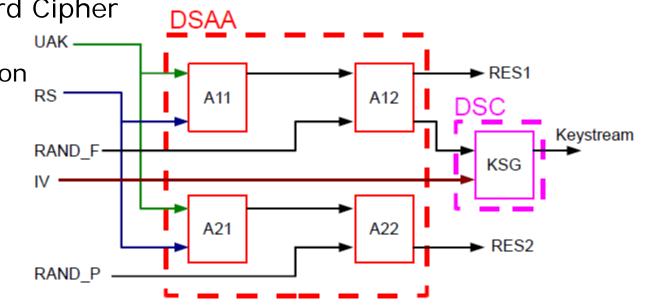

Cryptanalysis of the DECT Standard Cipher

Karsten Nohl <nohl@cs.virginia.edu> Erik Tews <e_tews@cdc.informatik.tu-darmstadt.de> Ralf-Philipp Weinmann <ralf-philipp.weinmann@uni.lu>

http://www.flickr.com/photos/oliver_leitzgen/2781778797/

Digital Enhanced Cordless Telecommunications

- Standard for short range portable phones
- Frequency around 1.9 GHz
- Range up to 300 meters for standard devices
- Invented in 1992
- More than 670,000,000 devices sold



http://www.flickr.com/photos/almekinders/2205176736/sizes/o/

DECT Security

- DECT uses two proprietary algorithms
- DSAA: DECT Standard Authentication Algorithm
 - Initial pairing of devices
 - (mutual) Authentication
 - Key Allocation
- DSC: DECT Standard Cipher
 - Encryption of traffic
 - Passive authentication
- Both are optional!

DECT standards were reverseengineered

- Open security research started in 2006
- Project *deDECTed.org* in 2007/08 jointly worked on disclosing DECT security
 - Reverse engineering of DSAA
 - Partial reverse engineering of DSC
 - Found attacks on DSAA, PRNGs and DECT itself
 - Wrote open source sniffer for DECT PCMCIA Card
- First public talk at 25c3 (end of 2008, Berlin, Germany)

On to new research: DSC was reverse engineered

1451

United States Patent [19]

Alvarez Alvarez

[54] DATA CIPHERING DEVICE

- [75] Inventor: Manuel J. Alvarez Alvarez, Madrid, Spain
- [73] Assignce: Alcatel Standard Electrica S.A., Madrid, Spain

[21] Appl. No.: 364,126

- [22] Filed: Dec. 27, 1994
- [30] Foreign Application Priority Data

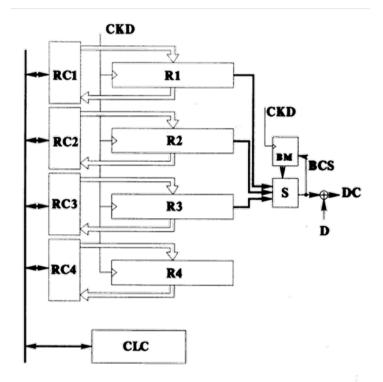
Dec	. 31, 1993 [E	ES] Spair	1 9302742
[51]	Int. Cl. ⁶		
[52]	U.S. Cl		
[58]	Field of Se	arch	
			380/49, 4

[56] References Cited

U.S. PATENT DOCUMENTS

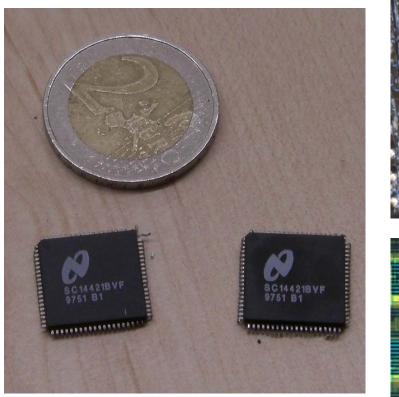
4,188,506 2/1980 Schmid et al. 380/50

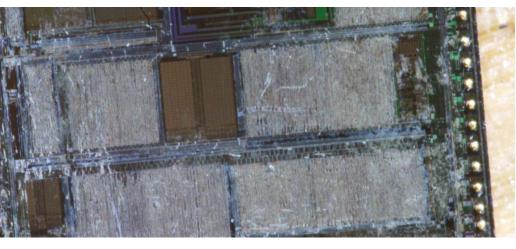
Primary Examiner—David C. Cain Attorney, Agent, or Firm—Ware, Fressola, Van Der Sluys & Adolphson

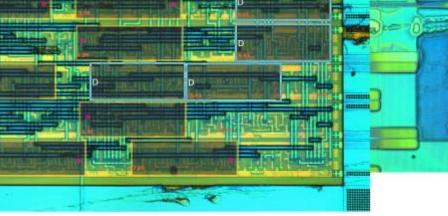

Mar. 4, 1997

[57] ABSTRACT

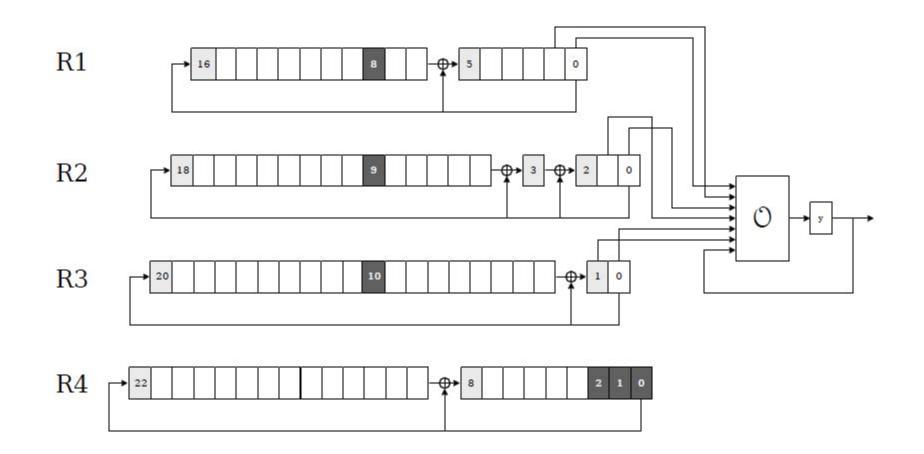
Date of Patent:


A data ciphering device that has special application in implementing the Digital European Cordless Telephone (DECT) standard data ciphering algorithm which requires a lengthy procedure of key loading and logic operations during the stages of pre-ciphering and ciphering which require clocks operating at different frequencies. The device performs parallel mode loading of the shift registers, with a ciphering keyword. It also calculates, in a first cycle, during the pre-ciphering, the values of the bits of each shift register that determine the value of the next shift in order to, in a second cycle, effect parallel mode shifting in these registers with a value equal to the sum of the two previous shift values. During the ciphering process, the shifting is done in the registers, in parallel mode and in a single data clock cycle, with a value equivalent to the serial value obtained by the algorithm.


5 Claims, 3 Drawing Sheets



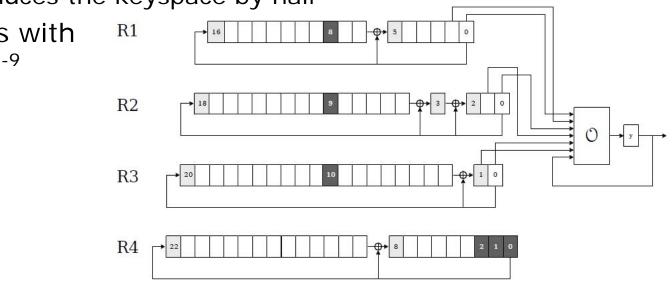
We also used Chip reverse engineering!



DSC can be accessed via firmware

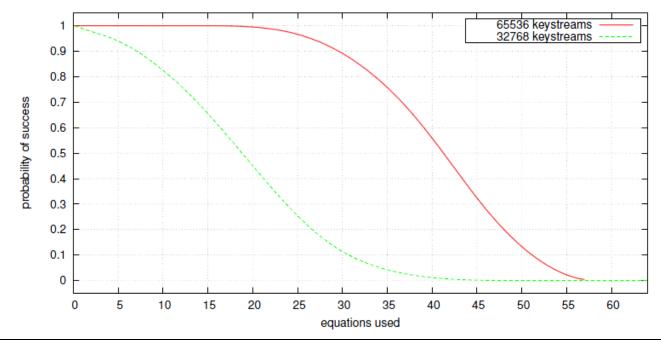
D_LDK memory	<pre>// Enable loading of IV Key from &memory</pre>
WT 16	// Wait 16 clocks (= 16 bytes)
D_LDK 0x0	<pre>// Disable loading of IV Key</pre>
D_PREP	// Enable blank rounds
WT 39	// Wait 39 clocks (= 40 rounds)
D_PREP	<pre>// Disable blank rounds</pre>
D_WRS state	<pre>// Enable writing of state to &state</pre>
WT 11	<pre>// Wait 11 clocks (= 11 bytes of state)</pre>
D_WRS 0x0	<pre>// Disable writing of state</pre>

DSC compared to A5/1 is only weaker in a single dimension!

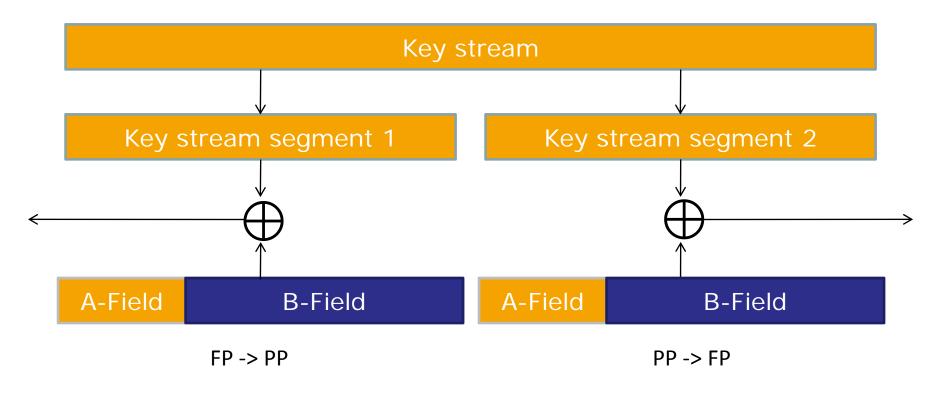


	A5/1	DSC
Number of registers	3	4
Irregular clocked registers	3	3
Internal state in bits	64	81
Output combiner	Linear	Non-linear
Bits used for output	3	7
Bits used for clocking	3	6
Clocking decision	0/1	2/3
Clocks per register until first bit of output	0 -100	80-120
Average clocks of registers until first bit of output	75	100
Pre-cipher rounds	100	40

DSC Cryptanalysis


- Imagine:
 - All registers are clocked 103 times before the second bit of output is produced
 - The first and second bit of output allow you to eliminate half of the possible states at this time
 - This also reduces the keyspace by half
- This happens with R1 probability 2-9

An effective correlation attack on the DSC


- Attack allows key recovery on a PC in minutes to hours with 2¹⁶ available keystreams
- Tradeoffs are possible
- Attack is much faster using Nvidia high-end graphic cards

Recovering Keystreams is possible

- The DECT C-channel transports control data
- First 40 bits of output are used to encrypt that data

Typical C-channel data

Encrypted

!2	1e	b4	f5	69	8b
!1	1f	b1	3d	a0	61
!2	a9	02	d6	с0	bf
!1	5e	f0	са	6f	fa

	Dec	cryp	pteo	d (1	nex)	Dec	cry	/pt	cec	E	(pla:	in)
	13	00	41	83	7b				Α		{	
	28	0c	02	30	30		(0	0	
	3a	30	30	3a	30		•	0	0	•	0	
	35	1a	0a	0d	fO		5					
	f0	f0	f0	bб	3d						=	
	13	02	41	83	7b				A		{	
(28	0c	02	30	30		(0	0	
	3a	30	30	3a	30		•	0	0	•	0	
	36	1a	0a	0d	£0		6					
	f0	f0	f0	61	71					а	q	

Countermeasures and future work

 SAGE Activity Report 2008: ... The Group produced a new set of algorithms for DECT based on AES – DECT Standard Cipher 2 (DSC2) and DECT Standard Authentication Algorithm 2 (DSAA2). ...

- Improve the methods, how multiple correlations and keystream bits in this attack are used
- Find an attack on DSC which requires less keystreams

Contact and Questions?

Karsten Nohl <u>nohl@cs.virginia.edu</u> Erik Tews <u>e_tews@cdc.informatik.tu-darmstadt.de</u> Ralf-Philipp Weinmann <u>ralf-philipp.weinmann@uni.lu</u>

Thanks to Andreas Schuler, Patrick McHardy, Starbug, Flylogics and many more (including Alcatel) who helped!

Download the paper at: http://dedected.org/

Questions?