
New Observations on Impossible Differential Cryptanalysis of

Reduced-Round Camellia⋆

Ya Liu1, Leibo Li2,3⋆⋆, Dawu Gu1, Xiaoyun Wang2,3,4, Zhiqiang Liu1, Jiazhe Chen2,3, Wei Li5,6

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{liuya0611,dwgu,ilu zq}@sjtu.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security,

Ministry of Education, Shandong University, Jinan 250100, China
3 School of Mathematics, Shandong University, Jinan 250100, China

{lileibo, jiazhechen}@mail.sdu.edu.cn
4 Institute for Advanced Study, Tsinghua University, Beijing 100084, China

xiaoyunwang@mail.tsinghua.edu.cn
5 School of Computer Science and Technology, Donghua University, Shanghai 201620, China

6 Shanghai Key Laboratory of Integrate Administration Technologies
for Information Security, Shanghai 200240, China

liwei.cs.cn@gmail.com

Abstract. Camellia is one of the widely used block ciphers, which has been selected as an in-
ternational standard by ISO/IEC. In this paper, by studying the properties of the key-dependent
transformations FL/FL−1, we improve the previous results on impossible differential cryptanalysis
of reduced-round Camellia and gain some new observations. First, we introduce some new 7-round
impossible differentials of Camellia for weak keys. These weak keys that work for the impossible
differential take 3/4 of the whole key space, therefore, we further get rid of the weak-key assump-
tion and leverage the attacks on reduced-round Camellia to all keys by utilizing a method that is
called the multiplied method. Second, we build a set of differentials which contains at least one
8-round impossible differential of Camellia with two FL/FL−1 layers. Following this new result,
we show that the key-dependent transformations inserted in Camellia cannot resist impossible dif-
ferential cryptanalysis effectively. Based on these 8-round impossible differential, we present a new
cryptanalytic strategy to mount impossible differential attacks on reduced-round Camellia.
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1 Introduction

The block cipher Camellia was proposed by NTT and Mitsubishi in 2000 [1]. It was selected as
an e-government recommended cipher by CRYPTREC in 2002 [4] and the NESSIE block cipher
portfolio in 2003 [19]. In 2005, it was adopted as the international standard by ISO/IEC [6].
Camellia is a 128-bit block cipher. It supports variable key sizes and the number of the rounds
depends on the key size, i.e., 18 rounds for a 128-bit key size and 24 rounds for 192/256-bit key
sizes. For simplicity, they can be usually denoted as Camellia-128, Camellia-192 and Camellia-
256, respectively. Camellia adopts the basic Feistel structure with some key-dependent functions
FL/FL−1 inserted every six rounds, where these key-dependent transformations must be linear
and reversible for any fixed key. The goals for such a design are to provide non-regularity across
rounds and to thwart further unknown attacks.
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Up to now, many cryptanalytic methods were used to evaluate the security of reduced-round
Camellia such as linear cryptanalysis, differential cryptanalysis, higher order differential attack,
truncated differential attack, collision attack, square attack and impossible differential attack.
Among them, most attacks focused on the security of simplified versions of Camellia, which
did not take the FL/FL−1 and whitening layers into account [9–11, 15–18, 20–23], and only a
few involved in the study of the original Camellia. For instance, Hatano et al. gave an higher
order differential attack on the last 11 rounds of Camellia-256 [5], Chen et al. constructed a
6-round impossible differential with FL/FL−1 layer to attack 10-round Camellia-192 and 11-
round Camellia-256 [3], Liu et al. attacked 11-round Camellia-192 and 12-round Camellia-256
by constructing a 7-round impossible differential [14]. Li et al. presented impossible differen-
tial attacks on 10-round Camellia-192 and 11-round Camellia-256 with a 7-round impossible
differential including two FL/FL−1 layers [12].

Impossible differential cryptanalysis was independently introduced by Biham [2] and Knud-
sen [7], which is one of the most popular cryptanalytic tool. In order to mount an attack, the
adversary tries to seek for an input difference that can never result in an output difference. The
differential which connects the input and output difference is impossible and called an impossible
differential. When the adversary wants to launch an impossible differential attack on a block
cipher, she adds rounds before and/or after the impossible differential, and collect enough pairs
with required plaintext and ciphertext differences. Then she concludes that the guessed subkey
bits in added rounds must be wrong, if there is a pair meets the input and output values of the
impossible differential under these subkey bits. In this way, she discards as many wrong keys as
possible and exhaustively searches the rest of the keys.

In this paper, we reevaluate the security of reduced-round Camellia with FL/FL−1 and
whitening layers against impossible differential cryptanalysis from two aspects. On the one hand,
we first construct some new 7-round impossible differentials of Camellia for weak keys, which
work for 75% of the keys. Based on them, we mount an impossible differential attack on Camellia
in the weak-key setting. Then we further propose a multiplied method to extend our attacks for
the whole key space. The basic idea is that if the correct key belongs to the set of weak keys,
then it will never satisfy the impossible differential. While if the correct key is not a weak key,
we get 2-bit conditions about the key. Specifically, for the whole key space, we present an attack
on 10-round Camellia-128 with about 2113.8 chosen plaintexts and 2120 10-round encryptions,
11-round Camellia-192 with about 2114.64 chosen plaintexts and 2184 11-round encryptions as
well as 12-round Camellia-256 with about 2116.17 chosen plaintexts or chosen ciphertexts and
2240 12-round encryptions, respectively. Meanwhile, we can also extend the attacks to 12-round
Camellia-192 and 14-round Camellia-256 with two FL/FL−1 layers. On the other hand, by
studying some properties of key-dependent functions FL/FL−1, we build a set of differentials
which contains at least one 8-round impossible differential of Camellia with two FL/FL−1

layers. The length of these impossible differentials with two FL/FL−1 layers is the same as the
length of the longest known impossible differential of Camellia without FL/FL−1 layers given
by Wu and Zhang [23]. Consequently, we show that the key-dependent transformations inserted
in Camellia cannot resist impossible differential cryptanalysis effectively. On the basis of this
differential set, we propose a new cryptanalytic strategy to attack 11-round Camellia-128 with
2122 chosen plaintexts and 2122 11-round encryptions, 12-round Camellia-192 with 2123 chosen
plaintexts and 2187.2 12-round encryptions as well as 13-round Camellia-256 with 2123 chosen
plaintexts and 2251.1 13-round encryptions (not from the first round but with the whitening
layers), respectively. In table 1, we summarize our results along with the former known ones on
reduced-round Camellia.

The remainder of this paper is organized as follows. Section 2 gives some notations and a brief
introduction of Camellia. Section 3 first presents 7-round impossible differentials of Camellia



Table 1. Summary of the attacks on Reduced-Round Camellia

Key Size Rounds Attack Type Data Time(Enc) Memory (Bytes) Source

Camellia-128 9† Square 248CP 2122 253 [10]
10† Impossible DC 2118CP 2118 293 [17]
10† Impossible DC 2118.5CP 2123.5 2127 [12]

10(Weak Key) Impossible DC 2111.8CP 2111.8 284.8 Section 3.2
10 Impossible DC 2113.8CP 2120 284.8 Section 3.2
11 Impossible DC 2122CP 2122 2102 Section 4.4

Camellia-192 10 Impossible DC 2121CP 2175.3 2155.2 [3]
10 Impossible DC 2118.7CP 2130.4 2135 [12]
11† Impossible DC 2118CP 2163.1 2141 [17]

11(Weak Key) Impossible DC 2112.64CP 2146.54 2141.64 Section 3.3
11 Impossible DC 2114.64CP 2184 2141.64 Section 3.3
12 Impossible DC 2123CP 2187.2 2160 Section 4.3
12† Impossible DC 2120.1CP 2184 2124.1 Section 3.5

Camellia-256 last 11 rounds High Order DC 293CP 2255.6 298 [5]
11 Impossible DC 2121CP 2206.8 2166 [3]
11 Impossible DC 2119.6CP 2194.5 2135 [12]

12(Weak Key) Impossible DC 2121.12CP 2202.55 2142.12 Section 3.4
12 Impossible DC 2116.17CP/CC 2240 2150.17 Section 3.4
13 Impossible DC 2123CP 2251.1 2208 Section 4.2
14† Impossible DC 2120CC 2250.5 2125 Section 3.5

DC: Differential Cryptanalysis; CP/CC: Chosen Plaintexts/Chosen Ciphertexts;
Enc: Encryptions; †: The attack doesn’t include the whitening layers.

for weak keys. Based on them, impossible differential attacks on 10-round Camellia-128, 11-
round Camellia-192 and 12-round Camellia-256 are elaborated. Section 4 first constructs a set
of differentials which contains at least one 8-round impossible differential of Camellia with two
FL/FL−1 layers, and then proposes impossible differential attacks on 11-round Camellia-128, 12-
round Camellia-192 and 13-round Camellia-256, respectively. Section 5 summarizes this paper.

2 Preliminaries

2.1 Some Notations

– P,C: the plaintext and the ciphertext;
– Li−1, Ri−1: the left half and the right half of the i-th round input;
– ∆Li−1,∆Ri−1: the left half and the right half of the input difference in the i-th round;
– X | Y : the concatenation of X and Y ;
– kw1|kw2, kw3|kw4: the pre-whitening key and the post-whitening key;
– ki: the subkey used in the i-th round;
– kli(1 ≤ i ≤ 6): 64-bit keys used in the FL/FL−1 layers;
– Sr,∆Sr: the output and the output difference of the S-boxes in the r-th round;
– X ≪ j: left rotation of X by j bits;
– XL(n

2
),XR(n

2
): the left half and the right half of a n-bit word X;

– Xi,X{i,j}, X{i∼j}: the i-th byte, the i-th and j-th bytes and the i-th to the j-th bytes of X;

– Xi,X(i,j),X(i∼j): the i-th bit, the i-th and j-th bits and the i-th to j-th bits of X;
– ⊕,∩,∪: bitwise exclusive-OR (XOR), AND, and OR operations, respectively;
– 0(i), 1(i): consecutive i bits are zero or one.

2.2 Overview of Camellia

Camellia [1] is a 128-bit block cipher. Two keyed functions FL/FL−1 are inserted every 6
rounds. Camellia uses variable key sizes and the number of rounds depends on the key size, i.e.,



18 rounds for a 128-bit key size and 24 rounds for 192/256-bit key sizes. The round function of
Camellia uses a SPN structure. Among it, the linear transformation P and its inverse function
P−1 are defined as follows.

P : ({0, 1}8)8 → ({0, 1}8)8, y1 | y2 | y3 | y4 | y5 | y6 | y7 | y8 → z1 | z2 | z3 | z4 | z5 | z6 | z7 | z8;

z1 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8; y1 = z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8;

z2 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8; y2 = z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8;

z3 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8; y3 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8;

z4 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7; y4 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z7;

z5 = y1 ⊕ y2 ⊕ y6 ⊕ y7 ⊕ y8; y5 = z1 ⊕ z2 ⊕ z5 ⊕ z7 ⊕ z8;

z6 = y2 ⊕ y3 ⊕ y5 ⊕ y7 ⊕ y8; y6 = z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8;

z7 = y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y8; y7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7;

z8 = y1 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7; y8 = z1 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8;

The key-dependent function FL : {0, 1}64×{0, 1}64 maps (XL | XR, klL | klR) 7→ YL | YR, where
YR = ((XL ∩ klL) ≪ 1)⊕XR, YL = (YR ∪ klR)⊕XL.

Key Schedule of Camellia The key schedule algorithm of Camellia applies a 6-round Feistel
structure to generate two 128-bit intermediate variables KA and KB. These two variables KA

and KB can be calculated by two 128-bit variables KL and KR defined by the main key K. For
Camellia-128, the 128-bit key K is used as KL and KR is 0. For Camellia-192, the left 128-bit
of the key K is used as KL, and the concatenation of the right 64-bit of the key K and the
complement of the right 64-bit of the key K is used as KR. For Camellia-256, the main key K
is separated into two 128-bit variables KL and KR, i.e., K = KL | KR.

3 7-Round Impossible Differentials of Camellia for Weak Keys and Their

Applications 1

In this section, we first construct some 7-round impossible differentials of Camellia in weak-key
setting. Based on them, we present impossible differential attacks on 10-round Camellia-128,
11-round Camellia-192 and 12-round Camellia-256 which start from the first round. In addition,
we can also extend the attack to 12-round Camellia-192 and 14-round Camellia-256 with two
FL/FL−1 layers.

3.1 7-Round Impossible Differentials of Camellia for Weak Keys

This section introduces 7-round impossible differentials of Camellia in weak-key setting, which
is based on the following propositions.

Lemma 1 ([8]). Let X, X ′, K be l-bit values, and ∆X = X ⊕X ′, then the differential prop-
erties of AND and OR operations are:
(X ∩K)⊕ (X ′ ∩K) = (X ⊕X ′) ∩K = ∆X ∩K,
(X ∪K)⊕ (X ′ ∪K) = (X ⊕K ⊕ (X ∩K))⊕ (X ′ ⊕K ⊕ (X ′ ∩K)) = ∆X ⊕ (∆X ∩K).

Lemma 2 ([3]). Let ∆X and ∆Y be the input and output differences of FL. Then

∆YR = ((∆XL ∩ klL) ≪ 1)⊕∆XR, ∆YL = ∆XL ⊕∆YR ⊕ (∆YR ∩ klR);

∆XL = ∆YL ⊕∆YR ⊕ (∆YR ∩ klR), ∆XR = ((∆XL ∩ klL) ≪ 1)⊕∆YR.

1 By Leibo Li, Xiaoyun Wang and Jiazhe Chen. See [13] for more details.



Proposition 1. If the output difference of FL function is ∆Y = (0|0|0|0|d|0|0|0), where d 6= 0
and d(1) = 0, then the input difference of FL function should satisfy ∆X{2,3,4,6,7,8} = 0.

Proposition 2. If the output difference of FL−1 function is ∆X = (0|e|e|e|0|e|e|e), and the

subkeys of FL−1 function satisfy that KL
(9)
L is 0 or KL

(8)
R is 1, then the first byte of input

difference ∆Y should be zero, where e is a non-zero byte.
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Fig. 1. A 7-Round Impossible Differential for Weak Keys

Proposition 3. Given a 7-round Camellia encryption and a FL/FL−1 layer inserted between
the fifth and sixth round. If the input difference of the first round is (0|0|0|0|0|0|0|0, a|0|0|0|c|0|0|0),

and the subkeys of FL−1 function satisfy KL
(9)
L = 0 or KL

(8)
R = 1, then the output difference

(0|0|0|0|d|0|0|0, 0|0|0|0|0|0|0|0) with d(1) = 0 is impossible, where a and d are non-zero bytes, c
is an arbitrary value (see Fig. 1).

Proof. First, we analyze the forward direction. It is trivial that (∆L1,∆R1) = (a|0|0|0|c|0|0|0, 0|
0|0|0|0|0|0|0), then it propagates to (∆L2,∆R2) = (a1|a2|a3|a4|a5|a6|a7|a8, a|0|0|0|c|0|0|0) after
the second round, where a1 and a5 are non-zero values, ai (i = 2, 3, 4, 6, 7, 8) are unknown
values. Getting through the key addition and substitution layers of the third round, the output
difference of S-box layer in the third round is ∆S3 = (b1|b2|b3|b4|b5|b6|b7|b8), where b1 and b5 are
non-zero values. Then we have (∆L3,∆R3) = (f1|f2|f3|f4|f5|f6|f7|f8, a1|a2|a3|a4|a5|a6|a7|a8),
and (∆L4,∆R4) = (h1|h2|h3|h4|h5|h6|h7|h8, f1|f2|f3|f4 |f5|f6|f7|f8), where fi, hi are unknown
values.

Second, we consider the backward direction. The output difference of the seventh round is
(∆L7,∆R7) = (0|0|0|0|d|0|0|0, 0|0|0|0|0|0|0|0), then the output difference of the sixth round is
(∆L6,∆R6) = (0|0|0|0|0|0|0|0, 0|0|0|0|d|0|0|0), and the output difference of FL/FL−1 layer is
(0|0|0|0|d|0|0|0, 0|e|e|e|0|e|e|e). According to the condition d(1) = 0 and Proposition 1, we obtain

that the input difference of FL function is (N1|0|0|0|N5|0|0|0). Since KL
(9)
L = 0 or KL

(8)
R = 1,



in the light of Proposition 2, the input difference of FL−1 function is (0|M2|M3|M4|M5|M6|M7|
M8), which means ∆L4,1 = h1 = 0. Where N1, N5 and Mi (i = 2, ..., 8) are unknown bytes.

Finally, we focus on the fifth round. The output difference of S-layer in the fifth round is

∆S5 = P−1(f1|f2|f3|f4|f5|f6|f7|f8)⊕ P−1(N1|0|0|0|N5|0|0|0)

= (b1|b2|b3|b4|b5|b6|b7|b8)⊕ P−1(N1 ⊕ a|0|0|0|N5 ⊕ c|0|0|0).

Then ∆S5,1 = b1 6= 0, which contradicts ∆L4,1 = 0. ⊓⊔

We also obtain three other impossible differentials under different weak-key assumptions:

– (0|0|0|0|0|0|0|0, 0|a|0|0|0|c|0|0) 9 (0|0|0|0|0|d|0|0, 0|0|0|0|0|0|0|0) with conditions

KL
(17)
L = 0 or KL

(16)
R = 1, and d(1) = 0,

– (0|0|0|0|0|0|0|0, 0|0|a|0|0|0|c|0) 9 (0|0|0|0|0|0|d|0, 0|0|0|0|0|0|0|0) with conditions

KL
(25)
L = 0 or KL

(24)
R = 1, and d(1) = 0,

– (0|0|0|0|0|0|0|0, 0|0|0|a|0|0|0|c) 9 (0|0|0|0|0|0|0|d, 0|0|0|0|0|0|0|0) with conditions

KL
(1)
L = 0 or KL

(32)
R = 1, and d(1) = 0.

We denote this type of impossible differentials above as 5+2 WKID (weak-key impossible
differentials). Due to the feature of Feistel structure, we also deduce another type of 7-round
impossible differentials with the FL/FL−1 layers inserted between the second and the third
rounds. We call them 2+5 WKID, which are depicted as follows.

– (0|0|0|0|0|0|0|0, 0|0|0|0|d|0|0|0) 9 (a|0|0|0|c|0|0|0, 0|0|0|0|0|0|0|0) with conditions

KL′(9)
L = 0 or KL′(8)

R = 1, and d(1) = 0,

– (0|0|0|0|0|0|0|0, 0|0|0|0|0|d|0|0) 9 (0|a|0|0|0|c|0|0, 0|0|0|0|0|0|0|0) with conditions

KL′(17)
L = 0 or KL′(16)

R = 1, and d(1) = 0,

– (0|0|0|0|0|0|0|0, 0|0|0|0|0|0|d|0) 9 (0|0|a|0|0|0|c|0, 0|0|0|0|0|0|0|0) with conditions

KL′(25)
L = 0 or KL′(24)

R = 1, and d(1) = 0,

– (0|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|d) 9 (0|0|0|a|0|0|0|c, 0|0|0|0|0|0|0|0) with conditions

KL′(1)
L = 0 or KL′(32)

R = 1, and d(1) = 0,

where KL′ represents the subkey used in FL-function.

3.2 Impossible Differential Attack on 10-Round Camellia-128

We first propose an attack that works for 3×2126(= 3
4 ×2128) keys, which is mounted by adding

one round on the top and two rounds on the bottom of the 5+2 WKID (See Fig. 2). The
attack procedure is as follows.

Data Collection.

1. Choose 2n structures of plaintexts, and each structure contains 232 plaintexts

(L0, R0) = (α1|x1|x2|x3|α2|x4|x5|x6, P (β1|y1|y2|y3|β2|y4|y5|y6)),

where xi and yi (i = 1, ..., 6) are fixed values in each structure, while αj , βj (j = 1, 2) takes
all the possible values, and P is the linear transformation.

2. For each structure, ask for the encryption of the plaintexts and get 232 ciphertexts. Store
them in a hash table H indexed by CL,{1,5}, the XOR of CL,2 and CL,3, the XOR of CL,2

and CL,4, the XOR of CL,2 and CL,6, the XOR of CL,2 and CL,7, the XOR of CL,2 and
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Fig. 2. Impossible Differential Attack on 10-Round Camellia-128 for Weak Keys

CL,8. Then by birthday paradox, we get 2n+63 × 2−56 = 2n+7 pairs of ciphertexts with the
differences

(∆CL,∆CR) = (0|f |f |f |0|f |f |f, g1|g2|g3|g4|g5|g6|g7|g8),

and the differences of corresponding plaintext pairs satisfy

(∆L0,∆R0) = (a|0|0|0|c|0|0|0, P (b1 |0|0|0|b2|0|0|0)),

where a, c, f and bi (i = 1, 2) are non-zero bytes, and gi are unknown bytes. For every pair,
compute the value

P−1(∆CR) = P−1(g1|g2|g3|g4|g5|g6|g7|g8) = (g′1|g
′
2|g

′
3|g

′
4|g

′
5|g

′
6|g

′
7|g

′
8).

Keep only the pairs whose ciphertexts satisfy g′1 = 0. The probability of this event is 2−8,
thus the expected number of remaining pairs is 2n+7 × 2−8 = 2n−1.

Key Recovery.

1. For each pair obtained in the data collection phase, guess the 16-bit value K1,{1,5}, partially
encrypt its plaintext (L0,{1,5}, L

′
0,{1,5}) to get the intermediate value (S1,{1,5}, S

′
1,{1,5}) and

the difference ∆S1,{1,5}. Then discard the pairs whose intermediate values do not satisfy
∆S1,1 = b1 and ∆S1,5 = b2. The probability of a pair being kept is 2−16, so the expected
number of remaining pairs is 2n−1 × 2−16 = 2n−17.

2. In this step, the ciphertext of every remaining pair is considered.

(a) Guess the 8-bit value K10,8 for every remaining pair, partially decrypt the ciphertext
(CL,8, C

′
L,8) to get the intermediate value (S10,8, S

′
10,8) and the difference ∆S10,8, and

discard the pairs whose intermediate values do not satisfy ∆S10,8 = g′8. The expected
number of remaining pairs is 2n−17 × 2−8 = 2n−25.

(b) For l = 2, 3, 4, 6, 7, guess the 8-bit value K10,l. For every remaining pair, partially decrypt
the ciphertext (CL,l, C

′
L,l) to get the intermediate value (S10,l, S

′
10,l) and the difference

∆S10,l, and keep only the pairs whose intermediate values satisfy ∆S10,l = g′l ⊕ g′5. Since
for each l, each pair will remain with probability 2−8, the expected number of remaining
pairs is 2n−25 × 25×(−8) = 2n−65.



(c) Guess the 8-bit value K10,1, partially decrypt the ciphertext CL,1 of every remaining pair
to get the intermediate value S10,1, which is also the value of S′

10,1.
(d) Partially decrypt (S10, S

′
10) to get the intermediate values (R9,5, R

′
9,5), and discard the

pairs whose intermediate values do not satisfy ∆R
(1)
9,5 = 0. As the probability of a pair

being discarded is 0.5, the expected number of remaining pairs is 2n−65 × 2−1 = 2n−66.
3. For every remaining pair, guess the 8-bit value K9,5, partially decrypt the output value

(R9,5, R
′
9,5) to get the intermediate value (S9,5, S

′
9,5) and the difference ∆S9,5. If there is a

pair satisfies ∆S9,5 = ∆CL,2, we discard the guessed key and try another one. Otherwise we
exhaustively search for the remaining 48 bits of the key under this guessed key, if the correct
key is obtained, we halt the attack; otherwise, another key guess should be tried.

Complexity. Since the probability of the event ∆S9,5 = ∆CL,2 happens in step 3 of key recov-
ery phase is 2−8, the expected number of remaining guesses for 72-bit target subkeys is about
ǫ = 280 × (1 − 2−8)2

n−66
. If we choose ǫ = 1, then n is 79.8, and the proposed attack requires

2n+32 = 2111.8 chosen plaintexts. The time and memory complexities are dominated by step 2 of
data collection phase, which are about 2111.8 10-round encryptions and 2n−1×4×24 = 284.8 bytes.

Extending the Attack to the Whole Key Space. On the basis of the above impossible
differential attack for weak keys, we construct a multiplied attack on 10-Round Camellia-128.

– Phase 1. Perform an impossible differential attack by using the 5+2 WKID

(0|0|0|0|0|0|0|0, a|0|0|0|c|0|0|0) 9 (0|0|0|0|d|0|0|0, 0|0|0|0|0|0|0|0).

This phase is extremely similar to the weak-key attack that is described above. However,
it is slightly different when the attack is finished. That is, if there is a key kept, then the
key is the correct key, and we halt the procedure of the attack. Otherwise, we conclude that

the correct key does not belong to this set of weak keys, which means that kl
(9)
1 = 1 and

kl
(8)
2 = 0. In this case, we get 2-bit information of the key and perform the next phase.

– Phases 2 to 4. Perform an impossible differential attack by using each 5+2 WKID in the
following:

(0|0|0|0|0|0|0|0, 0|a|0|0|0|c|0|0) 9 (0|0|0|0|0|d|0|0, 0|0|0|0|0|0|0|0),

(0|0|0|0|0|0|0|0, 0|0|a|0|0|0|c|0) 9 (0|0|0|0|0|0|d|0, 0|0|0|0|0|0|0|0),

(0|0|0|0|0|0|0|0, 0|0|0|a|0|0|0|c) 9 (0|0|0|0|0|0|0|d, 0|0|0|0|0|0|0|0).

The procedure is similar to Phase 1, and either recover the correct key or get another 2-bit
information about the key and execute the next phase.

– Phase 5. Announce the intermediate key

K
(95,103,111,119)
A = 0 and K

(6,14,22,30)
A = 1,

then exhaustively search for the remaining 120 bit value of KA and recover the key KL.

The upper bound of the time complexity is 2111.8×4+2120 ≈ 2120. The data complexity is about
2113.8. The memory could be reused in different phase, so the memory requirement is about 284.8

bytes.

3.3 Attack on 11-Round Camellia-192

We add one round on the bottom of 10-round attack and give an attack on 11-round Camellia-
192.



Data Collection. Choose 280.64 structures of plaintexts. Each structure contains 232 plaintexts:

(L0, R0) = (α1|x1|x2|x3|α2|x4|x5|x6, P (β1|y1|y2|y3|β2|y4|y5|y6)),

where xi and yi (i = 1, ..., 6) are fixed values in each structure, while αj and βj (j = 1, 2) take
all the possible values, and P is the linear transformation. Ask for the encryption of the cor-
responding ciphertext for each plaintext, compute P−1(CL) and store the plaintext-ciphertext
pairs (L0, R0, CL, CR) in a hash table indexed by 8-bit value (P−1(CL))1. By birthday para-
dox, we get 2143.64 × 2−8 = 2135.64 pairs whose ciphertext differences satisfy P−1(∆CR) =
(h′1|h

′
2|h

′
3|h

′
4|h

′
5|h

′
6|h

′
7|h

′
8) and P−1(∆CL) = (0|g′2|g

′
3|g

′
4|g

′
5|g

′
6|g

′
7|g

′
8), where h

′
i and g′i are unknown

values.

Key Recovery.

1. For l = 1, 5, guess the 8-bit value of K1,l, partially encrypt their plaintext (L0,l, L
′
0,l) and

discard the pairs whose intermediate value do not satisfy∆S1,l = (P−1(∆R0))l. The expected
number of remaining pairs is 2135.64 × 2−16 = 2119.64.

2. In this step, we consider the ciphertext of each remaining pair.
(a) For l = 1, 2, 3, 4, 6, 7, 8, guess the 8-bit value of K11,l. Partially decrypt the ciphertext

(CL,l, C
′
L,l) and keep only the pairs which satisfy ∆S11,l = h′l. The expected number of

remaining pairs is 2119.64 × 27×(−8) = 263.64.
(b) Guess the 8-bit value K11,5. Partially decrypt the ciphertext (CL,5, C

′
L,5), then compute

the intermediate value (R10, R
′
10), where ∆R10 = (0|f |f |f |0|f |f |f) and f = ∆S11,5 ⊕ h′5.

3. Application of the 10-round attack.
(a) Guess the 8-bit value K10,8, partially decrypt (R10,8, R

′
10,8) and discard the pairs whose

intermediate values do not satisfy ∆S10,8 = g′8. The expected number of remaining pairs
is 263.64 × 2−8 = 255.64.

(b) For l = 2, 3, 4, 6, 7, guess the 8-bit value K10,l. Partially decrypt the intermediate value
(R10,l, R

′
10,l) and keep only the pairs whose intermediate values satisfy ∆S10,l = g′l ⊕ g′5.

The expected number of remaining pairs is 255.64 × 25×(−8) = 215.64.
(c) Guess the 8-bit value K10,1, partially decrypt the intermediate value R10,1 and calculate

the intermediate values (R9,5, R
′
9,5). Discard the pairs whose intermediate values do not

satisfy ∆R
(1)
9,5 = 0. Then the expected number of remaining pairs is 215.64 × 2−1 = 214.64.

(d) Guess the 8-bit value K9,5, partially decrypt the intermediate value (R9,5, R
′
9,5) to get

the difference ∆S9,5. If there is a pair satisfies ∆S9,5 = ∆R10,2, we discard the guessed
key and try another one. Otherwise we exhaustively search for the rest 48 bits of KL and
KR under this key, if the correct key is obtained, we halt the attack; otherwise, another
key should be tried.

Complexity. The data complexity of the attack is 2112.64 chosen plaintexts. The time complexity
is dominated by step 3 (d) which requires about 2144 × (1 + (1 − 2−8) + (1− 2−8)2 + ...+ (1−
2−8)2

13.7−1) × 2 × 1
11 × 1

8 ≈ 2146.54 11-round encryptions. The memory complexity is about
2133.56 × 4× 24 = 2141.64 bytes.

Reduce the Time Complexity to 2138.54. Assume 16-bit value α2 and β2 are fixed in data
collection phase of above attack, then we can collect 2n+31×2−8 = 2n+23 pairs, where n represents
the number of structures. Nevertheless, it is unnecessary for us to guess 8-bit subkey K1,5 in this
case. Then there are totally 136-bit values of subkey to be guessed in the attack, therefore, the
expected number of remaining guesses of target subkey is about ǫ = 2136 × (1− 2−8)2

n−90
after

the attack. If we chose ǫ = 1, n is 104.56. Then the data complexity increases to 2n+16 = 2120.56,
but the time complexity reduces to 2138.54, the memory requirement reduces to 2133.56 bytes.



Extending the Attack to the Whole Key Space. Similar to 10-round attack on Camellia-
128, we mount a multiplied attack on Camellia-192 for the whole key space. The expected time
of the attack is about 4 × 2146.54 + 2192 × (1− 3

4)
4
= 2184. The expected data of the attack is

2114.64. The memory requirement is about 2141.64 bytes.

3.4 The Attack on 12-Round Camellia-256

We add one round on the bottom of 11-round attack, and present a 12-round attack on Camellia-
256. The attack procedure is similar to the 11-round attack. First choose 281.17 structures and
collect 2144.17 plaintext-ciphertext pairs in data collection phase. After guessing the subkey
K1,{1,5}, we guess the 64-bit value K12 and compute the intermediate value (R11, R

′
11), then

apply the 11-round attack to perform the remaining steps. In summary, the proposed attack
requires 281.17+32 = 2113.17 chosen plaintexts. The time complexity is about 2210.55 12-round
encryptions, and the memory requirement is about 2150.17 bytes. Similar to the above subsection,
the time complexity and memory requirement can also reduce to 2202.55 and 2142.12, respectively,
but data complexity increases to 2121.12 in this case.

We also construct another type of impossible differential attack of Camellia-256, which adds
four rounds on the top and one round on the bottom of the 2+5 WKID (see section 3.1). The
attack is performed under the chosen ciphertext attack scenario. Similar to the attack based on
the 5+2 WKID, the data and time complexity are about 2113.17 and 2216.3, respectively.

Extending the Attack to the Whole Key Space. On the basis of two types of impossible
differential attacks for weak keys, we mount a multiplied attack on 12-round Camellia-256 for
the whole key space as below.

– Phases 1 to 8. Preform an impossible differential attack by using of all conditional im-
possible differentials 2+5 WKID list in section 3.1. For each phase, if success, output the
actual key, else perform the next phase.

– Phase 9. Announce 16-bit value of the master key

K
(31,39,47,55,95,103,111,119)
R = 0 and K

(6,14,22,30,70,78,86,94)
R = 1,

then exhaustively search for the remaining 240 bit value of KR, KL and recover the actual
key.

The expected time of the attack is 2216.3 × 8 + 2256 × (14)
8
≈ 2240 encryptions, and the expected

data complexity is about 2116.17.

3.5 The Attacks Including Two FL/FL−1 Layers

If we do not start from the first round, we can take the attacks that include two FL/FL−1

layers into account. We first illustrate some new observations of FL and FL−1 functions, then
present attacks on variants of 14-round Camellia-256 and 12-round Camellia-192.

Proposition 4. If the output difference of FL function is ∆Y = (a|0|0|0|0|0|0|0), then the input

difference should satisfy ∆X = (b1|0|0|0|b5|0|0|b8) with b1 = a, b
(8)
5 = 0 and b

(1∼7)
8 = 0, where a

is a non-zero byte.

Proposition 5. If the output difference of FL−1 function is ∆X = (a|a|a|0|a|0|0|a), and the

input difference ∆Y = (b1|b2|b3|b4|b5|b6|b7|b8), then b
(8)
7 = 0, b

(8)
3 = a(8) and b

(1∼7)
8 = a(1∼7),

where a is a non-zero byte, bi are unknown bytes.



Proposition 6. Suppose the input difference of the i-round of Camellia satisfies (∆Li−1,∆Ri−1)
= (b1|b2|b3|b4|b5|b6|b7|b8, P (c′1|c

′
2|c

′
3|c

′
4|c

′
5|c

′
6|c

′
7|c

′
8)), and the output difference is (∆Li,∆Ri) =

(a1|0|0|0|a5|0|0|a8, b1|b2|b3|b4|b5|b6|b7|b8) with a
(8)
5 = 0 and a

(1∼7)
8 = 0, where b′i, c

′
i are arbitrary

bytes, and a1 is a nonzero byte, then the following results hold.

(1) The intermediate value ∆Si = P−1(∆Li⊕∆Ri−1) = (c′1 ⊕ a8|c
′
2 ⊕ a1⊕ a5⊕ a8|c

′
3⊕ a1⊕ a5⊕

a8|c
′
4 ⊕ a1 ⊕ a5|c

′
5 ⊕ a1 ⊕ a5 ⊕ a8|c

′
6 ⊕ a5 ⊕ a8|c

′
7 ⊕ a5|c

′
8 ⊕ a1 ⊕ a8).

(2) ∆S
(1∼7)
i,1 = c′

(1∼7)
1 , and a

(8)
8 = ∆S

(8)
i,1 ⊕ c′

(8)
1 .

(3) ∆S
(8)
i,7 = c′

(8)
7 , and a

(1∼7)
5 = ∆S

(1∼7)
i,5 ⊕ c′

(1∼7)
7 .

(4) a1 = ∆Si,8 ⊕ c′8 ⊕ a8.

Attack on 14-Round Camellia-256 Our 14-round attack of Camellia-256 works from round
10 to round 23, where the 5+2 WKID is applied from round 14 to round 20.

First of all, we demonstrate the relation of subkeys used in the round 10, 11, 12, 13, 21,

22, 23 and the second FL/FL−1 layer (KL3, KL4) as follows, i.e., K10 = K
(110∼128,1∼45)
L ,

K11 = K
(46∼109)
A , K12 = K

(110∼128,1∼45)
A , K

(1∼8)
13 = K

(61∼68)
R , KL

(1∼9)
3,L = K

(61∼69)
L , KL

(1∼8)
3,R =

K
(93∼100)
L , KL4,L = K

(125∼128,1∼28)
L , KL4,R = K

(29∼60)
L , K

(33∼40)
21 = K

(127,128,1∼6)
A , K22 =

K
(31∼94)
A , K23 = K

(112∼128,1∼47)
L .

With the key relation, we can first launch the impossible differential attack in weak-key
setting, then extend it to an attack for all keys, which is similar to above attacks.

Data Collection. We choose the chosen ciphertext scenario to perform the attack and begin
with choosing one structure of ciphertexts which contains 2120 ciphertexts:

(CL, CR) = (P (y1|β2|β3|β4|β5|β6|β7|β8), α1|α2|α3|α4|α5|α6|α7|α8).

Where y1 is fixed, while αi (i = 1, ..., 8) and βj (j = 2, ...8) take all possible values. Ask for
the decryption to get the corresponding plaintext for each ciphertext, which results in 2239 pairs
which satisfy the difference:

(∆CL,∆CR) = (P (0|g′2|g
′
3|g

′
4|g

′
5|g

′
6|g

′
7|g

′
8), f1|f2|f3|f4|f5|f6|f7|f8).

Key Recovery.

1. Guess 130-bit value (K
(1∼47,110∼128)
L |K

(46∼109)
A ), for every plaintext-ciphertext pair (P,C),

perform the following substeps.

(a) Partially encrypt the plaintext P to get the intermediate value (L11, R11). Since 38 bits

of the subkey used in FL−1 function, which are KL
(1∼19)
4,R = K

(29∼47)
L and KL

(1∼19)
4,L =

K
(125∼128,1∼15)
L , have been guessed, 38-bit intermediate value RFL,{1,2}|R

(1∼3)
FL,3 |RFL,{5,6}|R

(1,2)
FL,7|

R
(8)
FL,8 can be computed, where RFL represents the value after the FL−1 function.

(b) Partially decrypt the ciphertext C to get the intermediate values (L22, R22) and P−1(L22).

Note that now we can compute S22,{3∼8} as the 48-bit value K22,{3∼8} = K
(47∼94)
L is

known.

(c) Store the values (L11, R11) and (L22, R22) into a hash table Γ indexed by the following
143-bit values.

– R22,{1,5}, R22,2 ⊕R22,3, R22,2 ⊕R22,4, R22,2 ⊕R22,6, R22,2 ⊕R22,7, R22,2 ⊕R22,8.
– S22,3 ⊕ P−1(L22)3 ⊕ P−1(L22)5, S22,4 ⊕ P−1(L22)4 ⊕ P−1(L22)5, S22,6 ⊕ P−1(L22)6 ⊕

P−1(L22)5, S22,7 ⊕ P−1(L22)7 ⊕ P−1(L22)5, S22,8 ⊕ P−1(L22)8.



– R
(8)
12,7, RFL,1 ⊕ (R

(1∼7)
12,8 |R

(8)
12,3), RFL,2 ⊕ (R

(1∼7)
12,8 |R

(8)
12,3), R

(1∼3)
FL,3 ⊕R

(1∼3)
12,8 , RFL,6, R

(1,2)
FL,7,

RFL,5 ⊕ (R
(1∼7)
12,8 |R

(8)
12,3), R

(8)
FL,8 ⊕R

(8)
12,3.

Then each two values lie in the same row of Γ form a pair that satisfies the following
conditions.
– The difference ∆R22 = (0|f |f |f |0|f |f |f), where f is a nonzero value.
– The difference P−1(∆L22) = (0|g′2|g

′
3|g

′
4|g

′
5|g

′
6|g

′
7|g

′
8) satisfies g′3 ⊕ g′5 = ∆S22,3, g

′
4 ⊕

g′5 = ∆S22,4, g
′
6 ⊕ g′5 = ∆S22,6, g

′
7 ⊕ g′5 = ∆S22,7, g

′
8 = ∆S22,8.

– Assume the difference∆R12 (equals to∆L11) is represented as (b1|b2|b3|b4|b5|b6|b7|b8),

then it satisfies b
(8)
7 = 0, and the output difference of FL−1 function satisfies∆RFL,1 =

(b
(1∼7)
8 |b

(8)
3 ),∆RFL,2 = (b

(1∼7)
8 |b

(8)
3 ),∆R

(1∼3)
FL,3 = b

(1∼3)
8 ,∆RFL,5 = (b

(1∼7)
8 |b

(8)
3 ),∆RFL,6

= 0, ∆R
(1,2)
FL,7 = 0 and ∆R

(8)
FL,8 = b

(8)
3 .

This step performs a 135-bit filtration from 2239 pairs, so the expected number of remain-
ing pairs is 2104.

2. Guess 12-bit value KL
(20∼23,25∼32)
4,R , compute the output differences ∆R

(4∼7)
FL,3 , ∆R

(3∼7)
FL,7 and

RFL,4 (from b
(8)
7 = 0 we conclude ∆R

(8)
FL,3 = b

(8)
3 ). Discard the pairs that do not satisfy

∆R
(4∼7)
FL,3 = b

(4∼7)
8 , ∆R

(3∼7)
FL,7 = 0 and ∆RFL,4 = 0, then the expected number of remaining

pairs is 287. Moveover, from ∆RFL,4 = 0 and b
(8)
7 = 0, we get ∆R

(8)
FL,7 = 0 and ∆R

(1∼7)
FL,8 =

b
(1∼7)
8 . Therefore, at the end of this substep, all remaining pairs satisfy the condition ∆RFL =

(b|b|b|0|b|0|0|b), where b = (b
(1∼7)
8 |b

(8)
3 ).

3. Guess 7-bit value K
(9∼15)
22 , compute the intermediate value ∆S22,2 (K

(16)
22 (K

(46)
A ) has already

been guessed in the step 1), and discard the pairs which do not satisfy ∆S22,2 = g′2 ⊕ g′5.
Each pair will be kept with probability 2−8, so the expected number of remaining pairs is
279.

4. Compute the intermediate value P−1(∆R11) = (c′1|c
′
2|c

′
3|c

′
4|c

′
5|c

′
6|c

′
7|c

′
8), then perform the

following substeps.

(a) Guess 17-bit subkeys K12,1, K12,7 and K
(1)
12,8, calculate the value ∆S12,{1,7,8} (7-bit value

K
(1∼7)
12,8 (K

(39∼45)
A ) has been guessed in step 3), and discard the pairs which do not satisfy

∆S
(1∼7)
12,1 = c′

(1∼7)
1 and ∆S

(8)
12,7 = c′

(8)
7 according to proposition 7. The expected number of

remaining pairs is 271. Then we compute the value a8 = ∆S12,1⊕ c′1, a
(1∼7)
5 = ∆S

(1∼7)
12,7 ⊕

c′
(1∼7)
7 and a1 = ∆S12,8 ⊕ c′8 ⊕ a8.

(b) For i = 2 to 6, guess 8-bit subkey K12,i, compute the difference ∆S12,i and discard the
pairs which do not satisfy ∆S12,j = c′j ⊕ a1 ⊕ a5 ⊕ a8 (j = 2, 3, 4), ∆S12,5 = c′5 ⊕ a1 ⊕ a8
and ∆S12,6 = c′6 ⊕ a5 ⊕ a8. Then we expect about 231 pairs remain.

5. Since all of the 128-bit value of KA have been guessed in step 1, 3 and 4, we compute

the values R21 and R′
21 for every remaining pair and keep only the pairs whose ∆R

(1)
21,5 = 0.

Then we partially decrypt R21,5 and R′
21,5 to get the value ∆S21,5, keep only the pairs whose

∆S21,5 = f , which results in 222 remaining pairs.

6. Guess 17-bit value KL
(1∼9)
3,L and KL3,R,1, compute ∆LFL,5, ∆L

(8)
FL,8 and ∆LFL,1. Then dis-

card the pairs whose (∆L
(1∼7)
FL,5 |∆L

(8)
FL,8) 6= 0. The expected number of remaining pairs is

about 214.
7. Guess 8-bit value K13,1, partially encrypt LFL,1 and L′

FL,1 to get the value ∆S13,1 of every
remaining pair. If ∆S13,1 equals to ∆RFL,{1,2,3,5,8}, delete this value from the list of all the
28 possible values K13,1.

8. After analyzing of all remaining pairs, if the list is not empty, announce that the value in
the list along with above 223-bit guessed values are the candidates of 231-bit target value of



subkey KA|K
(61∼68)
R |K

(1∼51,53∼69,93∼100,110∼128)
L , then recover the whole master key KL and

KR by key searching. Otherwise, try the other 223-bit guess.

Complexity. The time complexity is dominated by step 1, which requires about 5 rounds’ en-
cryptions to compute the intermediate values for every plaintext and ciphertext pair. Then the
time complexity is 2120 × 2130 × 5/14 ≈ 2248.5 14-round encryptions. The memory requirement
is dominated by data collection, which needs 2125 bytes to store the known plaintexts and the
corresponding ciphertexts. Similarly, the expected time of the attack for the whole key space is
about 2250.5 14-round encryptions.

Attack on 12-Round Camellia-192 Making use of 2+5 WKID, we mount the weak-key
impossible differential attack on 12-round Camellia-192, which is from round 3 to round 14,
where the 2+5 WKID is applied from round 5 to round 11. The attack procedure is similar to
that of 14-round Camellia-256. To summarize, the time complexity of the attack is about 2180.1

12-round encryptions. The memory requirement is dominated by step 1, which needs 2124.1 bytes
to store the plaintext-ciphertext pairs. For the attack that works for the whole key space, the
data complexity is about 2120.1 chosen plaintexts, and the time complexity is about 2184 12-round
encryptions.

4 8-Round Impossible Differentials of Camellia and Their Applications 2

In this section, we first present a method to construct a set of differentials, which contains at
least one 8-round impossible differential of Camellia with two FL/FL−1 layers for any fixed
key. Based on this differential set, we propose a new attack strategy to recover the correct key.
Finally, we mount impossible differential attacks on reduced-round Camellia-128/192/256 with
the whitening and FL/FL−1 layers from some intermediate round.

4.1 The Construction of 8-Round Impossible Differentials of Camellia

In this section, we present some 8-round impossible differentials of Camellia with two key-
dependent layers by exploiting some properties of the keyed transformation FL/FL−1.

Proposition 7. If the input difference of FL is (a|0|0|0|a′|0|0|0), where a(1) = a′(8) = 0 and

a′(i) =

{

0, kl
(i+1)
L = 0;

a(i+1), kl
(i+1)
L = 1;

for 1 ≤ i ≤ 7, (1)

then the output of FL is (a|0|0|0|0|0|0|0).

Proof. By Lemma 2, we can obtain

∆YR = ((∆XL ∩ klL) ≪ 1)⊕∆XR = (((a|0|0|0) ∩ klL) ≪ 1)⊕ (a′|0|0|0)

= ((a(2∼8)|0 ∩ klL,1)⊕ a′)|0|0|0.

According to a(1) = a′(8) = 0 and the equation (1), we derive that ∆YR = 0. Furthermore,∆YL =
∆XL⊕∆YR⊕(∆YR∩klR) = ∆XL = a|0|0|0. Therefore, the output of FL is (a|0|0|0|0|0|0|0). ⊓⊔

By Propositions 7, we construct an 8-round impossible differential of Camellia with two
FL/FL−1 layers for any fixed subkey.

2 By Ya Liu, Dawu Gu, Zhiqiang Liu and Wei Li.
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Fig. 3. The Structure of 8-Round Impossible Differentials of Camellia

Proposition 8. For an 8 rounds of Camellia with two FL/FL−1 layers inserted after the first
and seventh rounds, the input difference of the first round is (0|0|0|0|0|0|0|0, a|0|0|0|a′ |0|0|0) and
the output difference of the eighth round is (b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0) with a and b being
nonzero bytes and a(1) = b(1) = a′(8) = a′(8) = 0. Four subkeys kli(i = 1, · · · , 4) are used in two
FL/FL−1 layers. If a′ and b′ satisfy the following equations:

a′(i) =

{

0, if kl
(i+1)
1 = 0;

a(i+1), if kl
(i+1)
1 = 1;

b′(i) =

{

0, if kl
(i+1)
4 = 0;

b(i+1), if kl
(i+1)
4 = 1;

for 1 ≤ i ≤ 7,

then
(0|0|0|0|0|0|0|0, a|0|0|0|a′ |0|0|0) 98 (b|0|0|0|b

′|0|0|0, 0|0|0|0|0|0|0|0)

is an 8-round impossible differential of Camellia with two FL/FL−1 layers (See Fig. 3).

Proof. By proposition 7, we obtain that the input difference of the second round and the output
difference of the seventh round are (a|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0) and (0|0|0|0|0|0|0|0, b|0|0|0|0|0|
0|0), respectively. In [23], Wu et al. constructed an 8-round impossible differential of Camellia
without the FL/FL−1 layers: (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0) 98 (b|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0)
where a and b are nonzero bytes. Thus, (a|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0) 96 (0|0|0|0|0|0|0|0, b|0|0|0|
0|0|0|0) is a 6-round impossible differential. In other word, the input difference (a|0|0|0|0|0|0|0,
0|0|0|0|0|0|0|0) cannot result in the output difference (0|0|0|0|0|0|0|0, b|0|0|0|0|0|0|0) after six-
round encryption. Therefore,

(0|0|0|0|0|0|0|0, a|0|0|0|a′ |0|0|0) 98 (b|0|0|0|b
′|0|0|0, 0|0|0|0|0|0|0|0)

is an 8-round impossible differential of Camellia with two FL/FL−1 layers. ⊓⊔



For any fixed subkey, an 8-round impossible differential with two FL/FL−1 layers can

be constructed. Each possible value of kl
(2∼8)
1 | kl

(2∼8)
4 corresponds to the existence of an

8-round impossible differential. For example, if the subkeys kl
(2∼8)
1 = kl

(2∼8)
4 = 0(7), then

(0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0) 98 (b|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0) is an 8-round impossible dif-

ferential of Camellia with two keyed layers, where a(1) = b(1) = 0. If kl
(2∼8)
1 = kl

(2∼8)
4 = 1(7),

then (0|0|0|0|0|0|0|0, a|0|0|0|a′|0|0|0) 98 (b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0) is an 8-round impossi-
ble differential of Camellia with two keyed layers, where a, b, a′ and b′ are nonzero bytes and
satisfy a(1) = b(1) = a′(8) = b′(8) = 0, a′(1∼7) = a(2∼8) and b′(1∼7) = b(2∼8). All possible values

of kl
(2∼8)
1 | kl

(2∼8)
4 are from 0(14) to 1(14). Denote their corresponding impossible differentials

by ∆i for 0 ≤ i ≤ 214 − 1. However, it is possible that different values of kl
(2∼8)
1 may result in

the same values of a′, and different values of kl
(2∼8)
4 may lead to the same values of b′. There-

fore, some of 214 differentials are equal to each other. Let A be a set including all differentials
∆i(0 ≤ i ≤ 214 − 1).

A = {∆i | 0 ≤ i ≤ 214 − 1} , {δj | 1 ≤ j ≤ t}, where t ≤ 214.

According to Proposition 8, 8-round differentials of A must have the forms:

∆ = (0|0|0|0|0|0|0|0, a|0|0|0|a′ |0|0|0) 98 (b|0|0|0|b
′|0|0|0, 0|0|0|0|0|0|0|0)

with a and b being nonzero bytes and a(1) = b(1) = a′(8) = b′(8) = 0. Among them, a′ and b′ are
either zero or nonzero bytes. We divide all differentials of A into three cases in order to simplify
our analysis. The first one is a′ = b′ = 0. The second one is a′ = 0 and b′ 6= 0, or a′ 6= 0 and
b′ = 0. The last one is a′ 6= 0 and b′ 6= 0.

By proposition 8, we only know the existence of an 8-round impossible differential of Camellia
with two FL/FL−1 layers for any fixed key, but cannot distinguish it from other differentials of
A. Therefore, we require to propose a new attack strategy to recover the correct key based on
this differential set.

The Attack Strategy. Select a differential δi from A. Based on it, we mount an impossible
differential attack on reduced-round Camellia given enough plaintext pairs. More concretely, we
select enough plaintexts such that all wrong keys will be removed with high probability if δi is
an impossible differential.

1. If one subkey remains, we recover the secret key by the key schedule and verify whether it is
correct by some plaintext-ciphertext pairs. If success, end this attack. Otherwise, try another
differential δj(j 6= i) of A and perform a new impossible differential attack.

2. If no subkey or more than one subkeys is left, select another differential of A to execute a
new impossible differential attack.

⊓⊔
Our attack strategy can really recover the correct key. As a matter of fact, if δi is an impossible

differential, we make sure the expected number of remaining wrong keys will be almost zero given
enough chosen plaintexts. Therefore, we only consider those differentials which result in one
subkey remaining. By Proposition 8, we know the differential set A must contain an impossible
differential. So we try each differential of A until the correct key is recovered. The worst scenario
is that the correct key is retrieved from the last try.

4.2 Impossible Differential Attack on 13-round Camellia-256

Based on three scenarios of differentials in A, we present an impossible differential attack on
13-round Camellia-256 with the FL/FL−1 and whitening layers. For each of three cases, we
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Fig. 4. Impossible Differential Attack on 13-round Camellia-256 for Case 1

put two additional rounds on the top and three additional rounds on the bottom of the 8-
round differentials of A. On the basis of this structure, we can attack 13-round Camellia-256
from rounds 4 to 16 or from rounds 10 to 22. Similarly, we put three additional rounds on the
plaintext side and two additional rounds on the ciphertext side to attack 13-round Camellia-256
from rounds 3 to 15 or from rounds 9 to 21. Some previously known skills such as building
hash tables and the early abort technique [15] are also adopted in order to reduce the time
complexity. In this section, we only elaborate the attack procedure of impossible differential
cryptanalysis of 13-round Camellia-256 from rounds 4 to 16. Before introducing our attack, we
list some notations, i.e.,

ka , kw1 ⊕ k4, kb , kw2 ⊕ k5, kc , kw3 ⊕ k16, kd , kw4 ⊕ k15, ke , kw3 ⊕ k14.

We use these equivalent subkeys ka, kb, kc, kd and ke instead of the round subkeys k4, k5, k14, k15
and k16 so as to remove the whitening layers. This new cipher acts as the original one.

Based on the attack strategy in section 4.1, we mount an impossible differential attack on 13-
round Camellia-256 by using differentials of A until the correct key is recovered. In the following,
we discuss this attack by three cases.

Case 1 a′ = b′ = 0: At this time, the differential ∆ = (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0) →8

(b|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0), where a and b are nonzero bytes and a(1) = b(1) = 0 (See Fig. 4).

Data Collection. Select a structure of plaintexts, which contains 255 plaintexts with the fol-
lowing forms:

(P (α1|x1|x2|x3|x4|x5|x6|x7), P (α2|α3|α4|α5|α6|x8|x9|α7)), (2)

where α
(1)
5 , xi(1 ≤ i ≤ 9) are fixed and αj(1 ≤ j ≤ 7, i 6= 5), α

(2∼8)
5 takes all possible val-

ues. Clearly, each structure forms 2109 plaintext pairs, the differences of which have the forms:
(P (g1|0|0|0|0|0|0|0), P (g2 |g3 ⊕ a|g4 ⊕ a|a|g5 ⊕ a|0|0|g6 ⊕ a)) with a and gi(1 ≤ i ≤ 6) being

nonzero bytes and a(1)=0. We take all possible values of (α
(1)
5 , x4, x8, x9) and 243 different val-

ues of xi(1 ≤ i ≤ 7, i 6= 4) to obtain 268 special structures. In total, there are 2123 chosen



plaintexts which form 2177 plaintext pairs. Encrypt these plaintext pairs to obtain the cor-
responding ciphertext pairs. If the left halves of their ciphertexts differences have the form:
P (h1|h2 ⊕ b|h3 ⊕ b|b|h5 ⊕ b|0|0|h8 ⊕ b) with b(1) = 0, then these pairs will be kept. The expected
number of remaining pairs is about 2160.

Key Recovery.

1. Guess ka,1. For each remaining pair, check whether the equation∆S4,1 = (P−1(∆PR))1 holds.
If ∆S4,1 6= (P−1(∆PR))1 for some pair, then this pair will be discarded. Next guess each
possible value of ka,l for l = 2, 3, 5, 8. Keep only the pairs satisfying ∆S4,l = (P−1(∆PR))l ⊕
(P−1(∆PR))4. The total probability of this event is about 2−40. Thus the expected number
of remaining pairs is about 2120. Finally, guess ka,{4,6,7} and compute the inputs of the fifth
round.

2. Guess kb,1 and test whether ∆S5,1 is equal to (P−1(∆PL))1 for each remaining pair. If
∆S5,1 6= (P−1(∆PL))1 for one pair, then this pair will be removed. The probability that to
happen is about 2−8. Thus about 2112 pairs will be kept.

3. Guess kc,l for 2 ≤ l ≤ 8. Verify whether ∆S16,l is equal to (P−1(∆CR))l for every remaining
pair. If∆S16,l 6= (P−1(∆CR))l for some pair, then this pair is discarded. The total probability
of this event is 2−56. Therefore, we expect about 256 pairs remain. Next guess kc,1 and
compute the outputs of the 15-th round for each of the remaining pairs.

4. Guess kd,l for l = 1, 2, 3, 5, 8. Verify whether the equations, ∆S15,1 = (P−1(∆CL))1 and
∆S15,j = (P−1(∆CL))j ⊕ (P−1(∆CL))4 for j = 2, 3, 5, 8, hold for every remaining pair. The
total probability that to happen is about 2−40. Thus there are about 216 pairs remain. Next
guess other bytes of kd and calculate the outputs of the 14-th round.

5. Guess ke,1 and compute the output difference of the S-Boxes in the 14-th round. If ∆S14,1 is
equal to (P−1(∆L14))1, then we remove this value of ke,1 with (ka, kb,1, kc, kd). The probabil-
ity of this event is about 2−8. After trying all possible values of (ka, kb,1, kc, kd, ke,1), if only
one joint subkey remains, then ∆ is likely to be an impossible differential. At this time, we
recover the secret key by the key schedule and verify whether it is correct by some plaintext-
ciphertext pairs. If no subkey or more than one subkeys is left, then ∆ is possible to exist. At
this time, try another differential of A. As a matter of fact, if ∆ is an impossible differential,
the expected number of the wrong subkeys remaining is about 2208 × (1− 2−8)2

16
≈ 2−161.4.

We consider that all wrong subkeys are removed and only the correct subkey is left. Therefore,
we require to perform the following Step 6 only if one subkey is left.

6. We can recover the secret key from this unique 208-bit subkey (ka, kb,1, kc, kd, ke,1). By the
key schedule of Camellia-256, we can obtain:

ka = kw1 ⊕ k4 = (KL ≪ 0)L ⊕ (KR ≪ 15)R, (3)

kb = kw2 ⊕ k5 = (KL ≪ 0)R ⊕ (KA ≪ 15)L, (4)

kc = kw3 ⊕ k16 = (KB ≪ 111)L ⊕ (KB ≪ 60)R, (5)

kd = kw4 ⊕ k15 = (KB ≪ 111)R ⊕ (KB ≪ 60)L, (6)

ke = kw3 ⊕ k14 = (KB ≪ 111)L ⊕ (KR ≪ 60)R. (7)

We first guess each possible values of KB. By the equations (5) and (6), we discard some
wrong candidates of KB with the probability 2−128. Therefore, only one value of KB is left.
Then we calculate 8 bits of KR by the equation (7). Guess the remaining unknown 120 bits of
KR. By property 4 of [17], we can compute the corresponding value for (KL,KA). According
to the equations (3) and (4), we can discard some wrong candidates of (KL,KA). Therefore,
the number of the remaining main keys is approximately 2120 × 2−72 = 248. By about 248

trail encryptions, if some key is correct, stop the attack. Otherwise, try another differential
of A.



Case 2 a′ = 0 and b′ 6= 0, or a′ 6= 0 and b′ = 0: We only attack a special scenario, i.e., a′ = 0,
b′ 6= 0 and b′(1∼7) = b(2∼8). The others can be attacked in the similar way. At this moment, the
differential is ∆′ = (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0) →8 (b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0), where a,
b and b′ are non-zero bytes, b′(1∼7) = b(2∼8) and a(1) = b(1) = b′(8) = 0.

Data Collection. We apply 268 special structures of Case 1 above. Totally, there are 2123

chosen plaintexts which form 2177 pairs. At this moment, the form of the ciphertext difference
is random.

Key Recovery.

1. Guess kc,l for 2 ≤ l ≤ 8 and l 6= 5. Verify whether the equation ∆S16,l = (P−1(∆CR))l holds
for every remaining pair. If ∆S16,l 6= (P−1(∆CR))l for some pair, then this pair is discarded.
The whole probability of this event is 2−48. Therefore, we expect about 2129 pairs remain.
Next guess kc,{1,5} and compute the outputs of the 15-th round for each of the remaining
pairs.

2. We first guess kd,1 and check whether the equation ∆S15,1 = (P−1(∆CL))1 holds for each
remaining pair. If ∆S15,1 = (P−1(∆CL))1 for one pair, then this pair will be kept. Oth-
erwise, this pair will be discarded. Second, guess kd,8 and keep only the pairs satisfying

∆S
(1)
15,8 = (P−1(∆CL))

(1)
8 . Third, guess kd,{2∼7}. Test whether ∆S15,l = (P−1(∆CL))l ⊕

(((P−1(∆CL))8 ⊕∆S15,8)
(2∼8)|0) for l = 6, 7 and ∆S15,l = (P−1(∆CL))l ⊕ (P−1(∆CL))8 ⊕

∆S15,8 ⊕ (P−1(∆CL))7 ⊕∆S15,7 for l = 2, 3, 4, 5. The total probability of this step is about
2−57. So the expected number of remaining pairs is approximately 272. Compute the outputs
of the 14-th round for each remaining pair.

3. Guess ke,l for l = 1, 5. Verify whether the equation ∆S14,l = (P−1(∆L14))l holds for each
remaining pair. If this equation is correct for some pair, then this pair will be kept. The
probability of this event is about 2−16. About 256 pairs will be kept.

4. Guess each of possible values ka as like Case 1 for all remaining pairs. Finally, we expect
about 216 pairs remain and calculate the inputs of the fifth round.

5. Guess kb,1. This step is similar to Step 5 of Case 1. If only one joint subkey is left, then
we consider ∆′ is an impossible differential and recover the secret key by the key schedule.
Otherwise try another differential of A. In fact, the expected number of the wrong subkeys
remaining is approximately 2216 × (1− 2−8)2

16
≈ 2−153.4 if ∆′ is an impossible differential.

6. This step is similar to Step 6 of Case 1. The difference is that the equation (7) can give 16
bits of KR. Therefore, we only require to guess 112 bits of KR. About 2

40 keys will be left.
By about 240 trail encryptions, if some key is correct, stop the attack. Otherwise, try another
differential of A.

Case 3 a′ 6= 0 and b′ 6= 0: We only discuss an example, i.e., a′(1∼7) = a(2∼8) and b′(1∼7) = b(2∼8).
At this moment, the differential is ∆′′ = (0|0|0|0|0|0|0|0, a|0|0|0|a′ |0|0|0) →8 (b|0|0|0|b′|0|0|0,
0|0|0|0|0|0|0|0), where a, b, a′ and b′ are nonzero bytes and a(1) = b(1) = a′(8) = b′(8) = 0.

Data Collection. Continue to adopt 2123 chosen plaintexts in Case 1. Because each structure of

Case 1 takes all possible values of α
(1)
5 , x4, x8 and x9, 2

123 chosen plaintexts of Case 1 are equiva-
lent to 243 structures, each of which contains 280 plaintexts with the forms: (P (β1|y1|y2|y3|β2|y4|
y5|y6), β3|β4|β5|β6|β7|β8|β9|β10), where yi(1 ≤ i ≤ 6) are fixed and βj(1 ≤ j ≤ 10) takes all possi-
ble values. It is obvious that one structure generates 2159 pairs. Totally, there are approximately
2202 plaintext pairs satisfying the input differences.



Key Recovery.

1. Guess each byte of kc, kd, ke,{1,5}. This step is similar to Case 2 above. After guessing these
subkeys, we expect about 281 pairs remain.

2. Guess ka,1, ka,8, ka,{6,7} and ka,{2∼5} in turn. After our test, about 224 pairs will be kept.
Compute the inputs of the fifth round for every remaining pair.

3. Guess kb,5 and kept these pairs satisfying ∆S5,5 = (P−1(∆PL))5. Finally, there are about
216 pairs remain. Next guess kb,1 and test whether ∆S5,1 is equal to (P−1(∆PL))1 for
the remaining pairs. If ∆S5,1 = (P−1(∆PL))1 for some pair, then this value kb,1 with
the guessed value (ka, kb,5, kc, kd, ke,{1,5}) are removed. After guessing all possible values
(ka, kb,{1,5}, kc, kd, ke,{1,5}), if only one joint subkey is left, then we consider ∆′′ is an im-
possible differential. At this moment, we execute the following step. Otherwise try another
differential of A. As a matter of fact, the expected number of the wrong subkeys remaining
is approximately 2224 × (1− 2−8)2

16
≈ 2−145.4 if ∆′′ is an impossible differential.

4. Similarly, we require to recover the secret key only if one subkey is left. Compared with Step
6 of Case 2 above, the difference is the equation (5) can give 16 bits of KL. Therefore, the
number of the remaining main keys is approximately 232. By about 232 trail encryptions, if
some key is correct, stop the attack. Otherwise, try another differential of A.

The Algorithm of Impossible Differential Attack on 13-Round Camellia-256:
For each differential δi of A, do

If δi belongs to Case 1, we perform the attacking procedure of Case 1.

If δi belongs to Case 2, we perform the similar attacking procedure of Case 2.

If δi belongs to Case 3, we perform the similar attacking procedure of Case 3.

If the correct key is recovered, end this algorithm. Otherwise, try another differential of A.
⊓⊔

Table 2. Time Complexity of Cases 1

Step Time Complexity (1-round encryptions)

2 2160 × 2× 28 × 5× 1
8
+ 2120 × 2× 264 × 3

8
≈ 2183.6

3 2120 × 2× 264 × 28 × 1
8
= 2190

4 2112 × 2× 272 × 28 × 7× 1
8
+ 256 × 2× 2136 × 1

8
= 2193

5 256 × 2× 2136 × 28 × 5× 1
8
+ 216 × 2× 2200 × 3

8
≈ 2215.6

6 2208 × 2× (1 + (1− 2−8) + · · ·+ (1− 2−8)2
16

)× 1
8
≈ 2214

7 2120 × 6 + 248 × 13 ≈ 2122.4

Analysis of Complexity In table 2, we list the time complexity of each step in Case 1. We find
that the total time complexity is about 2216 1-round encryptions. Similarly, we can compute the
time complexities of Case 2 and Case 3. For Case 2, the total time complexity is approximately
2224 1-round encryptions. For Case 3, the total time complexity is approximately 2240.8 1-round
encryptions. Thus the total time complexity is at most 214 × 2240.8 × 1

13 ≈ 2251.1 13-round
encryptions. Furthermore, the total data and memory complexities are 2123 chosen plaintexts
and 2208 bytes, respectively.

4.3 Impossible Differential Attack on 12-round Camellia-192

In this part, an impossible differential attack on 12-round Camellia-192 is executed. We set
two additional rounds on the top and on the bottom of our 8-round differentials, respectively.
By applying it, we can attack 12-round Camellia-192 from rounds 4 to 15 with the 8-round



impossible differentials inserted rounds 6 to 13. Similarly, we can also attack 12-round Camellia-
192 from rounds i to i+ 11 where i = 3, 5, 9, 10. Some equivalent subkeys ka and kb are defined
as before. In addition, let

k′d = kw3 ⊕ k15 = (KB ≪ 111)L ⊕ (KB ≪ 60)L, (8)

k′e = kw4 ⊕ k14 = (KB ≪ 111)R ⊕ (KR ≪ 60)R. (9)

Case 1 a′ = b′ = 0: The differential is ∆.

Data Collection. We select the same plaintexts of Case 1 mentioned in section 4.2. I.e., 2123

chosen plaintexts can form 2177 pairs. Encrypt these plaintext pairs. Keep only the pairs which
have the form of ciphertext differences: (P (h1|0|0|0|0|0|0|0), P (h2 |h3⊕b|h4⊕b|b|h5⊕b|0|0|h6⊕b)),
where b and hi(1 ≤ i ≤ 6) are nonzero bytes and b(1) = 0. The expected number of remaining
pairs is 2104.

Key Recovery. Guess all possible values (ka, kb,1, k
′
d, k

′
e,1) and discard those subkeys which

acquire the input and output differences of ∆. This step is similar to section 4.2. If ∆ is an
impossible differential, about 2144×(1−2−8)2

16
≈ 2−225.4 wrong subkeys are expected to remain.

Therefore, we will recover the secret key by the key schedule of Camellia-192 only if one subkey is
left. Otherwise, try another differential of A. By the key schedule of Camellia-192, we can recover
the secret key from the 144-bit subkey (ka, kb,1, k

′
d, k

′
e,1). We first guess all possible values of KB .

By the equation (8), we can get rid of some wrong candidates of KB with the probability 2−64.
So about 264 values of KB remain. Then we can compute 8 bits of KR by the equation (9).
Guessing the remaining unknown 56 bits of KR, we calculate (KL,KA) and remove some wrong
values of (KL,KA,KR) by the equations (3) and (4). The expected number of remaining secret
keys is approximately 264× 256× 2−64× 2−8 = 248. By about 248 trail encryptions, if the correct
key is retrieved, end the attack. Otherwise, try another differential of A.

Case 2 a′ = 0, b′ 6= 0 or a′ 6= 0, b′ = 0: For simplicity, we consider a special differential ∆′.

We still select 2123 plaintexts above. In total, there are 268 special structures, each of which
contains 255 plaintexts. Encrypt these plaintext pairs. If the left halves of their ciphertexts
differences have the forms: P (h|0|0|0|h′ |0|0|0) with h and h′ being nonzero bytes, then these
pairs will be kept. Consequently, the expected number of remaining pairs is about 2129. Similarly,
we can remove some subkeys (ka, kb,1, k

′
d, k

′
e,{1,5}) which obtain the input and output differences

of ∆′ for some pair. If only one subkey is left, we recover the secret key by the key schedule.
Otherwise, try another differential of A. In fact, if∆′ is an impossible differential, about 2−217.4(≈
2152 × (1− 2−8)2

16
) wrong subkeys will be left.

Case 3 a′ 6= 0, b′ 6= 0: A special differential ∆′′ will be considered.

The similar attacking procedure can be performed as before. We select 243 structure, each
of which contains 280 plaintexts. Totally, they can form 2202 pairs. After filtering some pairs by
the ciphertext differences, about 2154 pairs are expected to remain. The following steps can be
preformed in the similar way.

By the careful analysis, we found that the time complexity of Case 3 is maximal. Therefore,
the total time complexity is at most 214 × 2173.2 ≈ 2187.2 12-round encryptions. The data and
memory complexities are 2123 chosen plaintexts and 2160 bytes, respectively.



4.4 Impossible Differential Attack on 11-round Camellia-128

For Camellia-128, we put two additional rounds on the top and one additional round on the
bottom of 8-round differentials. Based on it, we attack 11-round Camellia-128 from rounds 4 to
14 or rounds 10 to 20. Similarly, we can also attack Camellia-128 from rounds 5 to 15 and rounds
11 to 21 by setting one additional round on the top and two rounds on the bottom. Here we
present an attack on 11-round Camellia-128 from rounds 4 to 14 briefly. Similarly, we divide all
possible differentials into three different cases as before. For Case 1, we take 267 special structures
(2). Totally, the data complexity is 2122 chosen plaintexts which form 2176 pairs. Their input
differences have the form (P (g1|0|0|0|0|0|0|0), P (g2 |g3⊕a|g4⊕a|a|g5⊕a|0|0|g6⊕a)), where a and
gi(1 ≤ i ≤ 6) are nonzero bytes and a(1) = 0. Encrypt these pairs to acquire the corresponding
ciphertext pairs. Then we discard some pairs whose ciphertext differences don’t satisfy these
form: (b|0|0|0|0|0|0|0, P (h|0|0|0|0|0|0|0)) with b and h being non-zero bytes and b(1) = 0. The
number of remaining pairs after this test is 263. Guess ke,1 and verify whether the equation
∆S14,1 = (P−1(∆CR))1 holds. It is obvious that there are about 255 pairs remain. Next guess
(ka, kb,1), operate the similar step as section 4.2. If only one subkey is left, we retrieve the secret
key by the key schedule. Otherwise, try anther differential of A. As a matter of fact, if ∆ is an
impossible differential, the expected number of remaining pairs is 280 × (1 − 2−8)15 ≈ 2−104.7.
For other two cases, we can accomplish the similar attack procedure.

We find that the dominant time complexity of all steps in three cases is the data collection.
Therefore, the total data, time and memory complexities are 2122 chosen plaintext, 2122 11-round
encryptions and 2102 bytes, respectively.

5 Conclusion

In this paper, we have presented new insight on impossible differential cryptanalysis of reduced-
round Camellia with the FL/FL−1 and whitening layers. First, we propose impossible dif-
ferential attacks on reduced-round Camellia for 75% of the keys, which are then extended to
attacks that work for the whole key space. Specifically, we attack 10-round Camellia-128, 11-
round Camellia-192 and 12-round Camellia-256 which start from the first round and include the
whitening layers. Meanwhile, we also attack 12-round Camellia-192 and 14-round Camellia-256
with two FL/FL−1 layers. Second, we construct a set of differentials including at least one
8-round impossible differential of Camellia with two layers FL/FL−1. These impossible dif-
ferentials have the same length as the best known impossible differential of Camellia without
FL/FL−1 layers. Therefore, our result shows that the keyed functions cannot thwart impossi-
ble differential attack effectively. Based on it, we propose a new strategy to derive an effective
attack on reduced-round Camellia which do not start the first round but include the whitening
and FL/FL−1 layers. More concretely, we mount impossible differential attacks on 11-round
Camellia-128, 12-round Camellia-192 and 13-round Camellia-256.
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