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Abstract. A corrector is used to reduce or eliminate statistical weak-
ness of a physical random number generator. A description of linear
corrector generalizing post-processing described by M. Dichtl at FSE’07
[4] is introduced. A general formula for non linear corrector, determining
the bias and the minimal entropy of the output of a function is given.
Finally, a concrete and efficient construction of post-processing function,
using resilient functions and cyclic codes, is proposed.
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1 Introduction

The scheme of a true random number generator consists of two differents parts.
The first one is a noise source using a physical non deterministic phenomenon
producing a raw binary sequence. The second one is a corrector compressing this
sequence in order to provide randomness extraction. 1 At FSE’07, M. Dichtl pro-
posed several true random number generators designed to reduce the bias of the
noise source and extract more entropy than known algorithms [4]. He considered
that the physical source produces statistically independents bits with constant
bias. In his conclusion, the author suggested to extend his work in many direc-
tions : compression rates, other input sizes and systematic construction of good
post-processing functions.

In this paper, we study the output bias of a function. The same assumptions
as in [4] are taken : the input bits of the function are independents and have the
same bias. General constructions of functions achieving very good output bias
are exposed. Furthermore, these functions are very efficiently implemented in
smart-card applications. The output bias of a linear corrector is bounded in Sec-
tion 2, using linear correcting codes. Section 3 presents the explicit calculation
of the output bias of a function with its Fourier transform. Resilient functions
are used in Section 4 to construct correctors and Section 5 proposes an estima-
tion of minimal entropy of the output sequence. Section 6 describes a concrete
implementation of a mathematical corrector.

1 True random number generator should not be used for cryptographic purposes with-
out a more complex structure as a pseudo random generator [2].



2 A linear corrector

We consider a physical noise source providing a raw binary sequence. The bits
are independent and display a constant bias, equal to e/2, with 0 ≤ e ≤ 1. The
bias of any bit x is given by the formula |P (x = 0) − 1/2|. This assumption is
taken in order to get a simple formula and to compare our correctors with the
correctors proposed in [4] on the same hypothesis. Nevertheless Theorem 1 can
be generalized with non constant bias assumption.

The linear corrector H proposed in [4], maps 16 bits to 8 bits. For x =
(x0, . . . , x15) the input vector and y = (y0, . . . , y7) the output vector, the correc-
tor H is defined by the following relation

∀i = 0, . . . , 7 yi = xi + xi+1 mod 8 + xi+8 mod 2 .

The compression rate of H is 2, exactly the same rate as the xor corrector

yi = x2i + x2i+1 mod 2 .

If we note X1 and X2 the two input bytes of H, + the bitwise xor and
RL(X, i) the circular rotation of i bits, we can write H in pseudocode

H(X1, X2) = X1 + RL(X1, 1) + X2 .

Two furthers improvements of H are proposed

H2(X1, X2) = X1 + RL(X1, 1) + RL(X1, 2) + X2 ,

H3(X1, X2) = X1 + RL(X1, 1) + RL(X1, 2) + RL(X1, 4) + X2 .

The author says that if the bias of any input bits is e, then the lowest power
of e in the bias of output bytes is 3 for H, 4 for H2 and 5 for H3. His approach
is to determine probability of every inputs, and to sum up the probability for all
input leading to the same output of the corrector.

In order to give a simple mathematical proof of previous results, any linear
corrector has to be represented by a matrix. For x = (x1, . . . , xn) and y =
(y1, . . . , ym), any linear binary corrector mapping n bits to m bits, is defined as
the product of the vector x by the binary matrix G = (gi,j) :




g1,1 . . . g1,n
...
gm,1 . . . gm,n








x1
...
xn



 =




y1
...
ym



 .

Theorem1. Let G be a linear corrector mapping n bits to m bits and e/2 the
bias of the input bits. Then the bias of any non zero linear combination of the
output bits is less or equal than ed/2, where d is the minimal distance of the
linear code constructed by the generator matrix G.



Proof. Firstly, recall that if n bits x1, . . . , xn have a bias e/2, then the bias of
x1 + . . . + xn mod 2 is en/2 (the proof is a simple induction).

The matrix G is seen as a generator matrix of a [n, k, d] linear code. By
definition of the minimal distance of the code, any non zero linear combination
of output bits is the sum of, at least, d input bits. We conclude that the bias of
any non zero linear combination of output bits is less or equal than ed/2. $%

This theorem gives an upper bound of the output bias for an arbitrary linear
corrector. In particular, the matrix corresponding to H, H2 and H3 are respec-
tively generator matrix of [16, 8, 3], [16, 8, 4] and [16, 8, 5] linear codes. If all input
bits have a bias e/2, then the bias of any linear combination of output bits is
bounded, respectively by e3/2, e4/2 and e5/2. Theorem 13 of Section 5 allows
to conclude on Dichtl results on the lowest power of e in the output bytes bias.

Any linear [n, m, d]-code provides a linear corrector with an estimation of its
output bias. The compression rate of a corrector mapping n bits to m bits is
defined by n/m. A table of linear codes gives good linear corrector with variable
compression rates and input sizes [5]. The hardware implementation of linear
corrector is efficiently achieved as a simple multiplication of an input vector by
a constant matrix. A cyclic code provides a more compact implementation of
the corrector and improves its realisation (Section 6).

There are no linear binary codes of length 16, dimension 8 with minimal
distance greater than 5 [5]. In theses conditions, to minimize output bias, we
must search non linear correctors.

3 Non linear corrector

Let f be a corrector mapping n-bits to m-bits. A non zero linear combination of
output bits of f is defined using a m-bits vector u &= 0, by the Boolean function
φu(x) =

∑m
i=1 uifi(x) = u.f(x). For an input bits bias e, the bias of this linear

combination is
∆u =

P (φu(x) = 1)− P (φu(x) = 0)
2

.

The bias ∆u can be directly computed using the truth table of φu(x) and
the input bias e by the formula

2∆u(e) =
∑

x∈Fn
2

φu(x)=1

(
1
2
− e)n−wh(x)(

1
2

+ e)wh(x) −
∑

x∈Fn
2

φu(x)=0

(
1
2
− e)n−wh(x)(

1
2

+ e)wh(x)

=
∑

x∈Fn
2

(
1
2
− e)n−wh(x)(

1
2

+ e)wh(x)(−1)φu(x)+1 .

Therefore

∆u(e) = −1
2

∑

x∈Fn
2

(
1
2
− e)n−wh(x)(

1
2

+ e)wh(x)(−1)φu(x) . (1)



For a function f , the Hamming weight wh(f) denotes the number of ’1’ in
its truth table. The Fourier transform of f is :

∀v ∈ Fn
2 Ff (v) =

∑

x∈Fn
2

f(x)(−1)x.v .

The Walsh transform of f is :

∀v ∈ Fn
2 f̂(v) =

∑

x∈Fn
2

(−1)f(x)+v.x .

The inverse Fourier transform is ([6], ch 14, sec 3) :

f(x) =
1
2n

∑

v∈Fn
2

(−1)u.xFf (v) . (2)

The following lemma can be found in [6], ch 5, sec 2 :

Lemma 2. Let g be the map defined on Fn
2 , by

g(x) = Xn−wh(x)Y wh(x) .

Then the Fourier transform Fg is defined by

Fg(v) = (X + Y )n−wh(v)(X − Y )wh(v) .

Theorem 3 presents a complete description of the bias of any non zero linear
combination φu(x) = u.f(x) of a vectorial function f relatively to the the input
bias e and the coefficients of the Walsh transform of φu :

Theorem 3. Let f be a function which maps n bits to m bits and e the input
bit bias. Then the bias ∆u of φu is

∆u(e) =
1

2n+1

∑

v∈Fn
2

(2e)wh(v)(−1)wh(v)+1φ̂u(v) . (3)

Proof. The bias ∆u is obtained by formula (1) :

∆u(e) = −1
2

∑

x∈Fn
2

(
1
2
− e)n−wh(x)(

1
2

+ e)wh(x)(−1)φu(x) .

Let g(x) be the function

(
1
2
− e)n−wh(x)(

1
2

+ e)wh(x) .

By Lemma 2, we have

Fg(v) = (
1
2
− e +

1
2

+ e)n−wh(v)(
1
2
− e− 1

2
− e)wh(v) = (2e)wh(v)(−1)wh(v) .



Then, with the inverse Fourier transform (2) of g :

∆u(e) = −1
2

∑

x∈Fn
2

1
2n

∑

v∈Fn
2

Fg(v)(−1)x.v(−1)φu(x) .

Therefore
∆u(e) =

1
2n+1

∑

v∈Fn
2

(2e)wh(v)(−1)wh(v)+1φ̂u(v) .

$%

For example, let f be the Boolean function defined by

f(x) = f(x1, x2, x3) = x2 + x3 + x1x2 + x2x3 mod 2 ,

where the truth table and the Walsh coefficients are

x f(x) f̂(x)
000 0 0
001 1 4
010 1 0
100 0 -4
011 1 4
101 1 0
110 0 4
111 0 0

The probability P (f(x) = 0) = 1
2 − e can be directly computed using the

truth table of f :

P (f(x) = 0) = (
1
2
− e)3 + (

1
2
− e)2(

1
2

+ e) + (
1
2
− e)(

1
2

+ e)2 + (
1
2

+ e)3

=
1
2

+ 2e2 .

The output bias computed with Theorem 3 gives (with u = 1) :

∆1(e) =
1
16

(f̂(000) + 2ef̂(001) + 2ef̂(010) + 2ef̂(100)

−4e2f̂(011)− 4e2f̂(101)− 4e2f̂(110) + 8e3f̂(111))

= −2e2 .

Definition 4. Let P be a polynomial of degree d, defined by

P (X) =
d∑

i=0

aiX
i .

The valuation of P is the minimal i > 0 such that ai &= 0.



Corollary 5 is a consequence of Theorem 3 :

Corollary 5. Let f be a function mapping n bits to m bits and e the input bias
of the function. For any vector u, we define for all w, with 0 ≤ w ≤ n

Bw =
∑

v∈Fn
2

wh(v)=w

φ̂u(v) .

Then the bias of φu(x) is a polynomial of valuation W , with

W = min{w | Bw &= 0} .

Formula (3) gives a complete description of the bias and coefficients of the
polynomial ∆u(e) are determined by Bw.

In particular, if we consider the linear Boolean function which is the sum of
d variables, then Bw = 0 for all w &= d.

4 A resilient corrector

A (n, m, t)-resilient function is a function mapping n bits to m bits such that if
t input bits are fixed, there is no influence on the output :

Definition 6. [3] A (n, m, t)-resilient function is a function f mapping Fn
2 to

Fm
2 such that for any coordinates i1, . . . it and for any binary constant c1, . . . , ct

and for all y ∈ Fm
2 , we have

P (f(x) = y | xi1 = c1, . . . , xit = ct) = 2−m,

where xi with i /∈ {i1, . . . , it} verify P (xi = 1) = P (xi = 0) = 0.5.

A (n, m, t)-linear resilient function is a linear corrector2 and Theorem 8 shows
the relation between resilience degree of a linear function and output bias :

Lemma 7. [3] A (n × m) binary matrix M is a generator matrix of a linear
[n, m, d]-code if and only if the function

x )→ M.tx

is a linear (n, m, d− 1)-resilient function.

Theorem8. Let f be a linear (n, m, t)-resilient function and e/2 the input bias.
Then the bias of any non zero linear combination of the output bits is less or
equal than et+1/2.

Proof. From Lemma 7, any linear (n, m, t)-resilient function provides a generator
matrix of a [n, m, t + 1]-linear code. The theorem follows with Theorem 1. $%
2 In [7], Stinson, Martin and Sunar have proposed a true random number generator

using a linear resilient function for the post-processing.



If the (n, m, t)-resilient function is non linear, Theorem 11 evaluates the out-
put bias, using the resilience degree :

Lemma 9. [3] Let f be a (n, m, t)-resilient function and u a non zero vector in
Fm

2 . Then, any non zero linear combination u.f(x) of f is a (n, 1, t)-resilient
Boolean function.

Lemma 10. [9] Let f be a (n, 1, t)-resilient Boolean function. Then for all vector
v in Fn

2 with wh(v) ≤ t , we have f̂(v) = 0.

Theorem 11. Let f be (n, m, t)-resilient function and all input bits have a bias
e. Then the bias of any non zero linear combination of output bits is a polynomial
in e of valuation greater than t + 1.

Proof. Let φu(x) = u.f(x) be a linear combination of output bits. By Lemma
9 φu is a (n, 1, t)-resilient Boolean function. So, all Walsh coefficients φ̂u(v) are
null for all vector v of Hamming weight less or equal than t (Lemma 10). Using
Theorem 3, we obtain

∆u(e) =
1

2n+1

∑

v∈Fn
2

wh(v)>t

(2e)wh(v)(−1)wh(v)+1φ̂u(v) .

$%

In the non linear case, the resilient property is not a necessary condition to
reduce the bias. The Boolean function of the previous example

f(x) = x2 + x3 + x1x3 + x2x3 mod 2 ,

is not resilient, but the output bias is reduced. Indeed, the Walsh coefficients of
(001) and (100) are not null, but the sum of both is null.

For example, M. Dichtl proposed a non linear corrector mapping 16 bits to 8
bits such that all e powers up to the fifth are gone in the output bias formula [4].
This corrector was found by exhaustive search and the hardware implementation
requires a considerable amount of chip area.

The calculation of syndrome of the non linear (16, 256, 6) Nordstrom-Robinson
code provides a (16, 8, 5)-resilient function [8]. Theorem 11, applied to this func-
tion, gives a corrector with a valuation of ∆u(e) equal to 6 and with a possible
implementation for smart-card applications.

5 Bias and minimal entropy

In order to evaluate the random quantity in a binary sequence, the minimal
entropy is an appropriate notion for random number generation in cryptography
[2]. In this part, we prove that if the bias of any non zero linear combination of
output bits is bounded, then the minimal entropy of the output can be estimated.
Theorem 13 is a particular case of a theorem giving the relation between biased
sample space and almost k-wise independent random variables [1].



Lemma 12. Let f be a function mapping n bits to m bits and ∆u the bias of
φu(x) = u.f(x) :

∆u =
∣∣∣∣P (φu(x) = 1)− 1

2

∣∣∣∣ .

For all y ∈ Fm
2 , the function g is defined by g(y) = P (f(x) = y). Then we have

the following relation between ∆u and g :

∆u =
1
2
|Fg(u)| .

Proof. By definition,

P (f(x).u = 1) =
∑

y∈Fm
2

(y.u)P (f(x) = y) ,

where the inner product (y.u) is a Boolean. Hence

P (f(x).u = 1) =
1
2

∑

y∈Fm
2

g(y)

︸ ︷︷ ︸
1

−1
2

∑

y∈Fm
2

(−1)y.ug(y) .

Therefore
∆u =

1
2
|Fg(u)| .

$%

Theorem 13. With the same notations as Lemma 12, if for all u ∈ Fm
2 −

{(0 . . . 0)}, we have |∆u| ≤ e, then for all y ∈ Fm
2 ,

∣∣P (f(x) = y)− 2−m
∣∣ ≤ 2e .

Proof. The inverse Fourier transform (2) of the function g is

g(y) = 2−m
∑

u∈Fm
2

(−1)u.yFg(u) .

Using that |Fg(0)| = 1, for all y ∈ Fm
2 ,

∣∣g(y)− 2−m
∣∣ = 2−m

∣∣∣∣∣∣

∑

u #=(0...0)

(−1)u.yFg(u)

∣∣∣∣∣∣
.

By hypothesis, with Lemma 12, for all vector u ∈ Fm
2 −{(0 . . . 0)}, |Fg(u)| ≤ 2e.

Then, for all y ∈ Fm
2 ,
∣∣g(y)− 2−m

∣∣ ≤ 2e× 2−m
∑

u #=(0...0)

|(−1)u.y|

︸ ︷︷ ︸
2m−1

≤ 2e(1− 2−m)
≤ 2e .

$%



In other terms, the biais of any m-tuple is less or equal than

2 max
u∈Fm

2

|∆u| .

Definition 14. Let X be a discrete random variable on {0, 1}n. The minimal
entropy of X is the maximal number k such that

∀x ∈ X, P (X = x) ≤ 2−k .

Theorem 13 is a good tool to evaluate minimal entropy of the output. Indeed,
we suppose that a (n, m, t)-resilient function is used, with an input bias e. Then,
with Theorems 11 and 13, the bias of any output m-tuple is a polynomial of
valuation greater than t + 1. If et+1 is negligible compared to 2−m, then the
minimal entropy of the output is very close to m.

With a linear (n, m, t)-resilient function and an input bias e/2, we have

P (f(x) = y) ≤ 2−m + et+1 ,

then the minimal entropy of the output is greater than

m− log2(1 + et+12m) .

6 Efficient construction of linear corrector

For a linear cyclic code, a syndrome is computed with a modular polynomial
reduction, which is realized by using a linear feedback shift register. Lemma 7
explains how getting linear resilient function by calculating a syndrome. Let C a
[n, k, d] linear code, H its check matrix and d′ its dual distance, then the function
x )→ H.tx is a (n, n− k, d′ − 1)-resilient function.

An example of a linear corrector efficient in term of logic gates will illustrate
the previous results. Let C the [255, 21, 111] BCH code, D the [256, 234, 6] dual
code of C, with generator polynomial

H(X) = X21 + X19 + X14 + X10 + X7 + X2 + 1 .

The input 255-tuple (m1, . . . ,m255) is coded by a binary polynomial m(X) =∑255
i=1 miXi. Therefore the function f mapping F255

2 to F21
2 , defined by

m(X) )→ m(X) mod H(X)

is a (255, 21, 110)-resilient function. This polynomial reduction is implemented
by a shift register of length 21 with only seven xor gates.

In this case, with an important input bias e/2 = 0.25, Theorems 8 and 13
give an output bias of :

∀y ∈ F21
2

∣∣P (f(X) = y)− 2−21
∣∣ ≤ 2−111 .

Therefore, the minimal entropy of the output is very close to 21.



7 Conclusion

In this work we present general constructions of good post-processing functions.
We have shown that linear correcting codes and resilient functions provide many
correctors achieving good bias reduction with variable input sizes. Linear feed-
back shift register are suitable for an hardware inplementation where the chip
area is limited.
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