Cube Testers and Key-Recovery Attacks on Reduced-Round MD6 and Trivium

Jean-Philippe Aumasson, Itai Dinur, Willi Meier, Adi Shamir

University of Applied Sciences Northwestern Switzerland School of Engineering

Cube attacks

Timeline

Aug 08: Shamir presents cube attacks at CRYPTO

Sep 08: Dinur/Shamir paper on ePrint, attack on 771-round Trivium

Oct 08: cube attacks reported on 14-round MD6

Oct 08: cube testers reported on 18-round MD6

Dec 08: Dinur/Shamir paper accepted to EUROCRYPT

Jan 09: cube testers reported on Shabal

Cube attacks in a nutshell

Can attack any primitive with secret and public variables

- keyed hash functions
- stream ciphers
- block ciphers
- MACs

Target algorithms with **low-degree** components

- stream ciphers based on low-degree NFSR
- hash functions with only XORs and a few ANDs

Cube attacks in a nutshell

Requirements of the attacker:

- ► only **black-box access** to the function
- negligible memory

Cube attacks work in 2 phases

- precomputation: chosen keys and chosen IVs
- ► online: fixed unknown key and chosen IVs

Any function $f: \{0,1\}^m \mapsto \{0,1\}^n$ admits an **algebraic normal form** (ANF) <u>Example</u>: $f: \{0,1\}^{10} \mapsto \{0,1\}^4$ $f_1(x) = x_1x_2 + x_2x_8x_9 + x_3x_4x_5x_6x_7$ $f_2(x) = x_2x_4 + x_6x_8x_9 + x_5x_6x_7x_8x_9x_{10}$ $f_3(x) = 1$

 $f_4(x) = 1 + x_1 + x_3 + x_5$

Computation of the largest monomial's coefficient

$$\begin{aligned} f(x_1, x_2, x_3, x_4) &= x_1 + x_3 + x_1 x_2 x_3 + x_1 x_2 x_4 \\ &= x_1 + x_3 + x_1 x_2 x_3 + x_1 x_2 x_4 + \mathbf{0} \times x_1 x_2 x_3 x_4 \end{aligned}$$

Sum over all values of (x_1, x_2, x_3, x_4) :

 $f(0,0,0,0)+f(0,0,0,1)+f(0,0,1,0)+\cdots+f(1,1,1,1)=0$

Evaluation of factor polynomials

$$f(x_1, x_2, x_3, x_4) = x_1 + x_3 + x_1 x_2 x_3 + x_1 x_2 x_4 = x_1 + x_3 + x_1 x_2 (x_3 + x_4)$$

Fix x_3 and x_4 , sum over all values of (x_1, x_2) :

 $\sum_{(x_1,x_2)\in\{0,1\}^2} f(x_1,x_2,x_3,x_4) = 4 \times x_1 + 4 \times x_3 + 1 \times (x_3 + x_4)$

 $= X_3 + X_4$

Evaluation of factor polynomials

$$f(x_1, x_2, x_3, x_4) = \cdots + x_1 x_2 (x_3 + x_4)$$

Fix x_3 and x_4 , sum over all values of (x_1, x_2) :

$$\sum_{(x_1,x_2)\in\{0,1\}^2} f(x_1,x_2,x_3,x_4) = x_3 + x_4$$

Terminology

$$f(x_1, x_2, x_3, x_4) = x_1 + x_3 + x_1 x_2 (x_3 + x_4)$$

 $(x_3 + x_4)$ is called the **superpoly** of the **cube** x_1x_2

Evaluation of a superpoly

 x_3 and x_4 fixed and unknown $f(\cdot, \cdot, x_3, x_4)$ queried as a **black box**

ANF unknown, except: x_1x_2 's superpoly is $(x_3 + x_4)$

$$f(x_1, x_2, x_3, x_4) = \cdots + x_1 x_2 (x_3 + x_4) + \cdots$$

Query *f* to evaluate the superpoly:

$$\sum_{(x_1,x_2)\in\{0,1\}^2} f(x_1,x_2,x_3,x_4) = x_3 + x_4$$

Key-recovery attack

On a stream cipher with key k and IV v

 $f: (\mathbf{k}, \mathbf{v}) \mapsto$ first keystream bit

Offline: find cubes with linear superpolys

$$f(k, v) = \dots + v_1 v_3 v_5 v_7 (k_2 + k_3 + k_5) + \dots$$

$$f(k, v) = \dots + v_1 v_2 v_6 v_8 v_{12} (k_1 + k_2) + \dots$$

$$\dots = \dots$$

$$f(k, v) = \dots + v_3 v_4 v_5 v_6 (k_3 + k_4 + k_5) + \dots$$

(reconstruct the superpolys with linearity tests)

Online: evaluate the superpolys, solve the system

Cube testers

Cube testers in a nutshell

Like cube attacks:

- need only black-box access
- target primitives with secret and public variables and
- built on low-degree components

Unlike cube attacks:

- ► give distinguishers rather than key-recovery
- don't require low-degree functions
- need no precomputation

Basic idea

Detect structure (nonrandomness) in the superpoly, using **algebraic property testers**

A tester for property \mathcal{P} on the function *f*:

- makes (adaptive) queries to f
- accepts when f satisfies \mathcal{P}
- rejects with bounded probability otherwise

Examples of efficiently testable properties

- ▶ balance
- ► linearity
- ► low-degree
- constantness
- presence of linear variables
- presence of neutral variables

General characterization by Kaufman/Sudan, STOC' 08

Superpolys attackable by testing...

... **low-degree** (6)

 $\cdots + x_1 x_2 x_3 (x_2 x_3 + x_4 x_{21} + x_6 x_9 x_{20} x_{30} x_{40} x_{50}) + \cdots$

... neutral variables (x_6)

 $\cdots + x_1 x_2 x_3 x_4 x_5 \cdot g(x_7, x_8, \ldots, x_{80}) + \cdots$

... linear variables (x_6)

 $\cdots + x_1 x_2 x_3 x_4 x_5 \cdot (x_6 + g(x_7, x_8, \ldots, x_{80})) + \cdots$

Results

Presented by Rivest at CRYPTO 2008 Submitted to the SHA-3 competition

- quadtree structure
- construction RO-indifferentiable
- low-degree compression function
- at least 80 rounds
- best attack by the designers: 12 rounds

MD6's compression function

$$\{0,1\}^{64\times 89}\mapsto \{0,1\}^{64\times 16}$$

Input: 64-bit words $A_0.A_1, \ldots, A_{88}$

Compute the A_i 's with the recursion

$$egin{aligned} & x \leftarrow egin{aligned} S_i \oplus A_{i-17} \oplus A_{i-89} \oplus (A_{i-18} \wedge A_{i-21}) \oplus (A_{i-31} \wedge A_{i-67}) \ & x \leftarrow x \oplus (x \gg r_i) \ & A_i \leftarrow x \oplus (x \ll \ell_i) \end{aligned}$$

- round-dependent constant S_i
- quadratic step, at least 1280 steps

Results on MD6

Cube attack (key recovery)

- ► on the 14-round compression function
- recover any 128-bit key
- in time $\approx 2^{22}$

Cube testers (testing balance)

- detect nonrandomness on 18 rounds
- detect nonrandomness on **66 rounds** when $S_i = 0$
- in time $\approx 2^{17}$, 2^{24} , resp.

Trivium

Stream cipher by De Cannière and Preneel, 2005 eSTREAM HW portfolio

- ▶ 80-bit key and IV
- ► 3 quadratic NFSRs
- 1152 initialization rounds
- best attack on 771 rounds (cube attack)

Cube testers on Trivium

Test the presence of neutral variables

Distinguishers (only choose IVs)

- ▶ 2²⁴: 772 rounds
- ▶ 2³⁰: 790 rounds

Nonrandomness (assumes some control of the key)

- ▶ 2²⁴: 842 rounds
- ▶ 2²⁷: 885 rounds

Full version: 1152 rounds

Conclusions

Cube testers

- more general than classical cube attacks
- ► no precomputation
- "polymorphic"

- only gives distinguishers
- only finds feasible attacks
- ► relevant for a minority of functions (like cube attacks)

How to predict the existence of unexpected properties?

How to find the best cubes?

Attack on (reduced versions of) other algorithms: Grain, ESSENCE, Keccak, Luffa, Shabal,...

Cube Testers and Key-Recovery Attacks on Reduced-Round MD6 and Trivium

Jean-Philippe Aumasson, Itai Dinur, Willi Meier, Adi Shamir

University of Applied Sciences Northwestern Switzerland School of Engineering

