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Abstract. In 1994 Langford and Hellman introduced a combination of differential and linear crypt-
analysis under two default independence assumptions, known as differential-linear cryptanalysis,
which is based on the use of a differential-linear distinguisher constructed by concatenating a linear
approximation with a (truncated) differential with probability 1. In 2002, by using an additional
assumption, Biham, Dunkelman and Keller gave an enhanced version that can be applicable to the
case when a differential with a probability of smaller than 1 is used to construct a differential-linear
distinguisher. In this paper, we present a new methodology for differential-linear cryptanalysis under
the original two assumptions implicitly used by Langford and Hellman, without using the additional
assumption of Biham et al. The new methodology is more reasonable and more general than Biham
et al.’s methodology, and apart from this advantage it can lead to some better differential-linear
cryptanalytic results than Biham et al.’s and Langford and Hellman’s methodologies. As examples,
we apply it to attack 10 rounds of the CTC2 block cipher with a 255-bit block size and key, 13
rounds of the DES block cipher, and 12 rounds of the Serpent block cipher. The new methodology
can be used to cryptanalyse other block ciphers, and block cipher designers should pay attention
to this new methodology when designing a block cipher.

Key words: Block cipher, CTC2, DES, Serpent, Differential cryptanalysis, Linear cryptanaly-
sis, Differential-linear cryptanalysis.

1 Introduction

Differential cryptanalysis was introduced in 1990 by Biham and Shamir [10]. Linear cryptanalysis
was introduced in 1992 by Matsui and Yamagishi [36]. A differential cryptanalysis attack is based
on the use of one or more so-called differentials, and a linear cryptanalysis attack is based on
the use of one or more so-called linear approximations. Both the cryptanalytic methods were
used to attack the full Data Encryption Standard (DES) [37] algorithm faster than exhaustive
key search [12,34].

In 1994 Langford and Hellman [31] introduced a combination of differential and linear crypt-
analysis under two default independence assumptions, known as differential-linear cryptanaly-
sis, and they applied it to break 8-round DES. Such an attack is constructed on a so-called
differential-linear distinguisher; a differential-linear distinguisher treats a block cipher as a cas-
cade of two sub-ciphers, and it uses a linear approximation for a sub-cipher and, for the other
sub-cipher it uses a differential (or a truncated differential [27]) with a one probability that
does not affect the bit(s) concerned by the input mask of the linear approximation. In 2002, by
using an additional assumption Biham, Dunkelman and Keller [6] introduced an enhanced ver-
sion of differential-linear cryptanalysis, which is applicable to the case when a differential with
a smaller probability is used to construct a differential-linear distinguisher; and they applied

? An earlier version of this work appeared in 2010 as part of Cryptology ePrint Archive Report 2010/025 [33],
which was done when the author was with Eindhoven University of Technology (The Netherlands) under the
support of the Dutch Sentinels project PINPASJC (No. TIF.6687).



Table 1. Our and previous main cryptanalytic results on CTC2, DES and Serpent

Cipher Attack Technique Rounds Data Time Success Rate Source

CTC2 Algebraic 6 4CP 2253Enc. not specified [14]

(255-bitDifferential-linear 8† 237CP 237Enc. 61.8% [19]
version) 10 2142CP 2207Enc. 99.9% Sect. 5.4

DES Differential full 247.2CP 237Enc. not specified [12]

Linear full 243KP 247Enc. 85% [34]

Davis’s attack [17] full 250KP 250Enc. 51% [3]

Differential-linear 8 768CP 240Enc. 95% [31]

9 215.75CP 238Enc. 88.8% [18]

10 229.66CP 244Enc. 97% Sect. 4.2

13 252.1CP 254.2Enc. 99% Sect. 4.2

SerpentDifferential 8 284CP 2206.7Enc.not specified [4]

Amplified boomerang [24] 9 2110CP 2252Enc. not specified [24]

Boomerang [40] 10 2126.3ACPC2165Enc. not specified [7]

Rectangle 10 2126.3CP 2165Enc. not specified [7]

Linear 11 2118KP 2178Enc. not specified [13]

Differential-linear 12 2123.5CP 2249.4Enc. 84% [20]

2124.5CP 2244.9Enc. 98.8% Sect. 6.3

†: There is a flaw; see Section 5.2 for detail.

the enhanced version to break 9-round DES. Differential-linear cryptanalysis has been used to
yield the best currently published cryptanalytic results for a number of state-of-the-art block
ciphers [6, 8, 19,20].

In this paper, we present a new methodology for differential-linear cryptanalysis under the
two default assumptions implicitly used by Langford and Hellman, without using the additional
assumption due to Biham et al. The new methodology is more reasonable and more general
than Biham et al.’s methodology, and it can lead to some better differential-linear cryptanalytic
results than Biham et al.’s and Langford and Hellman’s methodologies. As examples, we apply
the new methodology to mount differential-linear attacks on 10 rounds of the CTC2 [14] block
cipher with a 255-bit block size and key, 13 rounds of DES, and 12 rounds of the Serpent [1]
block cipher. In terms of the numbers of attacked rounds: The 10-round CTC2 attack is the
first published cryptanalytic attack on the version of CTC2; the 13-round DES attack is much
better than any previously published differential-linear cryptanalytic results for DES, though
it is inferior to the best previously published cryptanalytic results for DES; and the 12-round
Serpent attack matches the best previously published cryptanalytic result for Serpent, that was
obtained under Biham et al.’s methodology. Table 1 summarises both our and previous main
cryptanalytic results on CTC2, DES and Serpent, where CP, KP and ACPC refer respectively
to the required numbers of chosen plaintexts, known plaintexts and adaptively chosen plaintexts
and ciphertexts, and Enc. refers to the required number of encryption operations of the relevant
version of CTC2, DES and Serpent.

The remainder of the paper is organised as follows. In the next section we give the notation
used throughout the paper and briefly describe differential and linear cryptanalysis. In Section 3
we give the new methodology for differential-linear cryptanalysis. In Sections 4–6 we present
our cryptanalytic results on DES, CTC2 and Serpent, respectively. We discuss a few possible
extensions to our methodology in Section 7. Section 8 concludes this paper.

2 Preliminaries

In this section we describe the notation, differential and linear cryptanalysis.



2.1 Notation

In the following descriptions, we assume that a number without a prefix is in decimal notation,
and a number with prefix 0x is in hexadecimal notation, unless otherwise stated. The bits of
a value are numbered from right to left, the leftmost bit is the most significant bit, and the
rightmost bit is the least significant bit, except in the case of DES, where we use the same
numbering notation as in FIPS-46 [37]. We use the following notation.

⊕ bitwise logical exclusive OR (XOR) of two bit strings of the same length
� dot product of two bit strings of the same length
|| string concatenation
� left shift of a bit string
≪ left rotation of a bit string
◦ functional composition. When composing functions X and Y, X ◦Y denotes the

function obtained by first applying X and then applying Y
ej a 255-bit value with zeros everywhere except for bit position j, (0 ≤ j ≤ 254)
ei0,···,ij the 255-bit value equal to ei0 ⊕ · · · ⊕ eij , (0 ≤ i0, · · · , ij ≤ 254)
E an n-bit block cipher when used with a specific user key

2.2 Differential Cryptanalysis

Differential cryptanalysis [10] takes advantage of how a specific difference in a pair of inputs of
a cipher can affect a difference in the pair of outputs of the cipher, where the pair of outputs
are obtained by encrypting the pair of inputs using the same key. The notion of difference can
be defined in several ways; the most widely discussed is with respect to the XOR operation.
The difference between the inputs is called the input difference, and the difference between the
outputs of a function is called the output difference. The combination of the input difference
and the output difference is called a differential. The probability of a differential is defined as
follows.

Definition 1 (from [32]). If α and β are n-bit blocks, then the probability of the differential
(α, β) for E, written ∆α→ ∆β, is defined to be

PrE(∆α→ ∆β) = Pr
P∈{0,1}n

(E(P )⊕ E(P ⊕ α) = β).

The following result follows trivially from Definition 1:

Proposition 1 (from [32]). If α and β are n-bit blocks, then

PrE(∆α→ ∆β) =
|{x|E(x)⊕ E(x⊕ α) = β, x ∈ {0, 1}n}|

2n
.

For a random function, the expected probability of a differential for any pair (α, β) is 2−n.
Therefore, if PrE(∆α→ ∆β) is larger than 2−n, we can use the differential to distinguish E from
a random function, given a sufficient number of chosen plaintext pairs.

Sometimes, we simply write ∆α
E→ ∆β to denote the differential ∆α → ∆β for E in this

paper.

2.3 Linear Cryptanalysis

Linear cryptanalysis [34, 36] exploits correlations between a particular linear function of the
input blocks and a second linear function of the output blocks. The combination of the two



linear functions is called a linear approximation. The most widely used linear function involves
computing the bitwise dot product operation of the block with a specific binary vector (the
specific value combined with the input blocks may be different from the value applied to the
output blocks). The value combined with the input blocks is called the input mask, and the value
applied to the output blocks is called the output mask. The probability of a linear approximation
is defined as follows.

Definition 2 (from [32]). If α and β are n-bit blocks, then the probability of the linear ap-
proximation (α, β) for E, written Γα→ Γβ, is defined to be

PrE(Γα→ Γβ) = Pr
P∈{0,1}n

(P � α = E(P )� β).

We refer to below the dot product P � α as the input parity, and the dot product E(P )� β
as the output parity. The following result follows trivially from Definition 2:

Proposition 2 (from [32]). If α and β are n-bit blocks, then

PrE(Γα→ Γβ) =
|{x|x� α = E(x)� β, x ∈ {0, 1}n}|

2n
.

For a random function, the expected probability of a linear approximation for any pair (α, β)
is 1

2 . The bias of a linear approximation Γα→ Γβ, denoted by ε, is defined to be ε = |PrE(Γα→
Γβ)− 1

2 |. Thus, if the bias ε is sufficiently large, we can use the linear approximation to distinguish
E from a random function, given a sufficient number of matching plaintext-ciphertext pairs.

2.4 General Assumptions Used in Practice

Propositions 1 and 2 give the accurate probability values of a differential and a linear approx-
imation from a theoretical point of view. However, it is usually hard to apply them to a block
cipher with a large block size, for example, n = 64 or 128 which is currently being widely used in
reality, and even harder when the differential or linear approximation operates on many rounds
of the cipher. In practice, for a Markov block cipher [29], a multi-round differential (or linear
approximation) is usually obtained by concatenating a few one-round differential characteristics
(respectively, linear approximations), and the probability of the multi-round differential (or lin-
ear approximation) is regarded as the product (respectively, the piling-up function [34]) of the
probabilities of the one-round differential characteristics (respectively, linear approximations)
under the following Assumption 1.

Assumption 1 The involved round functions behave independently.

We note that one may argue the correctness of Assumption 1 and may use a different as-
sumption, for example, many people would like to use the assumption that the round keys are
independent and uniformly distributed; however, it is not accurate, either, for generally the
round keys are actually dependent, being generated from a global user key under the key sched-
ule algorithm of the cipher. Anyway, all such assumptions require us to treat the involved rounds
as independent. As mentioned in [22], this is “most often not exactly the case, but as often it is
a good approximation”.

Differential and linear cryptanalyses generally treat a basic unit of input (i.e. a chosen-
plaintext pair for differential cryptanalysis; a known-plaintext for linear cryptanalysis) as a
random variable, and assume that given a set of inputs of the basic unit, the inputs that satisfy
the required property can be approximated by an independent distribution, as followed in [11,34].



3 Differential-Linear Cryptanalysis: Previous Work and Our Methodology

In this section we first review previous work on differential-linear cryptanalysis, and then give
our new methodology, followed by a few implications. First observe that for simplicity we assume
that the probability for a linear approximation with bias ε is 1

2+ε in all the following descriptions;
but the same results can be obtained when the probability is 1

2 − ε.

3.1 Previous Work

Langford and Hellman’s Methodology. In 1994 Langford and Hellman [31] introduced
differential-linear cryptanalysis as a combination of differential and linear cryptanalysis, which is
based on the use of a differential-linear distinguisher. To define a differential-linear distinguisher,
they treated E as a cascade of two sub-ciphers E0 and E1, where E = E0 ◦ E1. A differential-
linear distinguisher is then defined to be the combination of a (truncated) differential and a linear
approximation (∆α→ ∆β, Γγ → Γδ), where Γγ → Γδ is a linear approximation with bias ε for
E1, and ∆α→ ∆β is a (truncated) differential with probability 1 for E0 which has a zero output
difference in the bit positions concerned by the input mask of the linear approximation (thus
β� γ = 0 holds). Let P be a plaintext chosen uniformly at random from {0, 1}n. Thus, we have
E0(P )� γ = E0(P ⊕α)� γ with probability 1. The differential-linear distinguisher is concerned
with the event δ�E(P ) = δ�E(P⊕α); and under Assumption 1 and the following Assumption 2
it has a probability of Pr(δ�E(P ) = δ�E(P ⊕α)) = (12 +ε)×(12 +ε)+(12−ε)×(12−ε) = 1

2 +2ε2.

Assumption 2 The two inputs E0(P ) and E0(P ⊕α) of the linear approximation for E1 behave
as independent inputs with respect to the linear approximation.

Note that E(P ) = E1(E0(P )) and E(P ⊕ α) = E1(E0(P ⊕ α)) in the above descriptions. As-
sumption 2 is somewhat like assuming an independent distribution for plaintext pairs generated
from a particular structure of data with certain property in differential cryptanalysis.

By contrast, for a random function, the expected probability of a differential-linear distin-
guisher is 1

2 . Therefore, if the bias |Pr(δ �E(P ) = δ �E(P ⊕ α))− 1
2 | = 2ε2 is sufficiently large,

we can distinguish E from a random function.

Biham et al.’s Methodology. A differential-linear distinguisher plays a fundamental role in
a differential-linear cryptanalysis attack. In 2002 Biham, Dunkelman and Keller [6] presented an
enhanced version to make a differential-linear distinguisher cover more rounds of a block cipher,
so that an attacker can potentially break more rounds of the cipher. Biham et al.’s enhanced
version includes the case when the (truncated) differential ∆α→ ∆β has a smaller probability
than 1, p say, with β meeting the condition β�γ = 0.1 A slightly revised version was given in [18].
They applied Langford and Hellman’s analysis described above when E0(P ) ⊕ E0(P ⊕ α) = β,
and used the following Assumption 3 for the cases where E0(P )⊕ E0(P ⊕ α) 6= β:2

Assumption 3 The output parities δ�E(P ) and δ�E(P ⊕α) have a uniform and independent
distribution in {0, 1} for the cases where E0(P )⊕ E0(P ⊕ α) 6= β.

1 A more general condition is β � γ = c, where c ∈ {0, 1} is a constant. Without loss of generality, we consider
the case with c = 0 throughout this paper.

2 We note that Biham et al. used a different assumption when reviewing the enhanced version in a few other
papers, [9] say, where they assumed that E0(P ) � γ = E0(P ⊕ α) � γ holds with half a chance for the cases
where E0(P ) ⊕ E0(P ⊕ α) 6= β, yielding the same probability value 1

2
+ 2pε2 as Assumption 3. We treat this

assumption as Assumption 3, though they are different.



Finally, under Assumptions 1, 2 and 3, Biham et al. got Pr(δ � E(P ) = δ � E(P ⊕ α)) =
p× (12 + 2ε2) + (1− p)× 1

2 = 1
2 + 2pε2.

As a result, they concluded that if the bias 2pε2 is sufficiently large, the distinguisher can be
used as the basis of a differential-linear attack to distinguish E from a random function. Roughly,
the attack has a data complexity of about O(p−2ε−4).

Note. We learnt from the comments of an anonymous reviewer that the same methodology
appeared earlier in Langford’s PhD thesis [30], (which seems to be not publicly accessible).
For simplicity, in this paper we use the phrase “Biham et al.’s methodology” to express this
methodology, but hope the reader to keep in mind that Langford proposed the same methodology
a few years earlier.

3.2 Our Methodology

In summary, the differential-linear distinguishers described above are concerned with the correla-
tion between a pair of output parities, where the pair of output parities are obtained by applying
a linear function (e.g. bitwise dot product with δ) to the outputs of a pair of input blocks with
difference α (under the same key). The combination of the input difference and the linear func-
tion is called a differential-linear distinguisher. More formally, we define the probability of the
differential-linear distinguisher as follows.

Definition 3. If α and δ are n-bit blocks, then the probability of the differential-linear distin-
guisher (α, δ) for E, written ∆α→ Γδ, is defined to be

PrE(∆α→ Γδ) = Pr
P∈{0,1}n

(E(P )� δ = E(P ⊕ α)� δ).

The following result follows trivially from Definition 3:

Proposition 3. If α and δ are n-bit blocks, then

PrE(∆α→ Γδ) =
|{x|E(x)� δ = E(x⊕ α)� δ, x ∈ {0, 1}n}|

2n
.

For a random function, the expected probability of a differential-linear distinguisher for any
combination (α, δ) is 1

2 . Similarly, the bias of the differential-linear distinguisher ∆α → Γδ is
defined to be |PrE(∆α→ Γδ)−1

2 |. Thus, if the bias is sufficiently large, we can use the differential-
linear distinguisher to distinguish E from a random function, given a sufficient number of chosen
plaintext pairs.

In practice, it is usually infeasible to compute the accurate probability of a differential-linear
distinguisher ∆α → Γδ by Proposition 3, and we have to make use of some assumptions to
approximate it, like Biham et al.’s methodology described in Section 3.1. However, Biham et
al.’s methodology uses the three assumptions as hypotheses and works only when Assumption 3
holds; otherwise it may give probability values that are highly inaccurate in some situations;
for example, let’s intuitively consider the naive situation where the differential ∆α → ∆β has
probability 1

2 and meets β � γ = 0, and all the other possible differentials {∆α → ∆β̂} meet

β̂ � γ = 1. Such an example can be easily built for a practical block cipher, DES say. The
differential ∆α → ∆β contributes 1

2 [(12 + ε) × (12 + ε) + (12 − ε) × (12 − ε)] = 1
4 + ε2 to the

probability of the distinguisher, and the other differentials {∆α → ∆β̂} contribute 1
2 [(12 + ε)×

(12 − ε) + (12 − ε)× (12 + ε)] = 1
4 − ε

2, which also cause a bias, but in a negative way, canceling the
bias due to ∆α→ ∆β. So the real bias of the distinguisher is 0, that is, the distinguisher has no
cryptanalytic significance. But if we applied Biham et al.’s methodology in this situation, the



distinguisher would have a bias of 2 × 1
2 × ε

2 = ε2, and thus the distinguisher would be useful
(if ε2 is large enough); but nevertheless it is useless in fact. Notice that this case is not truly a
counterexample to Biham et al.’s methodology, for it is clear that Assumption 3 does not hold
for it, but it suggests that we should be cautious about using Assumption 3 and actually, we
should be careful with using any assumption, and it is preferable to use as few assumptions as
possible.

Biham, Dunkelman and Keller used a heuristic way to approximate the probability of a
differential-linear distinguisher. We make an analysis for the probability of a differential-linear
distinguisher from a mathematical point, and obtain a new methodology under only Assump-
tions 1 and 2. Our result is given as Theorem 1, followed by a proof.

Theorem 1. An n-bit block cipher E is represented as a cascade of two sub-ciphers E0 and E1,
where E = E0 ◦E1. If α (6= 0) is an input difference for E0, Γγ → Γδ is a linear approximation
with bias ε for E1, and the sum of the probabilities for the differentials {∆α→ ∆β|PrE0(∆α→
∆β) > 0, γ � β = 0, β ∈ {0, 1}n} is p̂ (=

∑
γ�β=0 PrE0(∆α→ ∆β)), then under Assumptions 1

and 2 the probability of the differential-linear distinguisher ∆α→ Γδ is

Pr
P∈{0,1}n

(E(P )� δ = E(P ⊕ α)� δ) =
1

2
+ 2(2p̂− 1)ε2.

Proof. Given the input difference α for E0, there are one or more possible output differences
{β|PrE0(∆ α → ∆β) > 0, β ∈ {0, 1}n}; these output differences can be classified into two sets:
one is {β|γ�β = 0,PrE0(∆α→ ∆β) > 0, β ∈ {0, 1}n}, and the other is {β|γ�β = 1,PrE0(∆α→
∆β) > 0, β ∈ {0, 1}n}.

Let P be a plaintext chosen uniformly at random from {0, 1}n. Then, under Assumptions 1
and 2 we have

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )⊕ E0(P ⊕ α) = β, γ � β = 0)

= Pr(E0(P )� γ = E(P )� δ,E0(P ⊕ α)� γ = E(P ⊕ α)� δ|
E0(P )⊕ E0(P ⊕ α) = β, γ � β = 0) +

Pr(E0(P )� γ 6= E(P )� δ,E0(P ⊕ α)� γ 6= E(P ⊕ α)� δ|
E0(P )⊕ E0(P ⊕ α) = β, γ � β = 0)

= (
1

2
+ ε)× (

1

2
+ ε) + [1− (

1

2
+ ε)]× [1− (

1

2
+ ε)]

=
1

2
+ 2ε2,

and

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )⊕ E0(P ⊕ α) = β, γ � β = 1)

= Pr(E0(P )� γ = E(P )� δ,E0(P ⊕ α)� γ 6= E(P ⊕ α)� δ|
E0(P )⊕ E0(P ⊕ α) = β, γ � β = 1) +

Pr(E0(P )� γ 6= E(P )� δ,E0(P ⊕ α)� γ = E(P ⊕ α)� δ|
E0(P )⊕ E0(P ⊕ α) = β, γ � β = 1)

= (
1

2
+ ε)× [1− (

1

2
+ ε)] + [1− (

1

2
+ ε)]× (

1

2
+ ε)

=
1

2
− 2ε2.

Next, under Assumptions 1 and 2 we can compute the probability of the differential-linear
distinguisher as follows.

Pr(E(P )� δ = E(P ⊕ α)� δ)



=
∑

β∈{0,1}n,Y ∈{0,1}

Pr(E(P )� δ = E(P ⊕ α)� δ,E0(P )� γ ⊕ E0(P ⊕ α)� γ = Y,

E0(P )⊕ E0(P ⊕ α) = β)

=
∑

β∈{0,1}n,Y ∈{0,1}

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )� γ ⊕ E0(P ⊕ α)� γ = Y,

E0(P )⊕ E0(P ⊕ α) = β)×
Pr(E0(P )� γ ⊕ E0(P ⊕ α)� γ = Y,E0(P )⊕ E0(P ⊕ α) = β)

=
∑

β∈{0,1}n
Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )� γ ⊕ E0(P ⊕ α)� γ = 0,

E0(P )⊕ E0(P ⊕ α) = β)× Pr(E0(P )� γ ⊕ E0(P ⊕ α)� γ = 0,

E0(P )⊕ E0(P ⊕ α) = β) +∑
β∈{0,1}n

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )� γ ⊕ E0(P ⊕ α)� γ = 1,

E0(P )⊕ E0(P ⊕ α) = β)× Pr(E0(P )� γ ⊕ E0(P ⊕ α)� γ = 1,

E0(P )⊕ E0(P ⊕ α) = β) (1)

= (
1

2
+ 2ε2)×

∑
β∈{0,1}n,γ�β=0

Pr(E0(P )⊕ E0(P ⊕ α) = β) +

(
1

2
− 2ε2)×

∑
β∈{0,1}n,γ�β=1

Pr(E0(P )⊕ E0(P ⊕ α) = β)

=
1

2
+ 2(2p̂− 1)ε2. �

Consequently, the bias of the differential-linear distinguisher ∆α→ Γδ is

| Pr
P∈{0,1}n

(E(P )� δ = E(P ⊕ α)� δ)− 1

2
| = 2|2p̂− 1|ε2.

3.3 Implications

Biham et al.’s methodology requires Assumptions 1, 2 and 3, while our methodology requires
only Assumptions 1 and 2. Thus, our methodology is more reasonable than Biham et al.’s
methodology.

Biham et al.’s methodology holds only when Assumption 3 holds, and under the situation
we have p̂ = p + (1 − p)12 = 1

2 + p
2 , meaning that the probability value obtained using Biham

et al.’s methodology equals that obtained using our methodology. Thus, when Biham et al.’s
methodology holds, our methodology always holds. However, our methodology holds under some
situations where Biham et al.’s methodology does not hold, for example, it works for the naive
situation discussed in Section 3.2 where p̂ = p = 1

2 . Therefore, our methodology is more gen-
eral than Biham et al.’s methodology. (When Langford and Hellman’s methodology holds, our
methodology always holds as well.)

Our methodology still requires Assumptions 1 and 2. Assumption 1 is extensively used in
and is commonly regarded as necessary for differential and linear cryptanalysis in practice. As-
sumption 2 seems irremovable to get such a simple and practical probability formula; otherwise,
the formula could not be so simple, but a more accurate version can be easily obtained from
our above reasonings, for instance, from Eq. (1), though it is complicated and appears to be
hardly applicable in practice. The assumptions mean that, in some cases, the probability of a
differential-linear distinguisher may be overestimated or underestimated, and so is the success



probability of the attack; however, computer experiments [8,20,28,31,34,35] have shown that the
assumptions work well in practice for some block ciphers. Anyway, it seems reasonable to take
the worst case assumption from the point of the user of a cipher. We suggest that if possible an
attacker should check the validity of these assumptions when applying them to a specific cipher.

Our result shows that using only one (truncated) differential satisfying β � γ = 0 is not
sufficient in most situations, and it is likely to be not sufficient in the general situation; we
should use all the differentials satisfying β� γ = 0 instead. This makes the distinguisher harder
and even impossible to construct in practice, due to a large number of possible output differences.
Anyway, we should use at least those differentials with a significant contribution to reduce the
deviation if we are able to do so. Biham et al.’s methodology suggests that if the bias of the linear
approximation keeps constant, the larger p is, the bigger is the bias of the distinguisher. Now,
we know that may be not true in the general situation: A differential with a bigger probability
will not necessarily result in a distinguisher with a bigger bias.

When constructing a differential-linear distinguisher, in Biham et al.’s methodology the
attacker first chooses a (truncated) differential that meets the condition (as followed in [6,8,19,
20], in practice the output difference of the differential has zeros in the bit positions concerned by
the input mask of the linear approximation), then calculates the probability of the differential,
and finally takes this probability as the value of p. Our new methodology suggests a different
format, that is, computing p̂. Once the linear approximation and the input difference of the
differentials are chosen, that how many rounds can be constructed for a distinguisher depends
to some extent on the computational power available for the attacker.

Our new methodology can lead to some better differential-linear cryptanalytic results than
Biham et al.’s and Langford and Hellman’s methodologies, as to be demonstrated by its appli-
cations to the block ciphers DES, CTC2 and Serpent in the following sections. Before further
proceeding, observe that DES is a Markov cipher under the XOR difference notion [29], and sim-
ilarly we can learn that both CTC2 and Serpent are Markov ciphers under the XOR difference
notion.

At last, to be conservative, we would like to suggest that one should pay attention to all these
methodologies, for a real situation is usually hard to predict, and it may make the Assumption 3
for Biham et al.’s methodology hold.

4 Application to the DES Block Cipher

The DES block cipher is well known to both academia and industry, which has a 64-bit block
size, a 56-bit user key, and a total of 16 rounds. We refer the reader to [37] for the specifications
of DES.

In 1994, under the two default Assumptions 1 and 2 Langford and Hellman [31] used their
methodology to obtain a 6-round differential-linear distinguisher of DES, and finally applied
it to break 8-round DES; the attack recovers 16 key bits with a time complexity of 214.6 8-
round DES encryptions, so it would take 240 encryptions to recover the remaining 40 key bits
with an exhaustive search, meaning that a total of approximately 240 8-round DES encryptions
are required to recover the whole 56 key bits (Note that there might exist an efficient way to
obtain the remaining key bits). In 2002, under Assumptions 1, 2 and 3, Biham, Dunkelman
and Keller [6] described a 7-round differential-linear distinguisher of DES using their enhanced
methodology, and finally gave differential-linear attacks on 8 and 9-round DES; and an improved
version of the 9-round attack appeared in pages 108–111 of [18]. Their attack recovers 18 key
bits with a time complexity of 229.17 9-round DES encryptions, the remaining 38 key bits would
take 238 encryptions to recover with a key exhaustion, and thus it has a total of approximately
238 9-round DES encryptions to recover the whole 56 key bits.



Nevertheless, we find that our new methodology enables us to construct 7 and 8-round
differential-linear distinguishers of DES based on the same 3-round linear approximation as
used in the previous differential-linear cryptanalysis of DES [6, 31]; the 8-round distinguisher
can allow us to break 10-round DES. More importantly, we are able to construct a 11-round
differential-linear distinguisher of DES, and finally use it as the basis of a differential-linear
attack on 13-round DES. Below we describe the 11-round differential-linear distinguisher and
our attack on 13-round DES. We write the subkey used in the Sl S-box of Round m as Km,l,
where 1 ≤ m ≤ 16, 1 ≤ l ≤ 8.

4.1 A 11-Round Differential-Linear Distinguisher with Bias 2−24.05

The 11-round differential-linear distinguisher is made up of a 6-round linear approximation
Γγ → Γδ with bias 1.95×2−9 ≈ 2−8.04 and all the 5-round differentials {∆α→ ∆β} with ∆α =
0x4000000000000000. The 6-round linear approximation Γγ → Γδ is 0x0000000001040080 →
0x2104008000008000, (which is the best 6-round linear approximation given in [34]). Let’s com-
pute the probability of the 11-round differential-linear distinguisher using our new methodology.

We first consider the 5-round differentials {∆α → ∆β}. There is a one probability in the
first round, meaning that the first round is bypassed by the differential characteristic with
probability 1. After the E expansion operation of the second round, 0x4 in ∆α becomes 0x8,
which enters the S1 S-box of the second round and generates 11 differences after the S-box:
{ω|ω = 0x3, 0x5, 0x6, 0x7, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF}; the probabilities for these out-
put differences are given in the second column of Table 2. We represent ω as a concatenation of
four one-bit variables a||b||c||d, where a, b, c, d ∈ {0, 1}. Thus, the right half of the third round
has the input difference 00000000a0000000b00000c0000000d0 in binary notation, and this input
difference can make at most 6 S-boxes of the third round active: S2,S3, S4, S5,S6, S8.

In the third round, the S2 S-box has an input difference 00000a in binary notation, the S3

S-box has an input difference 0a0000 in binary notation, the S4 S-box has an input difference
00000b in binary notation, the S5 S-box has an input difference 0b0000 in binary notation, the
S6 S-box has an input difference 000c00 in binary notation, and the S8 S-box has an input
difference 000d00 in binary notation. We denote respectively by x0, x1, x2 the most significant
bit, the second most significant bit and the second least significant bit of the output difference of
the S2 S-box, by x3||x4||x5||x6 the output difference of the S3 S-box, by x7, x8, x9 the second most
significant bit, the second least significant bit and the least significant bit of the output difference
of the S4 S-box, by x10||x11||x12||x13 the output difference of the S5 S-box, by x14, x15, x16 the
most significant bit, the second most significant bit and the second least significant bit of the
output difference of the S6 S-box, and by x17, x18, x19 the most significant bit, the second least
significant bit and the least significant bit of the output difference of the S8 S-box.

In the fourth round, the S1 S-box has the input difference 0||x9||(x2 ⊕ 1)||x13|| x14||x17, and
we denote by y0 the second most significant bit of its output difference; the S2 S-box has the
input difference x14||x17||x6||0||x10||0, and we denote by y1 the least significant bit of its out-
put difference; the S3 S-box has the input difference x10||0||x8||x16||0||x0, and we denote by y2
the second most significant bit of its output difference; the S4 S-box has the input difference
0||x0||x11||x18||x4||0, and we denote by y3 the second most significant bit of its output difference;
the S6 S-box has the input difference x7||x19||0||0||x3||x12, and we denote by y4 the least signif-
icant bit of its output difference; the S8 S-box has the input difference x1||x15||x5||0||0||x9, and
we denote by y5 the least significant bit of its output difference. Thus we have that the input
difference of the S5 S-box of the fifth round is y2||(y0 ⊕ b)||y1||y4||y3||y5.

A simple analysis reveals that the three bits concerned by the input mask Γγ depend on:
(1) x10, x11 and x12; and (2) The three most significant bits of the output difference of the S5

S-box of the fifth round; and we denote the XOR of the three bits by z.



Table 2. Probabilities for the eleven output differences in {ω}

ω PrS1
(∆0x8→ ∆ω) Pr(∆βω � Γγ = 0|∆0x8→ ∆ω)

0x3 12
64

0.49779944866895676

0x5 8
64

0.49595199525356293

0x6 8
64

0.50433863041689619

0x7 4
64

0.50256029706542904

0x9 6
64

0.50855094581311278

0xA 2
64

0.50591027818154544

0xB 8
64

0.50239421910760029

0xC 8
64

0.49929085310759547

0xD 2
64

0.49968796220765910

0xE 2
64

0.50061782109781916

0xF 4
64

0.50005227406592345

For each difference ω, we denote by βω the output difference(s) of the 5-round DES. Now,
by the differential distribution tables of the S-boxes (see [11]) we can compute the probability
that the XOR of the concerned three bits of βω (i.e., x10 ⊕ x11 ⊕ x12 ⊕ z) is zero by performing
a computer program over all the possible (truncated) differential characteristics. These prob-
abilities are given in the third column of Table 2. The largest number of possible differential
characteristics happens when ω = 0xF , which is 7× 10× 4× 10× 6× 7× 26 × 2 ≈ 223.9; and it
takes a few seconds to check on a personal computer.

Finally, by Theorem 1 we have that the probability of the 11-round distinguisher ∆α→ Γδ
is 1

2 + 2 × [2 ×
∑

ω PrS1
(∆0x8 → ∆ω) × Pr(∆βω � Γγ = 0|∆0x8 → ∆ω) − 1] × (2−8.04)2 ≈

1
2 + 2 × 2−8.97 × (2−8.04)2 ≈ 1

2 + 2−24.05. Therefore, the 11-round distinguisher has a bias of
2−24.05.

4.2 Differential-Linear Attack on 13-Round DES

The 11-round distinguisher ∆α → Γδ can be used to break 13-round DES. We assume the
attacked rounds are the first thirteen rounds from Rounds 1 to 13. A simple analysis on the key
schedule of DES reveals that K1,1 and K13,1 overlap in 2 bits (i.e. bits 17 and 34 of the user
key), and thus given K1,1 we know 2 bits of K13,1. The attack procedure is as follows.

1. Choose 247.1 structures Si, (i = 1, 2, · · · , 247.1), where a structure is defined to be a set of 24

plaintexts Pi,j with bits (9,17,23, 31) of the left half taking all the possible values, bit (2) of
the right half fixed to 0 and the other 59 bits fixed, (j = 1, 2, · · · , 24). In a chosen-plaintext
attack scenario, obtain all the ciphertexts for the 24 plaintexts in each of the 247.1 structures;
we denote by Ci,j the ciphertext for plaintext Pi,j .

2. Choose 247.1 structures Ŝi, (i = 1, · · · , 247.1), where a structure Ŝi is obtained by setting 1 to
bit (2) of the right half of all the plaintexts Pi,j in Si. In a chosen-plaintext attack scenario,

obtain all the ciphertexts for the 24 plaintexts in each Ŝi.
3. Guess a value for K1,1, and do as follows.

(a) Initialize 220 counters to zero, which correspond to the 220 possible pairs consisting of
the possible values for a couple of the 10 ciphertext bits: bit (17) of the left half and bits
(1,2,3,4,5,8,14,25,32) of the right half.

(b) Partially encrypt every (remaining) plaintext Pi,j with the guessed K1,1 to get its inter-
mediate value immediately after Round 1; we denote it by εi,j .

(c) Partially decrypt εi,j ⊕ 0x4000000000000000 with the guessed K1,1 to get its plaintext,

and find the plaintext in Ŝi; we denote it by P̂i,j , and denote by Ĉi,j the corresponding

ciphertext for P̂i,j . Store (Ci,j , Ĉi,j) in a table.



(d) For every ciphertext pair (Ci,j , Ĉi,j), add 1 to the counter corresponding to the pair of

the 10 ciphertext bits specified by (Ci,j , Ĉi,j).

(e) Guess a value for the unknown 4 bits of K13,1, and do as follows.

i. For each of the 220 pairs of the concerned 10 ciphertext bits, partially decrypt it with
the guessed K13,1 to get the pair of the 5 bits concerned by the output mask Γδ, and
compute the XOR of the pair of the 5 bits (concerned by the output mask).

ii. Count the number of the ciphertext pairs (Ci,j , Ĉi,j) such that the XOR of the pair
of the 5 bits concerned by Γδ is zero, and compute its deviation from 250.1.

iii. If the guess for (K1,1,K13,1) is the first guess for (K1,1,K13,1), then record the guess
and the deviation computed in Step 3(e)(ii); otherwise, record the guess and its de-
viation only when the deviation is larger than that of the previously recorded guess,
and remove the guess with the smaller deviation.

4. For the (K1,1,K13,1) recorded in Step 3(e)(iii), exhaustively search for the remaining 46 key
bits with two known plaintext/ciphertext pairs. If a 56-bit key is suggested, output it as the
user key of the 13-round DES.

The attack requires 252.1 chosen plaintexts. The required memory for the attack is dominated
by the storage of the plaintexts and ciphertexts, which is 252.1 × 16 = 256.1 bytes. Steps 1 and
2 have a time complexity of 252.1 13-round DES encryptions. Steps 3(b) and 3(c) have a time
complexity of 2 × 251.1 × 26 × 1

8×13 ≈ 251.4 13-round DES encryptions. Step 3(d) has a time

complexity of 251.1 × 26 = 257.1 memory accesses. Roughly, an extremely conservative estimate
is: 13 memory accesses equal a 13-round DES encryption in terms of time, assuming that the 13-
round DES is implemented with 8 parallel S-box lookups per round and one round is equivalent
to one memory access. So the time complexity of Step 3(d) is equivalent to 257.1

13 ≈ 253.4 13-round
DES encryptions. The time complexity of Step 3(e) is dominated by the time complexity of Step
3(e)(i), which is 2× 26 × 24 × 220 × 1

8×13 ≈ 224.3 13-round DES encryptions. Step 4 has a time

complexity of 246 13-round DES encryptions. Therefore, the attack has a total time complexity
of approximately 254.2 13-round DES encryptions, faster than exhaustive key search. There are
251.1 plaintext pairs (Pi,j , P̂i,j) for a guess of (K1,1,K13,1), and thus following Theorem 2 of [39],
we can know that the attack has a success probability of about 99%.

This shows that our new methodology enables us to break more rounds of DES than Bi-
ham et al.’s or Langford and Hellman’s methodology. Since our attack works under only two
assumptions, it is more reasonable than Biham et al.’s attack.

Note. Using the new methodology we can obtain a few differential-linear distinguishers operat-
ing on a smaller number of rounds, for example, a 7-round distinguisher (∆α = 0x4000000000000
000, Γ δ = 0x2104008000008000) with bias 2−7.94 and an 8-round distinguisher (∆α = 0x4000000
000000000, Γ δ = 0x2104008000008000) with bias 2−12.83, both using the same 3-round linear
approximation as used in Biham et al.’s and Langford and Hellman’s differential-linear crypt-
analysis of DES. These distinguishers can allow us to break DES with a smaller number of
rounds at a smaller complexity, for example, the 8-round distinguisher can similarly be used to
break 10-round DES with a data complexity of 229.66 chosen plaintexts and a time complexity
of 244 10-round DES encryptions at a success rate of about 99%.

5 Application to the CTC2 Block Cipher

The CTC2 [14] cipher was designed to show the strength of algebraic cryptanalysis [15] on
block ciphers by the proposer of algebraic cryptanalysis, who described an algebraic attack on 6
rounds of the version of CTC2 that uses a 255-bit block size and a 255-bit key. Using Biham et



al.’s methodology, in 2009 Dunkelman and Keller [19] described 6 and 7-round differential-linear
distinguishers for the version of CTC2, and finally presented differential-linear attacks on 7 and
8 rounds of CTC2 (with a 255-bit block size and key). The 8-round attack is known as the best
previously published cryptanalytic result on the version of CTC2 in terms of the numbers of
attacked rounds.

In this section, first we describe a flaw in the previous differential-linear cryptanalysis of
CTC2. Then, under the new methodology we present a 8.5-round differential-linear distinguisher
with bias 2−68 for the CTC2 with a 255-bit block size and key, and finally give a differential-
linear attack on 10-round CTC2 (with a 255-bit block size and a key). We first briefly describe
the CTC2 cipher.

5.1 The CTC2 Block Cipher

The CTC2 [14] block cipher has a variable block size, a variable length key and a variable
number of rounds. There are many combinations for the block size, key size and round number.
As in [19], we only consider the version of CTC2 that uses a 255-bit block size and a 255-bit
key. CTC2 uses the following two elementary operations to construct its round function.

– S is a non-linear substitution operation constructed by applying the same 3× 3-bit bijective
S-box 85 times in parallel to an input.

– D is a linear diffusion operation, which takes a 255-bit block Y = (Y254, · · · , Y1, Y0) as input,
and outputs a 255-bit block Z = (Z254, · · · , Z1, Z0), computed as defined below.{

Z151 = Y2 ⊕ Y139 ⊕ Y21
Z(i×202+2) mod 255 = Yi ⊕ Y(i+137) mod 255 i = 0, 1, 3, 4, · · · , 254

CTC2 takes as input a 255-bit plaintext block P , and its encryption procedure for Nr rounds
is, where Z0, Xi, Yi, Zi, XNr , YNr , ZNr are 255-bit variables, and K0,Ki,KNr are round keys
generated from a user key K as Kj = K≪ j in our notation, (0 ≤ j ≤ Nr).

1. Z0 = P .
2. For i = 1 to Nr − 1:

– Xi = Zi−1 ⊕Ki−1,
– Yi = S(Xi),
– Zi = D(Yi).

3. XNr = ZNr−1 ⊕KNr−1, YNr = S(Xi), ZNr = D(YNr).
4. Ciphertext = ZNr ⊕KNr .

To keep in accordance with [14], the ith iteration of Step 2 in the above description is referred
to as Round i, (1 ≤ i ≤ Nr − 1), and the transformations in Steps 3 and 4 are referred to as
Round Nr. We number the 85 S-boxes in a round from 0 to 84 from right to left.

5.2 A Flaw in Previous Differential-Linear Cryptanalysis of CTC2

Observe that Dunkelman and Keller used the 0.5-round differential e30,151
D→ e2 with probability

1 in their differential-linear attacks presented in [19]. However, we find that this differential is
not correct: For the D operation, given the input difference e30,151, we cannot get the output
difference e2; and the correct output difference should be e25,63,159,197. On the other hand, for
the D operation, given the output difference e2, the input difference has over fifty non-zero bits,
much more than the number two in e30,151. As a consequence, the differential-linear cryptanalytic
results are flawed.

Note that Dunkelman and Keller also described differential attacks on 5, 6 and 7-round

CTC2 in [19], and this 0.5-round differential e30,151
D→ e2 with probability 1 was also used and

played a very important role in the differential results, thus they are flawed, too. It seems very
hard to correct those differential and differential-linear cryptanalytic results.



5.3 A 8.5-Round Differential-Linear Distinguisher with Bias 2−68

The 8.5-round differential-linear distinguisher with bias 2−68 is made up of a 5.5-round linear
expression Γγ → Γδ with bias 2−33 and all the 3-round differentials {∆α→ ∆β} with ∆α = e0.
The 5.5-round linear expression Γγ → Γδ is e5,33,49,54,101,112,131,138,155,168,188,193,217,247,251 →
e32,151. Using the new methodology we can compute that the 8.5-round distinguisher ∆α → δ
has a bias of 2−68, in a manner similar to that for the above 11-round DES distinguisher.

5.4 Differential-Linear Attack on 10-Round CTC2 with a 255-Bit Block Size and
Key

The above 8.5-round distinguisher can be used as the basis for a differential-linear attack break-
ing the version of CTC2 that has a 255-bit block size, a 255-bit key and a total of 10 rounds.

We assume the attacked rounds are the first ten rounds from Rounds 1 to 10; and we use the
distinguisher from Rounds 2 until before the D operation of Round 10. We can learn that the
input difference α propagates to 16 bit positions after the inverse of the D operation of Round
1: Bits 17, 21, 40, 59, 78, 97, 116, 135, 139, 154, 158, 177, 196, 215, 234 and 253. The 16 active
bits correspond to 16 S-boxes of Round 0: S-boxes 5, 7, 13, 19, 26, 32, 38, 45, 46, 51, 52, 59, 65,
71, 78 and 84; let Θ be the set of the 16 S-boxes, and KΘ be the 48 bits of K0 corresponding
to the 16 S-boxes in Θ. Another observation is that we do not need to guess the subkey bits
from K10, because the output mask Γδ of the 8.5-round distinguisher concerns the intermediate
value immediately after the S operation of Round 10, and for a pair of ciphertexts (C, Ĉ) the
value of δ�D−1(C)⊕ δ�D−1(Ĉ) equals to δ�D−1(C ⊕ Ĉ), which is independent of K10. The
attack procedure is as follows.

1. Choose 294 structures Si, (i = 0, 1, · · · , 294 − 1), where a structure is defined to be a set of
248 plaintexts Pi,j with the 48 bits for the S-boxes in Θ taking all the possible values and
the other 207 bits fixed, (j = 0, 1, · · · , 248 − 1). In a chosen-plaintext attack scenario, obtain
all the ciphertexts for the 248 plaintexts in each of the 294 structures; we denote by Ci,j the
ciphertext for plaintext Pi,j .

2. Initialize 248 counters to zero, which correspond to all the possible values for KΘ.
3. For every structure Si, guess a value for KΘ, and do as follows.

(a) Partially encrypt every (remaining) plaintext Pi,j with the guessed KΘ to get its inter-
mediate value immediately after the S operation of Round 1; we denote it by εi,j .

(b) Take bitwise complements to bits (17, 21, 40, 59, 78, 97, 116, 135, 139, 154, 158, 177, 196,
215, 234, 253) of εi,j , and keep the other bits of εi,j invariant; we denote the resulting
value by ε̂i,j .

(c) Partially decrypt ε̂i,j with the guessed KΘ to get its plaintext, and find the plaintext in

Si; we denote it by P̂i,j , and denote by Ĉi,j the corresponding ciphertext for P̂i,j .

(d) For (Ci,j , Ĉi,j), compute the XOR of bits 32 and 151 of D−1(Ci,j ⊕ Ĉi,j). If the XOR is
zero, add 1 to the counter corresponding to the guessed KΘ.

4. For the KΘ with the highest deviation from 2140, exhaustively search for the remaining 207
key bits with a known plaintext/ciphertext pair. If a 255-bit key is suggested, output it as
the user key of CTC2.

The attack requires 2142 chosen plaintexts. Note that we start to collect another structure of
plaintexts only after testing a structure of plaintexts, so that we can reuse the memory for storing
the structure of plaintexts, hence the required memory of the attack is dominated by the storage
of the 248 counters and a structure of 248 plaintext-ciphertext pairs, which is 248× 48

8 +2×248×
255
8 ≈ 254.2 bytes of memory. The time complexity of Step 3 is dominated by the time complexity

of Steps 3(a), 3(c) and 3(d), which is approximately 2×2141×248× 16
85×10 +2141×248× 1

10 ≈ 2186.2



10-round CTC2 encryptions. Step 4 has a time complexity of 2207 10-round CTC2 encryptions.
Therefore, the attack has a total time complexity of 2207 10-round CTC2 encryptions to find
the 255-bit key. There are 2141 plaintext pairs (Pi,j , P̂i,j) for a guess of KΘ. Following Theorem
2 of [39], we can learn that the probability that the correct guess for KΘ is recorded in Step 2(f)
is about 99.9%. Thus, the attack has a success probability of about 99.9%.

6 Application to the Serpent Block Cipher

The Serpent [1] block cipher is one of the five Advanced Encryption Standard (AES) finalists,
second to the Rijndael [16] cipher that was selected as the AES [38]. Serpent was designed
in a rather conservative way, and it was included in the GNU project [21] for possible use in
cryptographic applications in reality such as SNMP (Simple Network Management Protocol),
LDAP (Lightweight Directory Access Protocol) and X.509 certificates.

In 2003, Biham et al. [8] described a 9-round differential-linear distinguisher of Serpent,
and finally gave a differential-linear attack on 11-round Serpent with a 256-bit key. In 2008
Dunkelman et al. [20] presented an improved 9-round differential-linear distinguisher of Serpent,
and finally used it as the basis for a differential-linear attack on 12-round Serpent with a 256-bit
key. All these attacks are based on Biham et al.’s methodology. In terms of the numbers of
attacked rounds, the 12-round attack is known as the best previously published cryptanalytic
result on Serpent.

In this section, we present a 9-round differential-linear distinguisher with bias 2−59.41 under
our new methodology, which can be used to break 12-round Serpent (with a 256-bit key) slightly
faster than Dunkelman et al.’s attack at a higher success rate. We first briefly describe the Serpent
block cipher.

6.1 The Serpent Block Cipher

The Serpent [1] block cipher has a 128-bit block size, a variable length key of up to 256 bits, and a
total of 32 rounds; a shorter key can be used by appending one “1” bit to the most significant bit
end, followed by as many “0” bits as required. Serpent uses the following elementary operations:

– IP/FP is the initial/final permutation; see [1] for their specifications.

– Si is a non-linear substitution operation constructed by applying the same 4×4-bit bijective
Si mod 8 S-box 32 times in parallel to an input, (0 ≤ i ≤ 31). Refer to [1] for specifications of
the S-boxes S0,S1, · · · , S7.

– L is a linear diffusion operation, which takes as input a 128-bit block of four 32-bit words
X = (X3, X2, X1, X0), and outputs a 128-bit block of four 32-bit words Y = (Y3, Y2, Y1, Y0),
computed as follows.

– X0 = X0≪ 13,

– X2 = X2≪ 3,

– X1 = X0 ⊕X1 ⊕X2,

– X3 = X3 ⊕X2 ⊕ (X0 � 3),

– X1 = X1≪ 1,

– X3 = X3≪ 7,

– X0 = X0 ⊕X1 ⊕X3,

– X2 = X2 ⊕X3 ⊕ (X1 � 7),

– X0 = X0≪ 5,

– X2 = X2≪ 22,

– Y = (X3, X2, X1, X0).



Serpent takes as input a 128-bit plaintext block P , and its encryption procedure is, where
B̂0, B̂1, · · · , B̂32 are 128-bit variables, and K0,K1, · · · ,K32 are round keys.

1. B̂0 = IP(P ).

2. For i = 0 to 30:

– B̂i+1 = L(Si(B̂i ⊕Ki)).

3. B̂32 = S31(B̂31 ⊕K31)⊕K32.

4. Ciphertext = FP(B̂32).

The ith iteration of Step 2 in the above description is referred to below as Round i, (0 ≤ i ≤
30), and the transformation in Steps 3 and 4 is referred to below as Round 31; this is in accordance
with [1]. We number the 32 S-boxes of a round from 0 to 31 from right to left. For simplicity,
we describe a state S in a Serpent encryption operation as four 32-bit words (s3, s2, s1, s0), and
write it as (s3,31||s2,31||s1,31||s0,31)|| · · · ||(s3,1|| s2,1||s1,1||s0,1)||(s3,0||s2,0||s1,0||s0,0), where sj,l is
the l-th bit of sj , (0 ≤ j ≤ 3, 0 ≤ l ≤ 31). We write Ki,m for the 4-bit subkey of Ki that
corresponds to S-box m of Round i, (0 ≤ m ≤ 31). As the IP and FP operations are simply
linear diffusion transformations, we omit them in our analysis.

6.2 A 9-Round Differential-Linear Distinguisher with Bias 2−59.41

The 9-round differential-linear distinguisher is made up of a 6-round linear approximation Γγ →
Γδ with bias 2−27 for Rounds 5 to 10 and all the 3-round differentials {∆α→ ∆β} for Rounds
2 to 4 with ∆α = 0x000000A0000000000000000000000000. The 6-round linear approximation
Γγ→Γδ is 0x00400000000000000000000000000002→0x000B0000B000030000B0200E00000010.
Finally, we can similarly use the new methodology to compute that the 9-round differential-linear
distinguisher ∆α→ Γδ has a bias of 2−59.41.

6.3 Differential-Linear Attack on 12-Round Serpent

The 9-round differential-linear distinguisher enables us to construct a differential-linear attack
on 12-round Serpent (with a 256-bit key). We attack Rounds 0 to 11, and use the distinguisher
from Rounds 2 to 10. The input difference α becomes 0x000000A2040008000000000000000000
after being applied the L−1 operation of Round 1, and the 5 active bits correspond to S-boxes
18, 22, 24 and 25 of Round 1. It makes 27 active S-boxes of Round 0: S-boxes 0, 2, 3, 4, 5, 6, 7,
9, 11, 12, 13, 15, 16, · · ·, 29 and 31; let Θ be the set of the 27 S-boxes, and KΘ be the 108 bits of
K0 corresponding to the 27 S-boxes in Θ. The 16 bits concerned by the output mask correspond
to S-boxes 1, 8, 11, 13, 18, 23 and 28 of Round 11. The attack procedure is as follows, where
the values of parameters λ and φ will be specified in the subsequent analysis.

1. Choose λ structures Si, (i = 0, 1, · · · , λ− 1), where a structure is defined to be a set of 2108

plaintexts Pi,j with the 108 bits for the 27 S-boxes in Θ taking all the possible values and
the other 20 bits fixed, (j = 0, 1, · · · , 2108 − 1). In a chosen-plaintext attack scenario, obtain
all the ciphertexts for the 2108 plaintexts in each of the λ structures; we denote by Ci,j the
ciphertext for plaintext Pi,j .

2. Guess a value for (KΘ,K1,18,K1,22,K1,24,K1,25), and do as follows.

(a) Initialize 256 counters to zero, which correspond to the 256 possible pairs of the 28 ci-
phertext bits corresponding to S-boxes 1, 8, 11, 13, 18, 23 and 28 of Round 11.

(b) Partially encrypt every (remaining) plaintext Pi,j with the guessed (KΘ,K1,18,K1,22,
K1,24,K1,25) to get its intermediate value immediately after the S operation of Round 1;
we denote it by εi,j .



(c) Compute εi,j⊕0x000000A2040008000000000000000000, and we denote the resulting value
by ε̂i,j .

(d) Partially decrypt ε̂i,j with the guessed (KΘ,K1,18,K1,22,K1,24,K1,25) to get its plaintext,

and find the plaintext in Si; we denote it by P̂i,j , and denote by Ĉi,j the corresponding

ciphertext for P̂i,j .

(e) For every ciphertext pair (Ci,j , Ĉi,j), add 1 to the counter corresponding to the pair of

the 28 ciphertext bits specified by (Ci,j , Ĉi,j).
(f) Guess a value for (K12,1,K12,8,K12,11,K12,13,K12,18,K12,23,K12,28), and do as follows.

i. For each of the 256 pairs of the concerned 28 ciphertext bits, partially decrypt it with
the guessed (K12,1,K12,8, · · · ,K12,28) to get the pair of the 16 bits concerned by the
output mask, and compute the XOR of the pair of the 16 bits (concerned by the
output mask).

ii. Count the number of the ciphertext pairs (Ci,j , Ĉi,j) such that the XOR of the pair
of the 16 bits concerned by the output mask is zero, and compute its deviation from
λ · 2107.

iii. If the guessed (KΘ,K1,18,K1,22,K1,24,K1,25,K12,1,K12,8, · · · ,K12,28) belong to the
first φ guesses for (KΘ,K1,18,K1,22,K1,24,K1,25,K12,1, K12,8, · · · ,K12,28), then record
the guess and the deviation computed in Step 2(f)(ii); otherwise, record the guess
and its deviation only when the deviation is larger than the smallest deviation of the
previously recorded φ guesses, and remove the guess with the smallest deviation from
the φ guesses.

3. For every recorded (KΘ,K1,18,K1,22,K1,24,K1,25) in Step 2(f)(iii), exhaustively search for
the remaining 132 key bits with two known plaintext-ciphertext pairs. If a 256-bit key is
suggested, output it as the user key of the 12-round Serpent.

The attack requires λ × 2108 chosen plaintexts. The required memory for the attack is
dominated by the storage of the plaintexts and ciphertexts, which is λ × 2108 × 32 = λ ×
2113 bytes. The time complexity of Step 2 is dominated by the time complexity of Steps
2(b), 2(d) and 2(f)(i), which is λ × 2 × 2107 × 2124 × 27+4

32×12 + 2 × 2124 × 228 × 256 × 7
32×12 ≈

λ × 2228.37 12-round Serpent encryptions. Step 3 has a time complexity of at most φ × 2132

12-round Serpent encryptions. There are λ × 2107 plaintext pairs (Pi,j , P̂i,j) for a guess of
(KΘ,K1,18,K1,22,K1,24,K1,25,K12,1,K12,8,· · · ,K12,28). Following Theorem 2 of [39], we have that
the probability that the correct guess of (KΘ,K1,18,K1,22, K1,24,K1,25,K12,1, K12,8, · · · ,K12,28)
is recorded in Step 2(f)(iii) is about 96.6% when we set λ = 218.8 and φ = 1, and is about
98.8% when we set λ = 216.5 and φ = 2104. Thus, when λ = 216.5 and φ = 2104, with a success
probability of about 98.8% the attack requires 2124.5 chosen plaintexts, and has a total time
complexity of approximately 2244.9 12-round Serpent encryptions.

Note. For the purpose of then AES submission requirements, the Serpent designers also con-
sidered the cases of 128 and 192-bit keys, and we denote these versions by Serpent-128/192,
respectively. There are some published cryptanalytic results on Serpent-128/192, and we are par-
ticularly interested in those differential-linear cryptanalytic results: Biham et al.’s and Dunkel-
man et al.’s differential-linear attacks on 10-round Serpent-128 and 11-round Serpent-192 given
in [8, 20]. All these attacks are based on Biham et al.’s methodology. A detailed analysis shows
that our 9-round differential-linear distinguisher with bias 2−59.41 can also be used to break 10-
round Serpent-128 and 11-round Serpent-192; and more results can be obtained, in particular,
we can break 10-round Serpent-128 with a data complexity of 2123.4 chosen plaintexts and a
time complexity of 2123.4 10-round Serpent encryptions at a success rate of 99.2%, and break
11-round Serpent-192 with a data complexity of 2125.5 chosen plaintexts and a time complexity
of 2148.1 11-round Serpent encryptions at a success rate of 99%.



7 Possible Extensions of Our Methodology

In this section we briefly discuss several possible extensions of our methodology, although par-
ticulars should be noticed.

The first possible extension is to consider the case when using two different values for the
output mask δ in Definition 3, say δ1, δ2; that is, we might consider the event E(P ) � δ1 =
E(P ⊕ α)� δ2 for a randomly chosen P ∈ {0, 1}n. The resulting differential-linear distinguisher
would have a bias of 2(2p̂ − 1)ε1ε2 for some ε1 and ε2 denoting the respective bias of the two
linear approximations. From a theoretical point of view, there seems no need to use two different
output masks, for we can always choose the output mask with a bigger bias, and a key-recovery
attack based on a differential-linear distinguisher with two different output masks requires us to
guess no less key bits than that based on a differential-linear distinguisher with one output mask;
however, the case with two different output masks may depend on Assumption 2 to a lesser degree
than the above discussed case with one output mask, for the two linear approximations can be
independent somewhat, instead of two identical linear approximations used in the case with one
output mask, and thus it may potentially be particularly helpful when making a practicable
attack in reality.

The second possible extension is to consider the case when applying our methodology in
a related-key [2, 26] attack scenario. The notion of the related-key differential-linear analysis
appeared in [23], and later Kim [25] described an enhanced version based on Biham et al.’s
enhanced methodology. Likewise, we can get a more reasonable and general version based on
our new methodology.

Other possible extensions are to obtain new methodologies for the high-order differential-
linear attack, the differential-bilinear attack and the differential-bilinear-boomerang attack,
which were proposed in [9], in a way similar to the above new methodology for differential-
linear cryptanalysis. At present, however, these attack techniques appear to be hard to apply to
obtain good cryptanalytic results in practice.

8 Conclusions

In this paper we have given a new methodology for differential-linear cryptanalysis under only
the two assumptions implicitly used in the very first published paper on this technique. The
new methodology is more reasonable and more general than Biham et al.’s methodology, and it
can lead to some better differential-linear cryptanalytic results for some block ciphers than the
previously known methodologies.

Using the new methodology, we have presented differential-linear attacks on 10-round CTC2
with a 255-bit block size and key, 13-round DES, and 12-round Serpent. In terms of the num-
bers of attacked rounds, the 10-round CTC2 attack is the first published cryptanalytic attack
on the version of CTC2; the 13-round DES attack is much better than any previously published
differential-linear cryptanalytic results for DES, though it is inferior to the best previously
published cryptanalytic results for DES; and the 12-round Serpent attack matches the best
previously published cryptanalytic result for Serpent (that was obtained using Biham et al.’s
methodology). In addition, an important merit for these new differential-linear cryptanalytic
results is that they are obtained under only two assumptions and thus are more reasonable
than those obtained using Biham et al.’s methodology. Like most cryptanalytic results on block
ciphers, most of these attacks are far less than practical at present, but they provide a compre-
hensive understanding of the security of the block ciphers.

The new methodology can be potentially used to cryptanalyse other block ciphers, and block
cipher designers should pay attention to this new methodology when designing ciphers.



The new methodology still requires Assumptions 1 and 2. As a direction for future research
on differential-linear cryptanalysis, it would be interesting to investigate how to further reduce
the number of assumptions used, making a more reasonable and more general methodology that
could be used in practice.
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