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Introduction



Correlation Attack of Vectorial
Stream Ciphers

In this talk, we shall improve correlation attacks on 
vectorial stream ciphers.

Will consider vectorial Boolean functions in combinatorial 
and filtering generators. 

Will not go into the details of the correlation attack.

Focus on how to obtain good linear approximation.



Correlation Attack of Vectorial
Stream Ciphers
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In standard correlation attack of vectorial Boolean functions, 
we form linear approximation of the form:
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Linear Bias and Nonlinearity
For correlation attack to succeed, we require

where z = F(x) is the output. I.e. probability far away 
from ½.

This is equivalent to the condition that nonlinearity
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Zhang-Chan Attack
At Crypto 2000, Zhang and Chan noticed that z=F(x) is 
known, therefore we can consider

which is linear in x for any Boolean function g(⋅).

Because approximation of b⋅z is a particular case of 
approximation of g(z). It is easier to get a better linear 
approximation, i.e. get Pr(g(z)= w⋅x) further away from ½
than Pr(b⋅z = w⋅x).
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Zhang-Chan Attack

For Zhang-Chan attack to succeed, we require

where z=F(x) is known.

This is equivalent to the condition that unrestricted 
nonlinearity
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Generalized Correlation



Generalized Correlation Attack

We still want to get approximations which are linear in 
x.

The most general approximation which is linear in x:

where wi(z) are Boolean functions of the known output z
and w(z)=(w1(z),…, wn(z))
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Generalized Correlation Attack
For generalized correlation attack to succeed, we 
require

where z=F(x) is known.

This is equivalent to the condition that generalized 
nonlinearity
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Generalized Correlation Attack
g(z)= w(z)⋅x is a more general approximation than        
g(z)= w⋅x, which in turn is a more general approximation 
than b⋅z = w⋅x.

Therefore Pr(g(z)= w(z)⋅x) can be chosen to be further 
away from ½ than the other two approximations.

In terms of nonlinearities,
GNF ≤ UNF ≤ NF



From a Cipher Designer’s 
Viewpoint

From the viewpoint of a stream cipher designer, he 
needs to ensure generalized nonlinearity GNF is  high 
for protection against correlation attack. Then 
automatically, UNF and NF will be high.



Comparison of Generalized 
Correlation Attack with Known 
Methods



An Example on Bent Functions

1000011101100011F(x)=(z1z2)

11111110110111001011101010011000x=x1x2x3x4

1110010000000000F(x)=(z1z2)

01110110010101000011001000010000x=x1x2x3x4

F(x) is a bent function from GF(2)4 to GF(2)2. We have 
NF=6 and UNF=5. This means the best affine approximation 
has probability 0.63 and 0.69 for usual and Zhang-Chan.

For generalized correlation attack, we have GNF=2. The 
best generalized approximation has probability:
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How much better is Generalized 
Correlation Attack?

Below is a table comparing average nonlinearities of 
10000 randomly generated balanced functions from 
n-bits to n/2-bits:

52241101213366GNF

745417684078816UNF

7856189744310018NF

14121086n

GNF is much lower than NF
and UNF



How much better is Generalized 
Correlation Attack?

Here’s the table for average best approximation 
probability of the previous functions from n-bits to 
n/2-bits:

0.680.730.790.860.91Probability
(generalized)

0.550.570.600.660.75Probability
(Zhang-Chan)

0.520.540.570.610.72Probability
(usual)

14121086n

Probability of generalized attack much further 
away from 0.5 than the other attacks



Another Example on Inverse 
Function

Let us compare the various approximation probability 
for x-1 on GF(28) restricted to m output bits. 

1.001.001.000.840.740.690.56Probability
(generalized)

0.780.730.670.630.610.580.56Probability
(Zhang-Chan)

0.560.560.560.560.560.560.56Probability
(usual)

7654321m



Computation of Generalized 
Nonlinearity



Since we saw that generalized correlation attack is 
more powerful than known attacks, it is useful to 
compute the generalized nonlinearity. 

We need to compute 

over all choices of g,w1,…,wn:GF(2)m→GF(2).

Computation of Generalized 
Nonlinearity
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Computation of Generalized 
Nonlinearity

We need to compute 

over all choices of g,w1,…,wn:GF(2)m→GF(2).

Therefore complexity is approximately
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More Efficient Computation of 
Generalized Nonlinearity

Theorem: The generalized nonlinearity

can be computed as

Here we do not find the optimal functions w1(),…,wn() and g(),
instead we just find an optimal vector w∈GF(2)n\{0} at each z.
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Complexity

The new complexity for computing generalized 
nonlinearity is

This is much faster compared to original 
complexity of
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Upper Bound on Generalized 
Nonlinearity



Upper Bound
Theorem: If F(x) is balanced, then an upper bound 
for GNF:

This is much lower than the known upper bounds for 
unrestricted nonlinearity  UNF and nonlinearity NF:
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For m≤n/2, the upper bound for unrestricted 
nonlinearity UNF does not improve on the 
Covering Radius Bound 2n-1-2n/2-1.

The upper bound for generalized 
nonlinearity GNF does.



Comparison of Upper Bound 
for NF,UNF and GNF

30724747117944239722Upp Bd
GNF

326418129201749712129Upp Bd
UNF

326408128201649612028Upp Bd
NF

876543m=n/2

1614121086n



Corresponding Bound for 
Probability of Best Approximation

≥0.531≥0.544≥0.562≥0.587≥0.621≥0.667Probability
(generalized)

≥0.502≥0.504≥0.508≥0.515≥0.530≥0.558Probability
(Zhang-Chan)

≥0.502≥0.504≥0.508≥0.516≥0.531≥0.563Probability
(usual)

876543m=n/2

1614121086n



For m>n/2, the upper bound for unrestricted 
nonlinearity UNF does improve on the 
Covering Radius Bound but not by much.

The upper bound for generalized 
nonlinearity GNF improves on the Covering 
Radius bound 2n-1-2n/2-1 by much more.



Comparison of Upper Bound 
for NF,UNF and GNF

24577614513253326517Upp Bd
GNF

324608090197248711027Upp Bd
UNF

326408128201649612028Upp Bd
NF

12109764m=3n/4

1614121086n



Corresponding Bound for 
Probability of Best Approximation

≥0.625≥0.625≥0.677≥0.676≥0.749≥0.744Probability
(generalized)

≥0.505≥0.506≥0.519≥0.524≥0.571≥0.587Probability
(Zhang-Chan)

≥0.502≥0.504≥0.508≥0.516≥0.531≥0.563Probability
(usual)

12109764m=3n/4

1614121086n



Thus we have further evidence that 
generalized correlation attack is more effective 
than Zhang-Chan and usual correlation attack 
on vector Boolean functions.



Generalized Resiliency 



Siegenthaler’s Attack

Suppose there exists a correlation Pr(x1=z1⊕z2) = ¾.
Then we guess the content of LFSR1
If our guess is correct, LFSR1 sequence matches the known 
keystream z1⊕z2 with probability ¾.
If not, LFSR1 sequence matches the keystream with probability ½.
Reduction in attack complexity: Instead of attacking all LFSR’s
simultaneously, we attack one LFSR separately and then the 
others.
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Resiliency
To prevent against the previous attack, we want to 
avoid linear approximations which involve too few 
input variables.

A function F:GF(2)n→GF(2)m is called correlation 
immune of order k if 

Pr(b·z = w·x) = ½
for all b∈GF(2)m\{0} whenever 1≤wt(w)≤k. If 
furthermore, F(x) is balanced, then we say F(x) is k-
resilient.



Generalized Siegenthaler’s
Attack

Suppose for a set of output vectors, e.g. z = 0000, 0001, 0010, 
0111,… there exists good approximations 

Pr(L1(x,z)=0) = p1≠½, Pr(L2(x,z)=0) = p2≠½,…
which are linear in x and involve only k variables x1,…,xk (where 
k is small) out of n variables x1,…,xn.

We can attack k LFSR’s instead of all n LFSR’s. E.g. guess the 
contents of the k LFSR’s and see if they satisfy the 
approximations 

Pr(L1(x,z)=0) = p1≠½, Pr(L2(x,z)=0) = p2≠½,…



Generalized Resiliency
To prevent against the previous attack, we want to avoid 
linear approximations Pr(L(x,z)=0)=p≠½ which involve too 
few input variables x1,…,xn for any subset of output z.

A function F:GF(2)n→GF(2)m is called generalized 
correlation immune of order k if for all z∈GF(2)m

Pr(g(z)⊕w1(z)x1 ⊕… ⊕ wn(z)xn) = ½

whenever wt(w1(z),…, wn(z))≤k. If furthermore, F(x) is 
balanced, then we say F(x) is generalized k-resilient.



Equivalence between Resiliency 
and Generalized Resiliency

Theorem: A function F:GF(2)n→GF(2)m is correlation 
immune of order k if and only if it is generalized 
correlation immune of order k.

The above statement is true if we replace correlation 
immune with resilient.



Generalized Nonlinearity of 
Secondary Constructions



Output Composition
It is common to form balanced highly nonlinear vectorial
functions by dropping output bits of a highly nonlinear 
permutation, e.g. x-1, x2^k+1. The nonlinearity NF is 
preserved in this case. 
We prove the following generalization.

Proposition: Let F:GF(2)n→GF(2)m and G:GF(2)m→GF(2)k

be balanced vector functions. Then GNG°F ≥ GNF.

If G(x) is a permutation, then GNG°F = GNF.



Concatenation
By our previous result, a resilient function is also 
generalized resilient.

Therefore we would like to check that secondary 
constructions for resilient functions yield high 
generalized nonlinearity.

A secondary construction for resilient function we will 
look at is concatenation.



Concatenation
Proposition (Zhang-Zheng): Let F:GF(2)n→GF(2)m be 
t1-resilient and G:GF(2)p→GF(2)q be t2-resilient. Then 
H:GF(2)n+p→GF(2)m+q defined by H(x,y)=(F(x),G(y)) is a t-
resilient function where t=min(t1,t2).

Proposition: For H(x,y) as defined above:
GNH ≤ 2n+p-1 - ½(2n-2GNF)(2p-2GNG)

Thus for H(x,y) to have high generalized nonlinearity, both 
component functions F(x) and G(y) must have high 
generalized nonlinearity.


