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Motivation

Advanced Encryption Standard
@ Rijndael announced in 2001 as the AES.

@ One of the most widely used cryptographic primitives.

o IP Security, Secure Shell, Truecrypt
e RFID and low-power authentication methods
o Key tokens, RF-based Remote Access Control

@ Many intensive efforts to speed up AES in both hard- and software.

v

Related work

E. Kasper and P. Schwabe. Faster and Timing-Attack Resistant AES-GCM. CHES 2009.

P. Bulens, et al. Implementation of the AES-128 on Virtex-5 FPGAs AFRICACRYPT 2008.
O. Harrison and J. Waldron. Practical Symmetric Key Cryptography on Modern Graphics Hardware. USENIX Sec. Symp. 2008.

S. Rinne, et al. Performance Analysis of Contemporary Light-Weight Block Ciphers on 8-bit Microcontrollers. SPEED 2007.

K. Shimizu, et al. Cell Broadband Engine Support for Privacy, Security, and Digital Rights Management Applications. 2005.




Contributions

New software speed records for various architectures

@ Target both ends of the performance spectrum
e low-end microcontrollers
e high-end architectures processing many streams simultaneously

@ Specific optimizations for each platform



Contributions

New software speed records for various architectures

8-bit AVR microcontrollers
e compact, efficient single stream AES version
32-bit Advanced RISC Machine

e one of the most widely used processors for mobile applications
o efficient single stream AES version ( T-table based)

Synergistic processing elements of the Cell broadband engine
e widely available in the PS3 video game console
o single instruction multiple data (SIMD) architecture
e process 16 streams in parallel (bytesliced)

NVIDIA graphics processing unit
o first AES decryption implementation
o single instruction multiple threads (SIMT) architecture
e process thousand of streams in parallel ( T-table based)



The Advanced Encryption Standard

@ Fixed block length version of the
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Round Function Steps

1 SubBytes: 3 MixColumns:
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Efficient T-table implementation

@ Combine SubBytes, ShiftRows, MixColumns using the standard
“T-table” approach. Update each column (0 < < 3):

[sj0, Sj1, 52, 5j3]" = Tolaco] ® Tilac1] @ Talace] & T3lacs] @ kj,

where each T; is 1KB and k; is the jth column of the round key.
@ T;'s are rotations of one table.
e Example (j = 0):
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s |
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Target Platforms

Cell B.E

Atmel AVRs

NVIDIA GPUs

©1BM Systems



Microcontrollers

AVR ARM
Modified Harvard architecture

Harvard /von Neumann

32 - 8-bit registers architecture
3 - 16-bit pointer registers 16 - 32-bit registers available
Registers are addressable Conditional execution
Mostly single-cycle execution
% to 384KB flash memory

0 to 32KB SRAM

0 to 4KB EEPROM

Optional modification of flags
Mostly single-cycle execution

Load/store multiple registers

Inline barrel shifter



Microcontrollers — Results

Key Encryption | Decryption | Code size
Reference scheduling (cycles) (cycles) (bytes)
8-bit AVR microcontroller
Rinne et al. precompute 3,766 4,558 3,410
Poettering (Fast) precompute 2,474 3,411 3,098
Poettering (Furious) precompute 2,739 3,579 1,570
Poettering (Fantastic) | precompute 4,059 4,675 1,482
Otte precompute 2,555 6,764 2,070
Otte precompute 2,555 3,193 2,580
New - Low RAM precompute 2,153 2,901 1,912
New - Fast precompute 1,993 2,901 1,912
32-bit ARM microprocessor
Atasu et. al precompute 639 638 5,966
New precompute 544 - 3,292
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Cell Broadband Engine Architecture

Use the Synergistic Processing Elements
e runs at 3.2 GHz
128-bit wide SIMD-architecture
two instructions per clock cycle (dual pipeline)
in-order processor
rich instruction set: i.e.
all distinct binary operations
f:{0,1}% — {0,1} are present.
o "Expensive” QS22 Blade Servers (2 x 8 SPEs)

@ PCI express cards:
cryptographic accelerator ({ 4, 8 } SPEs)

@ “Cheap” PS3 video game console (6 SPEs)
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Dual pipeline — Example

Balancing pipeline loads may lead to more instructions but fewer cycles.
16-way SIMD xtime: a-x (a € Fps 2 Fo[x]/(x® + x* + x3 + x + 1))

Similar techniques for 16-way SIMD S-box lookups.
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latency: 8 cycles

latency: 20 cycles
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SPU Results Comparison
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Throughput per PS3: 13.8 (encryption) and 10.8 Gbps (decryption)
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NVIDIA Graphic Processing Units

e Contain 12-30 simultaneous
multiprocessors (SMs):

8 streaming processors (SPs)

16KB 16-way banked fast

shared memory Il

o 8192/16384 32-bit registers
o 8KB constant memory cache -
o 6KB-8KB texture cache
e 2 special function units Scheduler =
e instruction fetch and E - s o 2
scheduling unit 3 =g
5 SP SP 2
o GeForce 8800GTX: a £l
g sp P &
16 SMs @ 1.35GHz =
| SR s |
o GTX 205: U SFU
2 x 30 SMs @ 1.24GHz — -
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AES GPU Implementation

Each thread processes multiple blocks
— hide memory latency using double buffering!

Group multiple (e.g., 16) threads into stream groups
— share a common key, expanded in texture/shared memory

Execute 16 (scheduling-unit) stream groups per thread block
— allows any caching to shared memory with no collisions!

@ Launch multiple thread blocks per grid
— increase device utilization!

All global memory access is coalesced
— maximize memory access throughput!
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AES GPU Implementation (cont.)

@ On-the-fly version

— all threads cache 1%t round key to shared memory
@ Texture-memory version

— threads of same stream group share a common key

Round-key read - Shared/texture memory

thread T T T T T T
§ o B &8 8 s & B
3 3 3 ? § § § 3 3
stream 8§ i
group
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AES GPU Implementation (cont.)

@ PTX pre-expanded key (benchmark-only) version
— threads in a thread block share 1 key.

Round-key (broadcast) read- Constant memory

.,
SRR REER BR BB R
111 LR R
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AES GPU Implementation (cont.)

@ T-tables placed in shared memory:

T-table read- Shared memor

Avg: 35%
collisions
o)

@ Even with collisions — greatest speedup!
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GPU Results Comparison
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Encryption: 30.9 and 16.8 Gbps on single GTX 295 GPU and 8800GTX.
Decryption: 30.8 and 16.6 Gbps on single GTX 295 GPU and 8800GTX.
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Conclusions

Our new AES-128 software speed records for encryption and decryption
x times faster compared to the previous records

8-bit AVR
e 1.24x encryption
e 1.10x decryption
e smaller code size
32-bit ARM
e 1.17x encryption
Cell Broadband Engine (SPE)
e 1.10x encryption
e 1.23x decryption
NVIDIA GPU
e 1.2x encryption
o 1.34x encryption (kernel-only)
e First decryption implementation
All numbers subject to further improvements
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Conclusions

Our new AES-128 software speed records for encryption and decryption
x times faster compared to the previous records

8-bit AVR
e 1.24x encryption
e 1.10x decryption
e smaller code size
32-bit ARM
e 1.17x encryption
Cell Broadband Engine (SPE)
e 1.10x encryption
e 1.23x decryption
NVIDIA GPU
e 1.2x encryption
o 1.34x encryption (kernel-only)
e First decryption implementation
All numbers subject to further improvements

To be continued. ..
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