
Revisiting the IDEA Philosophy

Pascal Junod1,2 Marco Macchetti2

1University of Applied Sciences Western Switzerland (HES-SO)

2Nagracard SA, Switzerland

FSE’09 Leuven (Belgium), February 24, 2009



Outline

The IDEA Block Cipher



Outline

The IDEA Block Cipher

Implementation of IDEA-8 on an Intel Core2 CPU



Outline

The IDEA Block Cipher

Implementation of IDEA-8 on an Intel Core2 CPU

WIDEA-N



Outline

The IDEA Block Cipher

Implementation of IDEA-8 on an Intel Core2 CPU

WIDEA-N

Future Work



A Bit of History

◮ Designed by Lai and Massey in 1990 on behalf of ASCOM AG
(the patent now belongs to Nagravision SA)

◮ Block cipher encrypting 64-bit blocks under a 128-bit key

◮ Very simple philosophy: mix three different and algebraically
incompatible group laws on 16-bit values:

◮ ⊕ = XOR
◮ ⊞ = addition modulo 216

◮ ⊙ = multiplication modulo 216 + 1

◮ Simple, fully linear bit-selecting key-schedule algorithm

◮ Quite popular during the 90’s thanks to PGP



IDEA Round Function

⊕

⊞ ⊞

⊙ ⊞

⊕

⊕⊕

⊕

⊙⊙

⊙⊞

⊕

MA box

γ(r) δ(r)

X
(r)
0 X

(r)
1 X

(r)
2 X

(r)
3

Z
(r)
0 Z

(r)
3Z

(r)
1 Z

(r)
2

Z
(r)
4

Z
(r)
5

Y
(r)
0 Y

(r)
1 Y

(r)
2 Y

(r)
3



IDEA is a Secure Cipher

◮ Designed to resist differential cryptanalysis

◮ Extensively cryptanalyzed (more than 15 published papers so
far)

◮ Today, the best attack by Biham et al. [BDK07] breaks 6
rounds (out of 8.5) using the full codebook and within a
complexity of 2126.8 operations in a classical scenario

◮ Virtually all the attacks largely exploit properties of the fully
linear, bit-selecting key-schedule algorithm



IDEA will Fall into the Public Domain

◮ The “IDEA way” to build a cipher looks like to be valid in
terms of security

◮ By the way, IDEA will fall into the public domain on
May 16th, 2011

◮ Existing extensions (like MESH ciphers) are not very
competitive in terms of speed

◮ Can we re-use this approach to design something new and fast
(with a look at hash functions and authenticated encryption
schemes) ?



Lipmaa’s Implementation on the MMX Architecture

◮ At SAC’97, Lipmaa published the so far fastest
implementation of IDEA on Intel CPUs

◮ Exploits the SIMD features of the MMX instruction set

◮ Obtained a 4-way implementation able to encrypt at
≈18 clocks/byte on Pentium and Pentium II CPUs

◮ Such implementations are useful to perform ECB, CBC
decryption or CTR mode

◮ More parallelization lead to (hard-to-use-in-practice) bitslice
implementations



A New Implementation with SSEx Instructions

◮ The Intel SSEx architecture brings up to 16 128-bit registers
(XMM)

◮ Added full support for unsigned multiplication of 16-bit values
performed 8-times in parallel

◮ On Core2 CPUs, the throughput and latencies of the SSEx
instructions have been seriously improved



An 8-Way Branch-Free IDEA Multiplication

1 t = _mm_add_epi16 (a, b);

2 c = _mm_mullo_epi16 (a, b);

3 a = _mm_mulhi_epu16 (a, b);

4 b = _mm_subs_epu16 (c, a);

5 b = _mm_cmpeq_epi16 (b, XMM_0);

6 b = _mm_srli_epi16 (b, 15);

7 c = _mm_sub_epi16 (c, a);

8 a = _mm_cmpeq_epi16 (c, XMM_0);

9 c = _mm_add_epi16 (c, b);

10 t = _mm_and_si128 (t, a);

11 c = _mm_sub_epi16 (c, t)



An 8-Way Branch-Free IDEA Multiplication

1 t = (a + b) & 0xFFFF;

2 c = (a * b) & 0xFFFF;

3 a = (a * b) >> 16;

4 b = (c - a); if (b & 0x80000000) b = 0;

5 if (b == 0) b = 0xFFFF; else b = 0;

6 b = b >> 15;

7 c = (c - a) & 0xFFFF;

8 if (c == 0) a = 0xFFFF; else a = 0;

9 c = (c + b) & 0xFFFF;

10 t = t & a;

11 c = (c - t) & 0xFFFF;



Our implementation

◮ Implementation of 8-way IDEA on the x86 64 architecture
using SSE2 instructions

◮ Integrated our 8-way IDEA implementation in CTR mode into
the eSTREAM benchmarking framework

◮ Our implementation is running at 5.4 clocks/byte on an Intel
Core2 CPU (with a pre-computed key-schedule and for long
messages).



Comparison with Other Ciphers

◮ Intel Core2 with long messages in clock/byte

Cipher Speed Source

Trivium 3.66 [eSTREAM-Bernstein]

Salsa 20/20 3.91 [eSTREAM-Bernstein]

IDEA-8 5.42 This paper

LEX v2 5.83 [eSTREAM-Bernstein]

RC4 7.47 [eSTREAM-Bernstein]

AES-128 9.20 (bitslice) [Matsui-Nakajima-2007]

AES-128 10.57 [Bernstein-Schwabe-2008]

AES-128 12.59 [eSTREAM-Bernstein]



Our Goals

◮ Build a block cipher with a (64 × n)-bit block size

◮ Fully respect the IDEA design philosophy

◮ Design a new key-schedule algorithm

◮ Keep the highest possible parallelism (and speed)

◮ If possible, inherit all the good security properties of IDEA



WIDEA as a Single Picture

z0,0

z0,n

z1,0

z1,n

z2,0

z2,n

z3,0

z3,n

z4,0

z4,n

z5,0

z5,n

MDS



MDS Matrix

◮ N × N matrix over GF(216) building an
(N,N)-multipermutation

◮ Only step which is “somewhat” sequential (using
pre-computed tables would be to expensive in terms of time)

◮ Still possible to perform the xtime() operation 8-times in
parallel.



Key-Schedule Algorithm

◮ Non-linear feedback shift register

◮ Fast diffusion (full diffusion after 3 rounds of WIDEA)

◮ Asymmetry brought through iteration-dependent constants

◮ Design approach similar to the AES key-schedule

Zi = ((((Zi−1 ⊕ Zi−8)
16
⊞ Zi−5)

16
≪ 5) ≪ 24) ⊕ C i

8
−1



Preliminary Security Considerations

◮ Two sequential operations are always algebraically
incompatible

◮ Thanks to the MDS matrix , we get full diffusion after a
single round

◮ Total of eight full diffusions (large number compared to other
designs)

◮ Differential, linear and integral properties behave the same
way than for IDEA

◮ We expect that the new, non-linear key-schedule further
strengthens our design



WIDEA-8

◮ Fully specified in the paper, test vectors available

◮ 512-bit block size, 1024-bit key size

◮ WIDEA-8-based compression function in Davies-Meyer mode
implemented as a Merkle-Damgard scheme on an Intel Core2
CPU using SSE3 instruction set



Speed Results

Cipher Speed Source

EDON-R 512 2.29 [NIST-EDONR]
WIDEA-8 5.98 This paper
CubeHash8/32 6.03 [NIST-CUBEHASH]
Skein-512 6.10 [NIST-SKEIN]
Shabal-512 8.03 [NIST-SHABAL]
LUX 9.50 [NIST-LUX]
Keccak 10.00 [NIST-KECCAK]
BLAKE-64 10.00 [NIST-BLAKE]
Cheetah 13.60 [NIST-CHEETAH]
Aurora 26.90 [NIST-AURORA]
Grostl 30.45 [NIST-GROSTL]
ECHO-SP 35.70 [NIST-ECHO]
SHAvite-3 38.20 [NIST-SHAVITE]
Lesamnta 51.20 [NIST-LESAMNTA]
MD6 52.64 [EBASH]
ECHO 53.50 [NIST-ECHO]
Vortex 56.05 [NIST-VORTEX]
FUGUE 75.50 [NIST-ECHO]



Future Work

◮ Fully specify a hash function (might be useful if NIST is
unable to select a secure and fast SHA3 winner or AES-based
constructions are broken ;-)

◮ Break it or prove that breaking it implies an attack on IDEA


	The IDEA Block Cipher
	Implementation of IDEA-8 on an Intel Core2 CPU
	WIDEA-N
	Future Work

