent keys

(first described by Isobe in [8]).
3. A low-memory attack, described in Section 5, which requires 219 memory and 2140 time.
4. A new 2-dimensional meet-in-the-middle (2DMITM) attack, described in Section 6, which

requires 236 memory and 2128 time.

In order to attack the full GOST, we first select one of the two self-similarity properties
to use in the outer loop of the attack according to the number of plaintext-ciphertext pairs
available: in case we have 264 pairs available, we select the fixed point property, and if we only
have 232 pairs, we select the reflection property. We then select one of last two 8-round attacks
according to the amount of available memory: in case we have 236 memory available, we select
the 2DMITM attack, and if we only have 219 memory, we select the low-memory attack. The
outcome of this selection is an attack algorithm of the form:

1. For each plaintext-ciphertext pair (P,C):
(a) Assuming that (P,C) satisfies the conditions of the self-similarity property, derive sug-

gestions for two 8-round input-output pairs (I,O) and (I∗, O∗).
(b) For each suggestion for (I,O) and (I∗, O∗):

i. Execute the 8-round attack on (I,O) and (I∗, O∗) in order to derive suggestions for
the key, and test each suggestion by performing trial encryptions on the remaining
plaintext-ciphertext pairs.

The total time complexity of our attacks is calculated by multiplying the complexity of the
8-round attack by the expected number of times it needs to be applied according to the self-
similarity property: An arbitrary (P,C) pair satisfies the fixed point property with probability
of about 2−64. Thus, it requires about 264 known (P,C) pairs to succeed with high probability,
and since we do not know in advance which pair satisfies the property, we need to repeat step 1
of the attack 264 times. For each (P,C) pair, the fixed point property immediately suggests two
8-round input-output pairs (which are correct if the pair indeed satisfies the property). Hence,
we need to perform step 1.(b) of the attack only once per (P,C) pair. In total, we need to execute
the 8-round attack about 264 times. On the other hand, an arbitrary (P,C) pair satisfies the
reflection property with a much higher probability of about 2−32. Thus, it requires about 232

known (P,C) pairs, and we need to repeat the attack only 232 times. However, for each (P,C)
pair, the reflection property suggests a large number of 264 values for (I,O) and (I∗, O∗) (out
of which only one is correct if the pair indeed satisfies the property). Hence, we need to perform
step 1.(b) of the attack 264 times per (P,C) pair. In total, we need to execute the 8-round attack
about 232+64 = 296 times.

Altogether, we obtain four new attacks on the full GOST. In three out of the four cases,
we obtain better combinations of complexities than in all the previously published attacks.
In the remaining case, we use the reflection property and the low-memory 8-round attack to
significantly reduce the memory requirements of Isobe’s attack [8], at the expense of a small
time complexity penalty. We note that the computation required by each one of our attacks can
be easily parallelized, and thus using x CPUs reduces the expected running time of the attack
by a factor of x.

As described in Appendix C, the time complexity of all these attacks can be slightly reduced
by exploiting GOST’s complementation properties. However, in some of these improved attacks
we have to use chosen rather than known plaintexts, which reduces their attractiveness.

3 Obtaining Two 8-Round Input-Output Pairs for GOST

In this section, we describe the two self-similarity properties of GOST which we exploit in order
to obtain two 8-round input-output pairs.

3.1 The Reflection Property [8, 9]

Assume that the encryption of a plaintext P after 24 rounds of GOST results in a 64-bit value
Y , such that the 32-bit right and left halves of Y are equal (i.e. YR = YL). Thus, exchanging the
two halves of Y at the end of round 24 does not change the intermediate encryption value. In
rounds 25–32, the round keys K1–K8 are applied in the reverse order, and Y undergoes the same
operations as in rounds 17–24, but in the reverse order. As a result, the encryption of P after
32 rounds, which is the ciphertext C, is equal to its encryption after 16 rounds (see Figure 2).
By guessing the state of the encryption of P after 8 rounds, denoted by the 64-bit value X, we
obtain two 8-round input-output pairs (P,X) and (X,C). For an arbitrary key, the probability
that a random plaintext gives such a symmetric value Y after 24 rounds is 2−32, implying that
we have to try about 232 known plaintexts (in addition to guessing X) in order to obtain the
two pairs. Note that the reflection property actually gives us another “half pair” (Ĉ, Y), where
the 64-bit word Ĉ is obtained from C by exchanging the right and left 32-bit halves of C, and
the 32-bit right and left halves of Y are equal.3 However, it is not clear how to exploit this
additional knowledge in order to significantly improve the running time of our attacks on the
full GOST which are based on the reflection property.

P Rounds 1–8

K1,K2, ...,K8
X

Rounds 9–16

K1,K2, ...,K8
C

Rounds 17–24

K1,K2, ...,K8
Y � pYL, YRq

YL � YR
Rounds 25–32

K8,K7, ...,K1
C

P Rounds 1–8

K1,K2, ...,K8
P

Rounds 9–16

K1,K2, ...,K8
P

Rounds 17–24

K1,K2, ...,K8
P

Rounds 25–32

K8,K7, ...,K1
C

1

Fig. 2. The Reflection Property of GOST

3.2 The Fixed Point Property

Assume that for a plaintext P , GK8,...,K1(P) = P . Since rounds 9–16 and 17–24 are identical to
rounds 1–8, we obtain P after 16 and 24 rounds as well. In rounds 25–32, the round keys K1–K8

are applied in the reverse order, and we obtain some arbitrary ciphertext C (see Figure 3). The
knowledge of P and C immediately gives us the 8-round input-output pairs (P, P) and (Ĉ, P̂)
(in which the right and left 32-bit halves of P and C are exchanged).

For an arbitrary key, the probability that a random plaintext is a fixed point is about 2−64,
implying that we need about 264 known plaintexts to have a single fixed point, from which we

3 In our attacks, we use 8-round input-output pairs whose encryption starts with K1 and thus need to apply
the Feistel structure in the reverse order (starting from round 32) for input-output pairs obtained for rounds
25–32. Since in Feistel structures the right and left halves of the block are exchanged at the end (rather than
at the beginning) of the round function, we exchange the right and left sides of the input and the output of

the input-output pairs obtained for rounds 25–32. We call (Ĉ, Y) a “half pair” since we have to guess only 32
additional bits in order to find it, once (P,C) is known.

obtain the two input-output pairs needed in our attack. If we have only c·264 known plaintexts for
some fraction c, we expect this fixed point to occur among the given plaintexts with probability
c, and thus the time complexity, the data complexity, and the success probability are all reduced
by the same linear factor c. Consequently, it makes sense to try the fixed point based attack
even when we are given only a small fraction of the entire code book of GOST. Such a graceful
degradation when we are given fewer plaintexts (which also occurs for the reflection property)
should be contrasted with other attacks such as slide attacks, in which we have to wait for some
random birthday phenomenon to occur among the given data points. Since the existence of
birthdays has a much sharper threshold, the probability of finding an appropriate pair of points
goes down quadratically rather than linearly in c, and thus they are much more likely to fail in
such situations.

We note that our fixed point property is closely related to a previously published property
which (in addition to the assumption the P is an 8-round fixed point) also assumes that the
right and left halves of P are equal. Such a plaintext exists for an arbitrary key with probability
2−32 and thus was used in [9] to attack 2224 weak keys of the full GOST. The same property
was also used later in [13] in cryptanalysis of the GOST hash function.

P Rounds 1–8

K1,K2, ...,K8
X

Rounds 9–16

K1,K2, ...,K8
C

Rounds 17–24

K1,K2, ...,K8
Y � pYL, YRq

YL � YR
Rounds 25–32

K8,K7, ...,K1
C

P Rounds 1–8

K1,K2, ...,K8
P

Rounds 9–16

K1,K2, ...,K8
P

Rounds 17–24

K1,K2, ...,K8
P

Rounds 25–32

K8,K7, ...,K1
C

1

Fig. 3. The fixed point property of GOST

4 Simple Meet-in-the-middle Attacks on 8 Rounds of GOST

Meet-in-the-middle (MITM) attacks can be efficiently applied to block ciphers in which some
intermediate encryption variables (bits, or combinations of bits) depend only on a subset of key
bits from the encryption side and on another subset of key bits from the decryption side: the at-
tacker guesses the relevant key bits from the encryption and the decryption sides independently,
and tries only keys in which the values suggested by the computed intermediate variables match.
While the full 32-round GOST resists such attacks, 8-round GOST uses completely independent
round keys. Thus, the full 64-bit value after 4 encryption rounds depends only on round keys
K1–K4 from the encryption side and on round keys K5–K8 from the decryption side.

4.1 The Basic Meet-in-the-middle Attack

We describe how to mount a simple meet-in-the-middle attack on 8 rounds of GOST given two
8-round input-output pairs and several additional 32-round plaintext-ciphertext pairs:

1. For each of the 2128 possible values of K1–K4, encrypt both inputs and obtain two 64-bit
intermediate encryption values after 4 rounds of GOST (i.e., 2128 intermediate values of 128
bits each). Store the intermediate values in a list, sorted according to these 128 bits, along
with the corresponding value of K1–K4.

2. For each of the 2128 possible values of K5–K8, decrypt both outputs, obtain two 64-bit
intermediate values and search the sorted list for these two values.

3. For each match, obtain the corresponding value of K1–K4 from the sorted list and derive a
full 256-bit key by concatenating the value of value of K1–K4 with the value of K5–K8 of the
previous step. Using the full key, perform a trial encryption of several plaintexts and return
the full key, i.e., the one that remains after successfully testing the given 32-round pairs.

We expect to try about 2128+128−128 = 2128 full keys in step 3 of the attack, out of which only
the correct key is expected to pass the exhaustive search of step 3. Including the 2128 8-round
encryptions which are performed in each of the first two steps of the attack, the total time
complexity of the attack is slightly more than 2128 GOST encryptions. The memory complexity
of the attack is about 2128 words of 256 bits.4

4.2 An Improved Meet-in-the-middle Attack Using Equivalent Keys

In this section, we use a more general variant of Isobe’s equivalent keys idea [8] to significantly
improve the memory complexity of the attack. Both our and Isobe’s MITM attacks are based
on a 4-round attack that uses one 4-round input-output pair to find all the 264 possible values
of subkeys K1–K4 that yield this pair. However, our MITM attack is more general since we can
attack all possible incarnations of the GOST standard, whereas Isobe’s attack works only on
those which use bijective Sboxes.5 An additional advantage of our MITM attack over Isobe’s
one, is that our attack can use any two input-output pairs for 8-round GOST, regardless of how
they are obtained. We can thus use the same algorithm to exploit both the reflection and the
fixed point properties. On the other hand, Isobe’s attack is restricted to the case of a single
input-output pair obtained for the first 16 rounds of GOST (by guessing the intermediate values
obtained after 4 and 12 rounds) and thus can be combined with the reflection property, but
cannot be directly applied to the two input-output pairs produced by the fixed point property.

We now describe Isobe’s 4-round attack procedure: Denote the 4-round input (divided into
two 32-bit words) by (XL, XR) and the output by (YL, YR). Denote the middle values (after the
second round) by (ZL, ZR) (see Figure 4). Then:

ZL = XL ⊕ f(XR �K1)

ZR = YR ⊕ f(YL �K4)

YL ⊕ ZL = f(ZR �K3)

XR ⊕ ZR = f(ZL �K2)

Isobe’s attack assumes bijective Sboxes (making f invertible), and finds the equivalent keys
as follows:6 for each value of K1,K2, compute ZL from the first equation and ZR from the
fourth equation. From the second equation we have: K4 = f−1(ZR ⊕ YR) � YL and from the
third equation: K3 = f−1(ZL ⊕ YL) � YR.

Our 8-round attack is a variant of Isobe’s MITM attack, given two 8-round input-output
pairs (I,O) and (I∗, O∗):

1. For each possible value of the 64-bit word Y = (YL, YR) obtained after 4 encryption rounds
of I:

(a) Apply the 4-round attack on (I, Y) to obtain 264 candidates for K1–K4.

(b) Partially encrypt I∗ using the 264 candidates and store Y ∗ = (Y ∗L , Y
∗
R) in a list with

K1–K4.

4 Note that it is possible obtain a time-memory tradeoff: we partition the 2128 possible values of K1–K4 into 2x

sets of size 2128−x (for 0 ≤ x ≤ 128), and run the second and third steps of the attack independently for each
set. Thus, the memory complexity decreases by a factor 2x to 2128−x, and the time complexity increases by a
factor of 2x to 2128+x.

5 The Feistel structure of GOST does not require bijective Sboxes and the published standard does not discuss
this issue, but all the known choices of Sboxes happen to be bijective (perhaps due to the weakness of non-
bijective Sboxes against differential cryptanalysis).

6 In case f is not bijective, then for a random (XL, XR) and (YL, YR) there exist an average of 264 equivalent keys
which can be found using a simple preprocessing MITM algorithm that requires about 264 time and memory.

(c) Apply the 4-round attack on (Y,O) to obtain 264 candidates for K5–K8.

(d) Partially decrypt O∗ using each one of the 264 candidates and obtain Y ∗ = (Y ∗L , Y
∗
R).

(e) Search the list obtained in step (b) for Y ∗, and test the full 256-bit keys for which there
is a match.

The expected time complexity of steps (a–d) is about 264 (regardless of the algorithm that
is used to find the equivalent keys). The time complexity of step (e) is also about 264 since we
expect to try about 264+64−64 = 264 full keys. Steps (a–e) are performed 264 times, hence the
total time complexity of the attack is about 2128 GOST encryptions, which is similar to the first
attack. However, the memory complexity is significantly reduced from 2128 to slightly more than
264 words of 64 bits.

XL XR

f
�
K1

f
�
K2

ZL ZR

f
�
K3

f
�
K4

YL YR

1

Fig. 4. Four Rounds of GOST

5 A New Attack on 8 Rounds of GOST with Lower Memory Complexity

Simple meet-in-the-middle attacks, such as the ones described in Sections 4.1 and 4.2 are much
faster than exhaustive search for the entire 256-bit key. However, they do not fully exploit the
slow diffusion of the key bits in 4 rounds of GOST. As a result, these MITM attacks use a
large amount of memory to store the many intermediate encryption values obtained for all the
possible values of large sets of key bits. In this section, we describe an improved 8-round attack
which exploits the slow diffusion properties of 4 rounds of GOST in order to reduce the memory
complexity from the impractical value of 264 to the very practical value of 219 words of memory,
with a very small time complexity penalty. The main idea of this attack is to guess the 4 round
keys K5–K8 and apply an optimized “Guess and Determine” attack on the remaining 4 rounds
using two input-output pairs. In the 4-round attacks we have 128-bits of unknown key and 128
bits of input-output pairs. Thus, we expect that only one value for K1–K4 exists (although
there are likely to be input-output pairs for which the encryptions of the inputs does not match
the outputs for any of the keys, and input-output pairs for which the encryptions of the inputs
matches the outputs for several values of K1–K4).

In the rest of this section we describe the algorithm for deriving the 32 bits of K1 and the
32 bits of K4. Afterwards, deriving the values of K2 and K3 is immediate using the third and
forth equations of Section 4.2 (ZL and ZR are known from the first and second equations).

5.1 Overview of the “Guess and Determine” Attack on 4-Round GOST

Now that we deal with 4-round GOST, we apply a typical “Guess and Determine” attack which
traverses a tree of partial guesses for the round keys K1 and K4 and intermediate encryption
values. The tree is composed of layers of nodes `i for integral 0 ≤ i ≤ k, where each layer contains
nodes that specify the potential values (i.e. guesses) for a certain subset of key and intermediate
encryption values. In each layer we expand each node by guessing the values of a small number
of additional key bits and state bits that are needed to calculate some intermediate encryption
bits, both from the encryption and the decryption sides. We then calculate the bits by evaluating
the Feistel structure from both sides on a small number of bits, compare the values obtained,
and discard guesses in which the values do not match (i.e., we discard child nodes that do not
satisfy a predicate which checks the consistency of intermediate encryption values).

We traverse the partial guess tree starting from the root using DFS (which requires only a
small amount of memory). In our attack, the nodes of the last layer of the tree `k contain guesses
for the full key, which can be verified using trial encryptions.

The total number of operations performed during the traversal is proportional to the total
number of nodes in the tree. However, the operations performed when expanding a single node
work only on a few bits (rather than on full words). At the same time, when expanding a full
path of nodes in the tree from the root to the last layer, we work on the full-size Feistel structure
to obtain a guess for the full key. Hence, we estimate the time complexity of expanding a full
path by a single Feistel structure evaluation on a full 64-bit input. Using this estimation, we can
upper bound the time complexity of the tree traversal (in terms of Feistel structure evaluations)
as the width of the tree, or the size of the layer which contains the highest number of nodes. Note
that when counting the number of nodes in a layer for the time complexity analysis, we must
also include nodes that were expanded and discarded since they do not satisfy the predicate of
the previous layer.

5.2 Notations

Assume that we have two input-output pairs for 4 encryption rounds of GOST under the subkeys
K1,K2,K3,K4. Similarly to Section 4.2, denote the input, output and middle values (after using
K2) for the first pair by (XL, XR), (YL, YR) and (ZL, ZR), respectively. For the second pair,
denote these values by (X∗L, X

∗
R), (Y ∗L , Y

∗
R) and (Z∗L, Z

∗
R) respectively.

Since our attack analyzes 4-bit words (which are outputs of single Sboxes), we introduce
additional notations: Define the functions f0, f1, ..., f7 where each f i takes a 4-bit word as an
input, and outputs a 4-bit word by applying Sbox i to the input. Denote by W i the i’th bit of
the 32-bit word W , and by W i,j the (j − i + 1)-bit word composed of consecutive bits of W
starting from bit i and ending at bit j. We treat W as a cyclic word, and thus W 24,3 contains
12 bits which are bits 24 to 31 and 0 to 3 of W .

5.3 An Attack on 4 Rounds of Simplified GOST

We start by describing an attack on 4 rounds of a simplified variant of GOST (which we call
S-GOST), in which the round-key addition is replaced by XOR, and the 11-bit rotation is
replaced by 12-bit rotation. The simplified variant is easier to analyze since it provides much
slower diffusion of the key bits compared to full GOST: unlike addition, the XOR operation does
not produce carries, and since 12 is a multiple of 4, rotating by 12 bits implies that the output
of any Sbox effects the input of only a single Sbox in the next round.

We now describe the basic procedure preformed by a node in layer 0 of our guess tree for
S-GOST. The procedure requires the value of K0,3

1 (whose value we guess before executing the

procedure), and expands nodes in the next layer, which suggest a value for the additional 4 bits
of K20,23

4 . The steps of this procedure can be easily verified using a variant of Figure 4 where
the addition is replaced by XOR.

1. Given K0,3
1 and X0,3

R , compute Z12,15
L ≡ f0(X0,3

R ⊕K0,3
1) for both pairs (i.e., given K0,3

1 and

X∗0,3R , compute Z∗12,15L ≡ f0(X∗0,3R ⊕K0,3
1)).

2. Obtain f0(Z0,3
R ⊕K

0,3
3) ≡ Z12,15

L ⊕Y 12,15
L for both pairs. Then, invert7 f0 to obtain Z0,3

R ⊕K
0,3
3

and Z∗0,3R ⊕K0,3
3 .

3. XOR the two expressions calculated in step 2, to eliminate K0,3
3 , and obtain the value of

Z0,3
R ⊕ Z∗0,3R .

4. XOR the 4-bit difference obtained in step 3 to the difference Y 0,3
R ⊕ Y ∗0,3R and obtain the

value of T = Z0,3
R ⊕Y 0,3

R ⊕Z∗0,3R ⊕Y ∗0,3R ≡ (f(YL⊕K4)⊕f(Y ∗L ⊕K4))
0,3 (from the encryption

side).
5. For each of the 24 possible values of K20,23

4 :
(a) Allocate a node in the next layer.
(b) Evaluate the expression f5(Y 20,23

L ⊕K20,23
4) ⊕ f5(Y ∗20,23L ⊕K20,23

4) from the decryption

side by plugging the current value of K20,23
4 into the expression. Discard nodes which do

not agree with the value T .

Note that given K0,3
1 , we expect the procedure above to process a single child in the next

layer: in step 5 we have a 4-bit condition on 4 bits of the key K20,23
4 , and thus we expect one

node to satisfy the predicate. Moreover, step 5 can be optimized by using a small amount of
precomputation and memory in order to calculate in advance the solutions to the 4-bit condition
(as described in Appendix A.1).

We now generalize the procedure above in order to derive more key bits in a similar way:

– Since encryption and decryption are completely symmetric (except the order of the subkeys),
steps 1–5 can also be performed from the decryption side: in steps 1–5 we use the value of
K0,3

1 in order to obtain the value of K20,23
4 , and thus we define the symmetric steps 6–10

which use the value of K20,23
4 in order to obtain the value of K20+20,23+20

1 , i.e. K8,11
1 .

– Given any integer 0 ≤ i ≤ 7, we can rotate the indices of all the 32-bit words in steps 1–10
by 4i bits. Namely, given i, we define analogues steps 1–10 which use the value of K4i,4i+3

1

to obtain the value of K4i+20,4i+23
4 and K4i+8,4i+11

1 .

In order to derive the full 32-bit values of K1 and K4, we define a tree which contains 9
layers `0, `1, ..., `8 (and an additional root node). The nodes of each layer are expanded using the
generalized procedure which uses 4 bits of K1 in order to derive 4 additional bits of K1 and 4
additional bits of K4. Since the 10 steps of the procedure for expanding the nodes of layers 0–7
are basically the same, we call this procedure an iteration, and index it according to the value
of i (which determines the 4-bit chunks that we work on).

5.4 Extending the Attack to 4 Rounds of the Real GOST

In order to extend the iteration procedure from S-GOST to full GOST, we need to make several
adjustments. The most significant adjustments are given below:

– Since the round keys are added (and not XORed) to the state, we have to guess the carry bits
into the LSBs of several addition operations of 4-bit words. For example, in the expression
f5(Y 20,23

L � K20,23
4) ⊕ f5(Y ∗20,23L � K20,23

4) evaluated in step 5, we have to guess two carry

bits (one for Y 20,23
L and one for Y ∗20,23L).

7 We expect one solution on average. However, in case the inversion has more than one solution, we need to try
each one. In case the inversion has no solution, we can discard the node.

– GOST uses 11-bit rotation (instead of 12-bit rotation), and thus the 4-bit chunks that we
work on in each iteration are not aligned. Consequently, we have to guess additional state bits
in order to compare the evaluation of the 4-bit predicates from both sides. For example, since
20 + 11 = 31, in step 5 of the iteration we actually calculate (f(YL ⊕K4)⊕ f(Y ∗L ⊕K4))

31,2

from the decryption side. Thus, we additionally guess bit 31 of this expression from the
encryption side.

These adjustment create strong dependencies between iterations with consecutive indexes
(i.e., i and i + 1), namely:

– The carry bits required by iteration i+ 1 are known after iteration i. For example, iteration
1 requires the carry into bit 24 of the addition operation YL � K4 (in order to calculate
f6(Y 24,27

L �K24,27
4)⊕ f6(Y ∗24,27L �K24,27

4) in step 5). This bit can be calculated after step 5

of iteration 0, where the 4-bit value of Y 20,23
L �K20,23

4 is calculated in order to evaluate the
predicate.

– The state bits required by iteration i+1 are known after iteration i. For example, iteration 1
requires calculation of bit 3 of the expression f(YL �K4)⊕ f(Y ∗L �K4) from the encryption
side. However, this bit is already guessed in step 4 of iteration 0.

This suggests that we perform the iterations in their natural order, namely assign layer `i
iteration i for 0 ≤ i ≤ 7. As a result, we need to guess carry and state bits only in the first
iteration. Afterwards, the required carry and state bits for each iteration can be calculated by
the knowledge from the previous one. On the other hand, we pay a (relatively small) penalty
on key bit guesses since key bits required by iteration i + 2 are derived in iteration i (and not
in iteration i + 1). Since iteration i requires key bits K4i,4i+3

1 , we need to guess 4 key bits in

both iterations 0 and 1 (K0,3
1 and K4,7

1). For iterations i ≥ 2, the required key bits are already
derived in previous iterations (as shown in Table 2).

We note that since there is no carry into the LSBs of addition operations, starting the process
with iteration 0 has the advantage that we do not need to guess the carries for all the addition
operations (e.g., we do not need to guess the carry into the addition f0(X0,3

R �K0,3
1) in step 1).

The full details and analysis of the “Guess and Determine” attack are given in Appendix A,
most of which is not required in order to understand the rest of this paper. It shows that the
expected number of nodes in the widest layer of the partial guess tree is 214, and it is obtained
at iterations 1 to 5 (this was also verified using simulations performed on a PC). Basically, the
number 214 is obtained due to the 8 key-bit guesses (K0,3

1 and K4,7
1) and 6 additional carry and

state bit guesses in iteration 0. This gives an expected time complexity of about 214 4-round
Feistel structure evaluations for two input-output pairs, which is equivalent to about 212 full
GOST evaluations. Since we apply this 4-round attack 2128 times, the time complexity of the
8-round attack is about 2128+12 = 2140 GOST evaluations. In terms of memory, the attack has
a completely practical complexity of 225 bits, which is equivalent to 219 64-bit words.

Iteration 0 1 2 3 4 5 6 7

K1 bits derived 0–3 4-7 8–11 12–15 16–19 20–23 24–27 28–31
8–11 12–15 16–19 20–23 24–27 28–31 0–3 4–7

K4 bits derived 20–23 24–27 28–31 0–3 4–7 8–11 12–15 16–19
The key bits which are already known from previous iterations are underlined.

Table 2. The key bits derived in each iteration

6 A New 2-Dimensional Meet-in-the-middle Attack on 8 Rounds of GOST

In this section, we present a new attack on 8 rounds of GOST given two input-output pairs,
which combines the ideas of the “Guess and Determine” attack (which progresses horizontally
across the state) and the MITM attack (which progresses vertically across the rounds). Unlike
the attack of the previous section, we do not guess the last 4 round keys in advance. Instead,
we divide the 8-round Feistel structure horizontally by splitting it into a top part, which uses
round keys K1–K4, and a bottom part, which uses round keys K5–K8.

Our main observation is that due to the slow diffusion of the data bits into the state, we
can run a substantial part of the “Guess and Determine” attack of Section 5 with very partial
knowledge of Y and Y ∗ (obtained after 4 rounds of encryption). This allows us to split the
“Guess and Determine” attack into two partial 4-round attacks which we run a relatively small
number of times (once for each value of the bits of Y and Y ∗ that it requires). Our full 4-round
attacks on the top and bottom parts combine the suggestions of the partial attacks in order to
suggest values for the 4-round keys. Finally, we use an 8-round attack which joins the suggestions
of the two partial attacks in order to obtain suggestions for the full 256-bit key.

Schematically, we split the top and bottom parts of the block cipher vertically into two
(potentially overlapping) cells, such that on each cell we execute an independent partial attack
to obtain suggestions for some subset of key bits. We then join all the suggestions to obtain
suggestions for the full key using three MITM attacks. This can be visualized using a 2 × 2
matrix (as shown in Figure 5), where the horizontal line separates the four initial and final
rounds of the 8-round block cipher, and the dashed vertical line separates the left and right cells
in each one of the top and bottom parts.

Top MITM

K1–K4

Intermediate
encryption bits

K5–K8

Bottom MITM

Joint MITM

1

Fig. 5. The general framework of the 2-dimensional meet-in-the-middle attack

After the MITM attacks on the top and bottom parts of the Feistel structure, we obtain
2128 suggestions for K1–K4 and 2128 suggestions for K5–K8, each accompanied by corresponding
128-bit values of Y and Y ∗. Note that so far we did not filter out any possible keys, and thus
the final MITM attack, which compares the 128-bit values of Y and Y ∗ to obtain about 2128

suggestions for the full key, is essentially the basic MITM attack of Section 4.1, which would
normally require 2128 memory.

To reduce the memory consumption, we guess many of the 128 bits of Y and Y ∗ in advance
(in the outer loop of the 8-round attack). For each possible value of those bits, we execute the
2DMITM (2-dimensional MITM) attack described above, but obtain fewer suggestions for the
key which we have to store. This increases the number of times that we execute the partial
4-round attacks and could potentially increase the overall time complexity of the full 8-round

attack. However, this is not the case, as the partial 4-round attacks are relatively efficient (the
time complexity of each one is at most 218) and is executed only 282 times. Thus, the partial
4-round attacks are not the bottleneck of the time complexity of the attack.8

6.1 Details of the 8-Round Attack

Formally, we define the following sets which contain bits of Y and Y ∗:

– S1 is the set of bits that we guess in the outer loop of the 8-round attack.

– S2 is chosen such that S1
⋂
S2 = ∅, and S1

⋃
S2 is the minimal set that contains all the bits

of Y and Y ∗ which are required by the partial 4-round attack on the left cell of the top part.

– S3 is chosen such that S1
⋂
S3 = ∅, and S1

⋃
S3 is the minimal set of bits which are required

by the partial 4-round attack on the right cell of the top part.

For the bottom MITM attack, we define S4 and S5 in a similar way to S2 and S3, respectively.
Note that since the 4-round attacks on both the top and bottom parts require all the 128
intermediate bits, S2

⋃
S3 = S4

⋃
S5.

The details of the 4-round attacks are given in the next section. We now refer to them as
black boxes, and give the algorithm of the full 8-round attack:

1. For each value of the bits of the set S1:

(a) Perform the 4-round attack on the top part of the Feistel structure, and obtain a list
with values of K1–K4, sorted according to the value of the bits of S2

⋃
S3.

(b) Perform the 4-round attack on the bottom part of the Feistel structure. For each value
of S4

⋃
S5 = S2

⋃
S3 (given along with the value of K5–K8), search the list obtained in

the previous step of matches. For each match test the full key K1–K8.

6.2 Details of the 4-Round Attacks

We concentrate first on the top part of the 8-round Feistel structure: each one of the two partial
4-round attacks on the top part sequentially executes a subset of the iterations defined in Section
5, and is called an iteration batch. The first (left) iteration batch executes iterations 0–3, and
the second (right) executes iterations 4–7.

After performing iteration batches 0–3 and 4–7 independently, we get suggestions for the
values of some key bits, along with some carry and state bits. We then discard inconsistent
suggestions by comparing the values of the common bits that are derived by batches. We partition
these bits into three groups (which are fully specified in Appendix B):

– G1 contains 16 key bits which are derived by both of the left and right batches.

– G2 contains 6 carry and state input bits that we guess in iteration 0. These bits are also
contained in the set of output bits of iteration 7 (of the right batch), and can thus be used
to discard inconsistent suggestions made by the two batches.

– G3 contains 10 carry and state input bits that we guess in iteration 4. This bits are also
contained in the set of iteration output bits of iteration 3 (of the left batch), and can thus
be used to discard inconsistent suggestions made by the two batches.

Assume that the values of all the bits of S1 are known. We now give the algorithm of the
MITM attack performed on the top part of the 8-round Feistel structure:

8 Note again that we expect about 2128 keys to fulfill the filtering conditions of the two input-output pairs. Thus,
the time required for the attack to list all of them cannot be reduced below 2128 (without exploiting additional
filtering conditions).

1. For each value of the bits of S2, perform the left batch. Save all the nodes of the final layer
in a list. These nodes contain the values 40 bits of K1 and K4 (including the values of the
bits of G1), and also the values of the bits of G3. In addition to the information obtained by
each node, save the value of the initial guess of the bits of G2, and the value of the bits of
S2 per node. Sort the list according to the values of G1,G2 and G3.

2. For each value of the bits of S3, perform the right batch. For each node in the final layer
obtain the value of the bits of G1,G2 and G3 and search the list obtained in the first step
for their value. For each match, save the value of the full K1–K4 in a sorted list according
to the value of the bits of S2

⋃
S3.

The iteration batches of the MITM attack on the bottom part of the Feistel structure are
performed from the decryption side and are completely analogous to the iteration batches on
the top part (i.e. in iteration 0, we start by guessing K0,3

8 , and derive K20,23
5 and K8,11

8). We
also define analogous sets to G1,G2 and G3 for the bottom part.

The specific choices of S1–S5 are given in Appendix B. This choice of sets satisfies |S1| = 92
and |S2| = |S3| = |S4| = |S5| = 18.

We now analyze the complexity of the MITM attack on the top part of the Feistel structure:
as specified in Section A.2, when starting the iteration batch from iteration 0, the expected
maximal size of the tree is 214. It is obtained after iteration 1, and is maintained until the end
of iteration 5 (even though we do not perform 5 consecutive iterations in this attack). The time
complexity of the first step of the attack is thus about 2|S2|+14 = 214+18 = 232, and this is
also the size of the sorted list at the end of the first step. The maximal size of the tree of the
iteration batch 4–7 is 214+4 = 218 (as described in Appendix B, we have to guess 4 more carry bits
compared to iterations 0–3). Thus, the time complexity of expanding the tree in the second step is
2|S3|+18 = 236. The time and memory complexities of the remainder of step 2 (in which we match
the batches) are 2|S2|+|S3|+14+18−(|G1|+|G2|+|G3|) = 2|S2|+|S3|+14+18−(16+6+10) = 2|S2|+|S3| = 236.
Note that it is not surprising that the time and memory complexities of the matching part of the
attack reduce to 2|S2|+|S3|, since given the full 128-bit intermediate value, we expect that only
one key survives the filtering conditions. Altogether, the memory complexity of the top MITM
attack is about 236 64-bit words. The time complexity is dominated by step 2 and is equivalent
to about 236 4-round Feistel structure evaluations, which is equivalent to about 233 evaluations
of the full GOST cryptosystem. For the bottom MITM attack, we obtain the same time and
memory complexities, since the sizes of S4 and S5 are equal to the sizes of S2 and S3, and the
sets corresponding to G1, G2 and G3 are completely symmetrical.

6.3 The Complexity of the 8-Round Attack on GOST

We can now analyze the complexity of the attack described in Section 6.1: The time complexities
of each of the MITM attacks on the bottom and top parts in steps (a) and (b) are equivalent to
about 236 4-round Feistel structure evaluations, as calculated above. The number of expected
matches for which we run the full cipher in step (b) is 236+36−36 = 236. Hence, the time complexity
of these steps is equivalent to a bit more than 236 full GOST evaluations. Since |S1| = 92, the
total time complexity of the attack is equivalent to about 292+36 = 2128 GOST evaluations. The
total memory complexity of the attack is about 236 64-bit words, and is dominated by the sorted
list calculated in step (a).

7 Conclusions and Open Problem

In this paper we introduced several new techniques such as the fixed point property and two
dimensional meet in the middle attacks, and used them to greatly improve the best known attacks

on the full 32-round GOST. In particular, we reduced the memory complexity of the attacks
from an impractical 264 to a practical 236 (and to an even more practical 219 complexity, which
can fit into the cache of modern microprocessors, with a small penalty in the running time).
The lowest time complexity of our attacks is 2192, which is 232 times better than previously
published attacks but still very far from being practical. Consequently, we are concerned about
the demonstrated weaknesses in the design of GOST (especially in its simplistic key schedule),
but do not advocate that its current users should stop using it right away.

The main open problems left in this paper are whether it is possible to find faster attacks, and
how to better exploit other amounts of available data (in addition to the 232 and 264 complexities
considered in this paper, which are the natural thresholds for our techniques).

Acknowledgements: The authors thank Nathan Keller, Pierre-Alain Fouque and Charles
Bouillaguet for useful discussions on this work, and the anonymous referees for their helpful
comments on this paper which greatly improved the presentation of our results.

References

1. Eli Biham, Orr Dunkelman, and Nathan Keller. Improved Slide Attacks. In Alex Biryukov, editor, FSE,
volume 4593 of Lecture Notes in Computer Science, pages 153–166. Springer, 2007.

2. David Chaum and Jan-Hendfik Evertse. Cryptanalysis of DES with a Reduced Number Of Rounds: Sequences
of Linear Factors in Block Ciphers. In Advances in Cryptology, CRYPTO 85, pages 192–211. Springer-Verlag,
1986.

3. Nicolas T. Courtois. Algebraic Complexity Reduction and Cryptanalysis of GOST. Cryptology ePrint Archive,
Report 2011/626, 2011. http://eprint.iacr.org/.

4. Nicolas T. Courtois. Security Evaluation of GOST 28147-89 in View of International Standardisation. Cryp-
tology ePrint Archive, Report 2011/211, 2011. http://eprint.iacr.org/.

5. Nicolas T. Courtois and Micha l Misztal. Differential Cryptanalysis of GOST. Cryptology ePrint Archive,
Report 2011/312, 2011. http://eprint.iacr.org/.

6. Itai Dinur, Orr Dunkelman, and Adi Shamir. Improved Attacks on Full GOST. Cryptology ePrint Archive,
Report 2011/558, 2011. http://eprint.iacr.org/.

7. Ewan Fleischmann, Michael Gorski, Jan-Hendrik Huehne, and Stefan Lucks. Key Recovery Attack on full
GOST Block Cipher with Negligible Time and Memory. Presented at Western European Workshop on
Research in Cryptology (WEWoRC), 2009.

8. Takanori Isobe. A Single-Key Attack on the Full GOST Block Cipher. In Antoine Joux, editor, FSE, volume
6733 of Lecture Notes in Computer Science, pages 290–305. Springer, 2011.

9. Orhun Kara. Reflection Cryptanalysis of Some Ciphers. In Dipanwita Roy Chowdhury, Vincent Rijmen,
and Abhijit Das, editors, INDOCRYPT, volume 5365 of Lecture Notes in Computer Science, pages 294–307.
Springer, 2008.

10. John Kelsey, Bruce Schneier, and David Wagner. Key-Schedule Cryptoanalysis of IDEA, G-DES, GOST,
SAFER, and Triple-DES. In Neal Koblitz, editor, CRYPTO, volume 1109 of Lecture Notes in Computer
Science, pages 237–251. Springer, 1996.

11. Youngdai Ko, Seokhie Hong, Wonil Lee, Sangjin Lee, and Ju-Sung Kang. Related Key Differential Attacks
on 27 Rounds of XTEA and Full-Round GOST. In Bimal K. Roy and Willi Meier, editors, FSE, volume 3017
of Lecture Notes in Computer Science, pages 299–316. Springer, 2004.

12. Florian Mendel, Norbert Pramstaller, and Christian Rechberger. A (Second) Preimage Attack on the GOST
Hash Function. In Kaisa Nyberg, editor, FSE, volume 5086 of Lecture Notes in Computer Science, pages
224–234. Springer, 2008.

13. Florian Mendel, Norbert Pramstaller, Christian Rechberger, Marcin Kontak, and Janusz Szmidt. Cryptanal-
ysis of the GOST Hash Function. In David Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in
Computer Science, pages 162–178. Springer, 2008.

14. National Bureau of Standards. Federal Information Processing Standard-Cryptographic Protection - Cryp-
tographic Algorithm. GOST 28147-89, 1989.

15. OpenSSL. A Reference Implementation of GOST. http://www.openssl.org/source/.
16. Vladimir Rudskoy. On Zero Practical Significance of Key Recovery Attack on Full GOST Block Cipher with

Zero Time and Memory. Cryptology ePrint Archive, Report 2010/111, 2010. http://eprint.iacr.org/.
17. Haruki Seki and Toshinobu Kaneko. Differential Cryptanalysis of Reduced Rounds of GOST. In Douglas R.

Stinson and Stafford E. Tavares, editors, Selected Areas in Cryptography, volume 2012 of Lecture Notes in
Computer Science, pages 315–323. Springer, 2000.

A Appendix: The Full 4-Round ”Guess and Determine” Attack

In this section we give the full details of the the 4-Round ”Guess and Determine” attack.

A.1 Optimization Methods Used in the 4-Round Attack

Since the time complexity of the attack is determined by the widest layer of the tree, we use
several optimizations in order to obtain effective filtering conditions while guessing the smallest
possible number of bits in each layer. These optimizations ensure that the expected number of
children per node at a given layer is small, and thus reduce the expected width of the next layer.
As a result, we can recover the possible keys that generate the given input-output pairs more
efficiently. The optimizations that we use are described below (some of which were already used
in the attack on S-GOST in Section 5.3):

1. We optimize the basic process of expanding a node described in Section 5.3 by using a more
direct approach which gives the same result. For example, we calculate the values of the 4
intermediate encryption bits, Z31,2

R , from the encryption side of the Feistel structure. The

consistency predicate on these bits can now be viewed as an equation on 4 bits of K4 (K20,23
4)

from the decryption side. In the basic approach we solve this equation by exhaustive search
on the 16 possible values of K20,23

4 . Instead, we precompute and store the solutions to the
equation for all its 220 possible values, and use this small precomputed table to directly derive
the values of K20,23

4 (i.e. we expand only the nodes that satisfy the consistency predicate in
advance). This direct approach is more efficient than the basic approach since the size of the
layers of the guess tree (including the size of the widest layer) is reduced in exchange for a
small amount of precomputation and memory.

2. Given the case of two input-output pairs, we use differential methods in order to simultane-
ously reduce the number of unknown bits and constraint bits in our equations. For example,
refer to step 3 in Section 5.3, where we eliminate the 4 bits of K0,3

3 from the predicate. As a
result, the size of our precomputed tables can be reduced.

3. To minimize the number of required carry and state bit guesses, we work on consecutive
chunks of bits from right to left (i.e., we perform the iterations sequentially as justified in
Section 5.4).

4. Initially, we guess values that are required to calculate the four LSBs of several addition
operations (i.e., we start the process from iteration 0, as justified in Section 5.4).

A.2 Details and Analysis of the 4-Round Attack

Consider the equations of Section 4.2 for the first pair, and similar equations for the second
pair. Let Ci for be the 32-bit carry word produced by the addition of the round key Ki to the
corresponding state word (note that C0

i = 0 and we can ignore the last carry produced at bit 31
which has no effect on the encryption). From each one of these four 32-bit equations, we derive
eight equations which equate 4-bit words, and are indexed by i ∈ {0, 1, ..., 7}:
(Ei

1): Z
4i+11,4i+14
L = X4i+11,4i+14

L ⊕ f i(X4i,4i+3
R �K4i,4i+3

1 � C4i
1)

(Ei
2): Z

4i+11,4i+14
R = Y 4i+11,4i+14

R ⊕ f i(Y 4i,4i+3
L �K4i,4i+3

4 � C4i
4)

(Ei
3): Y

4i+11,4i+14
L ⊕ Z4i+11,4i+14

L = f i(Z4i,4i+3
R �K4i,4i+3

3 � C4i
3)

(Ei
4): X

4i+11,4i+14
R ⊕ Z4i+11,4i+14

R = f i(Z4i,4i+3
L �K4i,4i+3

2 � C4i
2)

In addition to the carry words defined above, we define CS2 and CS3 as the 32-bit words
(ZL � Z∗L)⊕ ZL ⊕ Z∗L and (ZR � Z∗R)⊕ ZR ⊕ Z∗R respectively.

As described in Section 5, our tree contains 9 layers (`0, `1, ..., `8). The procedure for expand-
ing the nodes of layer i ∈ {0, 1, ..., 7} uses equations Ei

1, E
i+2
1 , Ei+5

2 , Ei
3 and Ei+5

4 (the index
additions are performed numerically modulo 8).

Table 3 gives the iteration inputs and outputs calculated in each step of the iteration algo-
rithm for i ∈ {0, 1, ..., 7}. Note that the carry and state bits and expressions which are outputs
of the iteration i, serve as inputs to iteration i + 1.

Step Key Carry State Key Carry State
input input input output output output

(1) K4i,4i+3
1 C4i

1 , - - C4i+4
1 , -

C∗4i1 C∗4i+4
1

(3) - - - - C4i+4
3 � (ZR � Z∗R)4i+3

C∗4i+4
3 �
CS4i+4

3

(4) - C4i
3 � (ZR � Z∗R)4i+31 - - -

C∗4i3 �
CS4i

3

(5) - C4i+20
4 , - K4i+20,4i+23

4 - -
C∗4i+20

4

(6) - C4i+20
4 , - - C4i+24

4 , -
C∗4i+20

4 C∗4i+24
4

(8) - - - - C4i+24
2 � (ZL � Z∗L)4i+23

C∗4i+24
2 �
CS4i+24

2

(9) - C4i+20
2 � (ZL � Z∗L)4i+19 - - -

C∗4i+20
2 �
CS4i+20

2

(10) - C4i+8
1 , - K4i+8,4i+11

1 C4i+12
1 , -

C∗4i+8
1 C∗4i+12

1

Steps (2) and (7) do not use any iteration input or calculate any iteration output.
Table 3. Iteration inputs used and iteration outputs calculated in each step of the iteration algorithm for i ∈
{0, 1, ..., 7}

The steps of iteration i ∈ {0, 1, ..., 7} are given below.9 Note that steps 6–10 are analogous
to steps 1–5, but are performed from the decryption side.

1. Given the inputs K4i,4i+3
1 , C4i

1 , C∗4i1 , use equation Ei
1 to calculate Z4i+11,4i+14

L for both pairs.

2. Given Z4i+11,4i+14
L (from step (1)), use equation Ei

3 to calculate Z4i,4i+3
R �K4i,4i+3

3 �C4i
3 for

both pairs.
3. Subtract the expressions calculated in step (2), Z4i,4i+3

R � K4i,4i+3
3 � C4i

3 and Z∗4i,4i+3
R �

K4i,4i+3
3 �C∗4i3 , to eliminate K4i,4i+3

3 , and obtain the value of (Z4i,4i+3
R �Z∗4i,4i+3

R)� (C4i
3 �

C∗4i3 � CS4i
3).

4. Subtract the input C4i
3 �C∗4i3 �CS4i

3 from the 3 LSBs of the expression calculated in step (3),
and concatenate the 3-bit result with the input (ZR�Z∗R)4i+31 to obtain (ZR�Z∗R)4i+31,4i+2.

5. Given (ZR�Z∗R)4i+31,4i+2 (from step (4)) and the carries C4i+20
4 , C∗4i+20

4 , solve the equation

obtained by subtracting right hand side of Ei+5
2 to obtain K4i+20,4i+23

4 .

6. Given C4i+20
4 , C∗4i+20

4 , and K4i+20,4i+23
4 (derived in step (5)), use equation Ei+5

2 to calculate

Z4i+31,4i+2
R for both pairs.

9 For the sake of simplicity, we do not mention the carry and state output bits in the description of the steps,
and just list them in Table 3.

7. Given Z4i+31,4i+2
R (from step (6)), use equation Ei+5

4 to calculate Z4i+20,4i+23
L �K4i+20,4i+23

2 �
C4i+20
2 for both pairs.

8. Subtract the expressions calculated in step (7), Z4i+20,4i+23
L � K4i+20,4i+23

2 � C4i+20
2 and

Z∗4i+20,4i+23
L � K4i+20,4i+23

2 � C∗4i+20
2 to eliminate K4i+20,4i+23

2 , and obtain the value of

(Z4i+20,4i+23
L � Z∗4i+20,4i+23

L) � (C4i+20
2 � C∗4i+20

2 � CS4i+20
2).

9. Subtract the input C4i+20
2 �C∗4i+20

2 �CS4i+20
2 from the 3 LSBs of the expression calculated

in step (8), and concatenate the 3-bit result with the input (ZL � Z∗L)4i+19 to obtain (ZL �
Z∗L)4i+19,4i+22.

10. Given (ZL � Z∗L)4i+19,4i+22 (from step (9)) and the inputs C4i+8
1 , C∗4i+8

1 , solve the equation

obtained by subtracting right hand side of Ei+2
1 to obtain K4i+8,4i+11

1 .

All the steps of this iteration algorithm involve simple operations on 4-bit words (addition,
subtraction, XOR and application of a 4× 4 Sbox, or its inverse). The exceptional steps are (5)
and (10), where we have to solve the equations obtained by subtracting the right hand sides of
Ei+5

2 and Ei+2
1 , respectively. Each equation adds a 4-bit constraint on 4 unknown bits of the

key, and thus we expect a single solution on average. The solutions to each equation can be
derived by using the basic approach of exhaustive search over the 24 possible values of the 4
key bits. However, we speed up the process for each equation by precomputing and storing the
solutions for each of the 24 possible values of the equation and for each of the 216 values of the
16 relevant input or output bits that participate in the equation. A table for a single equation
has 24+16 = 220 entries, where each entry has an average of a single 4-bit solution (222 bits, or
216 words of 64 bits in total per table), and requires a negligible precomputation time compared
to the complexity of the full attack on GOST.

We now analyze the expected time complexity of the algorithm by calculating the width of
the layers of the tree according to the expected number of guesses required at each stage of the
algorithm: in general, iteration i requires the following input bits (as specified in Table 3): 4
bits of K1 in step (1), 6 single carry bits in steps (1),(5),(6) and (8) (note that steps (5) and (6)
require the same carry bits), 4 carry expression bits in steps (4) and (9) (note that the value
of each carry expression is either -2,-1,0 or 1) and 2 state bit expressions in steps (4) and (9).
Altogether, iteration i requires 4 + 6 + 4 + 2 = 16 input bits. However, in iteration 0 (which
is the first iteration performed), the carry inputs required in step (1) and the carry expression
required in step (4) are known to be zero. Thus, iteration 0 requires only 12 unknown iteration
input bits which we have to guess, thus the expected size of the second layer is 212. Note that
the inverse Sbox computed in steps (2) and (7) is expected to provide a single output value per
input (i.e. step (2) and (7) are not expected to increase the width of the guess tree). In addition,
the equations solved in steps (5) and (10), are expected to have a single solution, as explained
above.

In iteration 1 (where we derive layer 2 of the tree), iteration inputs which are carry and
state bits are already known from the output of iteration 0. Moreover, after step (10) of the
first iteration, we know the values of C8

1 and C∗81 . This gives us a 2-bit filtering condition on
K4,7

1 (we only try values of K4,7
1 which are consistent with the carries). In this sense, the carries

guessed in step (10) of the first iteration are “consumed” by the second iteration. Thus, after
the first two iterations, we obtain K20,27

4 and K8,15
1 from guessing 8 bits of the first key, K0,7

1 . In
addition, we have an expected number of 28−2 = 26 additional guesses (counting the carry and
state bit guesses of steps (2)–(10) of iteration 0, without the 2-bit guess of step (10)). Thus, the
expected size of layer 2 is 28+6 = 214, which is larger than the 212 expected size of layer 1, but
not by a large factor.

In iteration 2, we derive K28,31
4 and K16,19

1 from K8,11
1 . Since K8,11

1 is already known at this
stage, we do not need to guess it again. Thus, the size of layer 3 remains the same as in layer
2, namely 214 possible solutions. This pattern continues until the end of iteration 5, where our

partial guess nodes include the values of K0,31
1 and K20,11

4 (as shown in Table 2). In iterations

6 and 7, we derive the remaining bits of K4 (K12,19
4) and the bits of K1 (K0,7

1) which were
already guessed, and give us additional 4-bit filtering conditions on the guesses in each of these
iterations. Thus, layer 7 of the tree in expected to contain 214−4 = 210 nodes. Iteration 7 is the
final iteration, in which besides the 4-bit filtering condition on K4,8

1 , we also obtain the remaining
6 iteration inputs guessed in iteration 0. We thus receive additional filtering conditions of 6 bits
and expect the final layer to contain 210−4−6 = 1 node (a single value for K1 and K4, as expected
when we compare the total number of key and input-output constraint bits).

The expected number of nodes in the widest layer of the partial guess tree is 214, and it is
obtained at iterations 1 to 5 (which define layers 2 to 6 in the tree). Thus, the time complexity of
the algorithm is about 214 Feistel structure evaluations for each one of the two input-output pairs,
and 215 evaluations altogether. Since we work on a 4-round Feistel structure which contains a
fraction of 2−3 of the 32 rounds of the full GOST, we estimate that the expected time complexity
of this attack is equivalent to about 215−3 = 212 GOST evaluations. We apply this 4-round attack
for each one of the 2128 possible values of the last 4 round keys (K5,K6,K7 and K8), and thus
the time complexity of the 8-round attack is about 2128+12 = 2140 GOST evaluations.

In terms of memory, we store precomputed tables for steps (5) and (10) in each iteration.
The equations solved in these two steps are of the same structure for each one of the 8 iterations
and differ only according to the Sbox used. Thus, we need 8 such tables (one for each Sbox),
which require 8 · 222 = 225 bits of memory. The additional memory required to store other
intermediate variables and to store our state in the DFS traversal is negligible compared to
the space consumed by the precomputed tables. Hence, the attack has a completely practical
memory complexity of 225 bits, which is equivalent to 219 64-bit words.

B Appendix: Parameters for the 2-Dimensional Meet-in-the-middle Attack

In this section, we specify our choices of G1–G3 and S1–S5:

– G1 contains the 16 key bits which are derived by both the left batch (iterations 0–3) and the
right batch (iterations 4–7), as specified in Table 4.

– G2 contains the carry and state iteration input bits that we guess in iteration 0, not including
step (10) (the bits that we guess in step (10) are already used as filtering conditions in
iteration 1). Using Table 3, we get |G2| = 6 (using the fact that the carry bits are known to
be zero).

– G3 contains the carry and state iteration input bits that we guess in iteration 4 (the first
iteration of the right batch), not including the bits that we guess in step (10). Using Table
3, we get that |G3| = 10 (unlike iteration 0, in iteration 4 no carry bits and expressions are
known in advance).

In order to determine the sets S1–S5 we refer to Table 4, which gives the indices of the
intermediate encryption bits required by iterations 0–7 of the top part of the 8-round Feistel
structure. In order to calculate the indices of these bits, recall from Section A.2 that iteration i ∈
{0, 1, ..., 7} uses equations Ei

1, E
i+2
1 , Ei+5

2 , Ei
3 and Ei+5

4 , out of which only Ei+5
2 and Ei

3 require

bits of Y and Y ∗: Ei+5
2 requires Y 4i+31,4i+2

R and Y 4i+20,4i+23
L , and Ei

3 requires Y 4i+11,4i+14
L (note

that iteration i also requires the same indices for Y ∗). Altogether, iterations 0–3 require the 82
intermediate bits Y 31,14

R , Y 11,3
L , Y ∗31,14R and Y ∗11,3L , and iterations 4–7 require the 82 intermediate

bits of Y 15,30
R , Y 27,19

L , Y ∗15,30R and Y ∗27,19L . After calculating the indices of the intermediate
encryption bits that the iteration batches of the top part require, we can easily derive the
analogous indices that the iteration batches of the bottom part require, taking into account that
the right and left 32-bit halves of Y and Y ∗ are exchanged at the end of round 4. Thus, we

Iteration 0 1 2 3 4 5 6 7

K1 bits (0–3) (4–7) 8–11 12–15 (16–19) (20–23) 24–27 28–31
derived 8–11 12–15 (16–19) (20–23) 24–27 28–31 (0–3) (4–7)

K4 bits 20–23 24–27 28–31 0–3 4–7 8–11 12–15 16–19
derived

Bits of R[31, 2] R[3, 6] R[7, 10] R[11, 14] R[15, 18] R[19, 22] R[23, 26] R[27, 30]
Y and Y ∗ L[11, 14] L[15, 18] L[19, 22] L[23, 26] L[27, 30] L[31, 2] L[3, 6] L[7, 10]
required L[20, 23] L[24, 27] L[28, 31] L[0, 3] L[4, 7] L[8, 11] L[12, 15] L[15, 19]

Key bits which are known from previous iterations of the batch are underlined. Key bits of G1 (derived by both
of the iteration batches) appear is parenthesis. The bits of Y and Y ∗ are denoted as follows: R[i, j] denotes Y i,j

R

and Y ∗i,jR , L[i, j] denotes Y i,j
L and Y ∗i,jL .

Table 4. The key bits derived and the intermediate encryption bits required in each iteration of the left and right
batches

need to exchange the right and left halves of the bits calculated for the top part: for the bottom
part, the left batch requires the 82 intermediate encryption bit values of Y 31,14

L ,Y 11,3
R ,Y ∗31,14L and

Y ∗11,3R and the right batch requires the 82 bits of Y 15,30
L ,Y 27,19

R ,Y ∗15,30L and Y ∗27,19R .

The sets S1–S5 that we choose are given in table 5. Note that since the right and left 32-bit
halves of Y and Y ∗ are exchanged at the end of round 4, we choose S1 so that it contains the
same bit indices from both halves of Y and Y ∗. As a result, the sets used during the iteration
batches are of the same size (|S2| = |S3| = |S4| = |S5| = 18). This implies that the iteration
batches of both the top and the bottom parts are performed the same number of times (218) for
a given value of the 92 bits of S1.

S1 Y 10,19
L , Y 23,3

L , Y 10,19
R , Y 23,3

R , Y ∗10,19L , Y ∗23,3L , Y ∗10,19R , Y ∗23,3R

S2 Y 20,22
L , Y 4,9

R , Y ∗20,22L , Y ∗4,9R

S3 Y 4,9
L , Y 20,22

R , Y ∗4,9L , Y ∗20,22R

S4 Y 20,22
R , Y 4,9

L , Y ∗20,22R , Y ∗4,9L

S5 Y 4,9
R , Y 20,22

L , Y ∗4,9R , Y ∗20,22L

Table 5. The sets S1–S5

C Appendix: Exploiting GOST’s Complementation Property

The full GOST block cipher has a well-known complementation property. If the plaintext P =
(PL, PR) is encrypted under K = (K1,K2, . . . ,K8) to the ciphertext C = (C1, C2), then the
encryption of P ∗ = (PL ⊕ e31, PR ⊕ e31) under K = (K1 ⊕ e31,K2 ⊕ e31, . . . ,K8 ⊕ e31) is
C∗ = (C1 ⊕ e31, C2 ⊕ e31) (where e31 is the 32-bit vector whose entries are all zero, except the
MSB, which is one.).

At the same time, in our attacks on reduced-round GOST, we notice the existence of two
less known complementation properties: for
GK1,K2,K3,K4(PL, PR) = (TL, TR), GK1⊕e31,K2,K3⊕e31,K4(PL, PR ⊕ e31) = (TL, TR ⊕ e31) and
GK1,K2⊕e31,K3,K4⊕e31(PL ⊕ e31, PR) = (TL ⊕ e31, TR).

One can use these three complementation properties in all of our attacks (even though each
one of them leads to a different improvement factor). For example, consider the meet-in-the-
middle attack suggested in Section 4.2. In this attack, we obtain two 8-round input-output pairs
(I,O) and (I∗, O∗). The attack starts by guessing Y (the partial encryption of I after four

rounds). The naive way to implement the search loop is to try any possible value of Y , and
then any value of K3,K4 to obtain the candidate values of K1,K2. However, for each guess of
Y, I,K3,K4, consider the 264 candidates for K1,K2. If we consider the list of candidates for
Y ⊕ (e31, e31), I ⊕ (e31, e31),K3 ⊕ e31,K4 ⊕ e31, it is the same as the previous one (up to the
MSBs of K1 and K2). The same is true for the other two complementation properties.

In other words, instead of computing the three additional lists (for each of the three comple-
mentation properties) we can perform this step only once. As there are four 4-round steps (we
need to deal with (I, Y), (Y,O), (I∗, Y ∗) and (Y ∗, O∗)), we can save three out of the 16 4-round
steps (i.e., for each I, I ⊕ (0, e31), I ⊕ (e31, 0) and I ⊕ (e31, e31) with all the corresponding Y ’s
we compute the list only once).

We note that in the attacks based on the fix point point property, the first input-output pair is
actually (I, I), hence, one can use the complementation property again (once for (I, I⊕(e31, e31))
and once for (I ⊕ (0, e31), I ⊕ (e31, 0)). Additionally, as O∗ is I (up to a swap), one can again
save two out of the four rounds computations. In total, this improvement results in an overall
saving of 7/16 in the 8-round attack.

In the unoptimized fixed-point attack there are 2192 steps of full-GOST trial encryptions,
and 2192 executions of the 8-round attack, which result in a total time complexity equivalent to
(32 + 16) · 2192 = 48 · 2192 rounds of GOST. Using this improvement, the total running time is
reduced to (32 + 9) · 2192 = 41 · 2192 rounds of GOST, a speed up of about 14.6%.

In the reflection-based attacks one can optimize the trial encryptions: instead of performing
2224 full-GOST trial encryptions, it is possible to exploit the additional “half pair” and obtain
an additional 32-bit filtering condition by running 8 rounds of GOST. As a result, the trial
encryptions require less than 2224 full-GOST evaluations, while the 8-round attacks take more
than that. Thus, unlike the fixed-point-based attacks, in the reflection-based attacks the 8-round
attacks form the bottleneck, and reducing their complexity gives a more significant savings. We
note that the complex attack procedure of Section 6 can also be improved by changing the order
of the loop. To do so, one needs to reorder the guess of X, and Y accordingly. Therefore, using
a chosen plaintext model for the reflection-based attacks (to obtain 232 appropriate plaintext-
ciphertext pairs), it is possible to perform the analysis for three out of the four 4-round phases
only once. This reduces the running time to 7/16 of the original time complexity. The total
running time of the improved attack is thus reduced to 2222.8 applications of the 8-round attack.

