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!'_ Introduction



Correlation Attack of Vectorial
Stream Ciphers

In this talk, we shall improve correlation attacks on
vectorial stream ciphers.

Will consider vectorial Boolean functions in combinatorial
and filtering generators.

= Will not go into the details of the correlation attack.

Focus on how to obtain good linear approximation.



Correlation Attack of Vectorial
i Stream Ciphers
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= In standard correlation attack of vectorial Boolean functions,
we form linear approximation of the form:

Pr(bz, ®---®b_z =wWXx ®@---@®W X )=Pr(b-z=w-X).



i Linear Bias and Nonlinearity

= For correlation attack to succeed, we require
Bias = |Pr(b +Z=W-X) —1/2| to be high.

where z = F(x) is the output. I.e. probability far away
from Y.

= This is equivalent to the condition that nonlinearity

N :2”‘1—lmax Z:(—l)b'F(X)*W'X is low,

2w xeGF (2)"




i Zhang-Chan Attack

= At Crypto 2000, Zhang and Chan noticed that z=F(x) is
known, therefore we can consider
Pr(g(z) =w,X, ®@---@w X )=Pr(g(z) =w-X)
which is linear in x for any Boolean function g(-).

= Because approximation of b-z is a particular case of
approximation of g(z). It is easier to get a better linear
approximation, i.e. get Pr(g(z)= w-x) further away from %
than Pr(b-z = w-X).



i Zhang-Chan Attack

= For Zhang-Chan attack to succeed, we require
Bias = |Pr(g(z) =W-X)—1/ 2| to be high.
where z=F(x) is known.

= This is equivalent to the condition that unrestricted
nonlinearity

UN_ =2"" L D (=) s Jow,
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!'_ Generalized Correlation



i Generalized Correlation Attack

= We still want to get approximations which are linear in
X.

= The most general approximation which is linear in x:

Pr(g(z) =w,(2)X ®--- D W, (2)X,) = Pr(g(2) =wW(2)-X)

where w;(z) are Boolean functions of the known output z
and w(z)=(w,(2),..., W,(2))



i Generalized Correlation Attack

= For generalized correlation attack to succeed, we
require

Bias = [Pr(g(z) = W(z)- X)—1/2| to be high.

where z=F(x) is known.

= This is equivalent to the condition that generalized
nonlinearity

G 1 .
GNp =2 —= max Y (~1)8FOIWEC g gy,
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i Generalized Correlation Attack

= J(2)=W(2)-X 1s a more general approximation than
d(z)= w-X, which in turn is a more general approximation
than b-z = w-X.

= Therefore Pr(g(z)= w(z)-X) can be chosen to be further
away from 'z than the other two approximations.

= In terms of nonlinearities,
GNE < UNE< N



From a Cipher Designer’s
i Viewpoint

= From the viewpoint of a stream cipher designer, he
needs to ensure generalized nonlinearity GN¢ is high
for protection against correlation attack. Then
automatically, UN. and N will be high.



Comparison of Generalized
Correlation Attack with Known

!'_ Methods




i An Example on Bent Functions

X=X,X,X;X, | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111
Fx)=(zz) | 00 | 00 | 00 | 00 | 00 | o1 10 11
X=XX,X;X, | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
F)=(z,z,) | 11 00 10 | o1 11 01 00 10

= F(x) is a bent function from GF(2)* to GF(2)*. We have

N-=6 and UN=5. This means the best affine approximation

has probability 0.63 and 0.69 for usual and Zhang-Chan.

= For generalized correlation attack, we have GN=2. The
best generalized approximation has probability:

Pr(z,+z, =(z, +1)(z, + )X, + 2,X; + Z,X,) = 0.88




How much better is Generalized

i Correlation Attack?

= Below is a table comparing average nonlinearities of
10000 randomly generated balanced functions from

n-bits to n/2-bits:

6 8 10 12 14

18 100 443 1897 7856
16 88 407 1768 7454
6 36 213 1101 5224

-

GN is much lower than N

and UN.




How much better is Generalized

* Correlation Attack?

= Here's the table for average best approximation
probability of the previous functions from n-bits to

n/2-bits:
6 8 10 12 14
0.72 0.61 0.57 0.54 0.52
0.75 0.66 0.60 0.57 0.55
0.91 0.86 0.79 0.73 0.68

Probability of generalized attack much further

away from 0.5 than the other attacks




Another Example on Inverse

* Function

= Let us compare the various approximation probability

for x-! on GF(28) restricted to m output bits.

1 2 3 4 5 6 7/
0.56 | 0.56 | 0.56 | 0.56 | 0.56 | 0.56 | 0.56
0.56 | 0.58 | 0.61 | 0.63 | 0.67 | 0.73 | 0.78
0.56 | 0.69 | 0.74 | 0.84 | 1.00 | 1.00 | 1.00




Computation of Generalized

!'_ Nonlinearity




Computation of Generalized
i Nonlinearity

= Since we saw that generalized correlation attack is
more powerful than known attacks, it is useful to
compute the generalized nonlinearity.

GN, :2”—1_1 max Y (—1)dFeDmEC

2 wO#0.90), S

= We need to compute
Z (_1)91(':(x))+w1(F(x))x1+---+wn(|:(x))xn

xeGF (2)"

over all choices of g,w,,...,.w.:GF(2)">GF(2).



Computation of Generalized
i Nonlinearity

Each of these n+1
functions have 22"m

complexity 2"

= We need to compute choices
Each sum has _ 1) FOO)+W (F (X)) X+ + W, (F (X)) X,
X & n

over all choices of g,w,,...,.w.:GF(2)">GF(2).

= Therefore complexity i1s approximately

(22'“ )7” % 2N = 92" (n+D)en



More Efficient Computation of
i Generalized Nonlinearity

= Theorem: The generalized nonlinearity

GN. = on-l _l max Z(_I)Q(F(X))+W(F(X))-x

2 w2090, At

can be computed as

GN_ :2“_1—l Z max

2GR )" weGF (2)"\{0}

Z (_l)w-x

xeF 7(2)

Here we do not find the optimal functions w,(),...,w_ () and g(),
instead we just find an optimal vector we GF(2)"\{0} at each z.



Complexity

2n-1 choices for w

_l)W-X
7) Complexity

a1
2 ;b ™ 10}
Y~ for this sum

Is |F-(2)
= The new complexity for computing generalized
nonlinearity is ¥ (2 ~Dx|F(2)|=@2"-12" = 27

ZeGF (2)"

= This is much faster compared to original
complexity of 2" (n+D+n



Upper Bound on Generalized
Nonlinearity




i Upper Bound

= Theorem: If F(x) is balanced, then an upper bound
for GNg:

2™ —1

2" 1

GN, <2™' 2™

= This is much lower than the known upper bounds for
unrestricted nonlinearity UNg and nonlinearity N:

M Am 2N A2n-m oM Am 2
UN: < —l 2 2 + 22 + 2 2 -1 -1
21 2"—1 2" —1 2" —1

NF < 2n—1 _2!’]/2—1




For m<n/2, the upper bound for unrestricted
nonlinearity UN. does not improve on the
Covering Radius Bound 2m1-2m2-1,

The upper bound for generalized
nonlinearity GN¢ does.



Comparison of Upper Bound
i for N.,UN: and GN-

6 8 10 12 14 16

3 4 5 6 7 8
28 120 496 2016 8128 32640
29 121 497 2017 8129 32641
22 97 423 1794 7471 30724




Corresponding Bound for
* Probability of Best Approximation
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For m>n/2, the upper bound for unrestricted
nonlinearity UN. does improve on the
Covering Radius Bound but not by much.

The upper bound for generalized
nonlinearity GNr improves on the Covering
Radius bound 2n-1-2"2-1 by much more.



Comparison of Upper Bound

i for N.,UN: and GN-

6 8 10 12 14 16

4 6 7 S 10 12
28 120 496 2016 8128 32640
27 110 487 1972 8090 32460
17 65 332 1325 6145 24577




Corresponding Bound for
* Probability of Best Approximation
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Thus we have further evidence that
generalized correlation attack is more effective
than Zhang-Chan and usual correlation attack
on vector Boolean functions.



!'_ Generalized Resiliency



i Siegenthaler’s Attack
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= Suppose there exists a correlation Pr(x,=z,®z,) = %.
= Then we guess the content of LFSR1

= If our guess is correct, LFSR1 sequence matches the known
keystream z,®z, with probability %a.

= If not, LFSR1 sequence matches the keystream with probability -.

= Reduction in attack complexity: Instead of attacking all LFSR's
simultaneously, we attack one LFSR separately and then the

others.



i Resiliency

= [0 prevent against the previous attack, we want to
avoid linear approximations which involve too few
input variables.

= A function F:GF(2)"—-GF(2)" is called correlation
immune of order k if
Pr(b-z=wx)="%
for all be GF(2)™{0} whenever 1<wt(w)<k. If

furthermore, F(x) is balanced, then we say F(x) is k-
resilient.



Generalized Siegenthaler’s
Attack

= Suppose for a set of output vectors, e.g. z= 0000, 0001, 0010,
0111,... there exists good approximations
Pr(L,(X,2)=0) = p,#2, Pr(L,(X,2)=0) = p,#"%,...
which are linear in x and involve only k variables x,...,x, (where
k is small) out of n variables x,,...x..

= We can attack k LFSR’s instead of all n LFSR’s. E.g. guess the
contents of the k LFSR’s and see if they satisfy the
approximations

Pr(L,(X,2)=0) = p,#2, Pr(L,(X,2)=0) = p,#",...



i Generalized Resiliency

= To prevent against the previous attack, we want to avoid
linear approximations Pr(L(x,2)=0)=p#" which involve too
few input variables x,...,x, for any subset of output z.

= A function F:GF(2)"->GF(2)" is called generalized
correlation immune of order k if for all ze GF(2)™

Pr(g(2)®@w,(2)X; ®... D w,(2)X,) = "2

whenever wt(w,(2),..., w,(2))<k. If furthermore, F(x) is
balanced, then we say F(x) is generalized k-resilient.



Equivalence between Resiliency
i and Generalized Resiliency

= Theorem: A function F:GF(2)"—>GF(2)™ is correlation
immune of order k if and only if it is generalized
correlation immune of order k.

= The above statement is true if we replace correlation
immune with resilient.



Generalized Nonlinearity of

!'_ Secondary Constructions



i Output Composition

= It is common to form balanced highly nonlinear vectorial
functions by dropping output bits of a highly nonlinear
permutation, e.g. x!, x¥****1. The nonlinearity N is
preserved in this case.

We prove the following generalization.

= Proposition: Let F:GF(2)"—>GF(2)™ and G:GF(2)™"—>GF(2)
be balanced vector functions. Then GNg.r > GN.

= If G(x) is a permutation, then GN..r = GN.



i Concatenation

= By our previous result, a resilient function is also
generalized resilient.

= Therefore we would like to check that secondary
constructions for resilient functions yield high
generalized nonlinearity.

= A secondary construction for resilient function we will
look at is concatenation.



i Concatenation

= Proposition (Zhang-Zheng): Let F:GF(2)">GF(2)™ be
t,-resilient and G:GF(2)P—>GF(2)% be t,-resilient. Then
H:GF(2)""P—GF(2)™"1 defined by H(x,y)=(F(x),G(y)) is a t-
resilient function where t=min(t, t,).

= Proposition: For H(x,y) as defined above:
GN,, < 2MP-L_ 1420 2GNL)(2P-2GN,)

= Thus for H(x,y) to have high generalized nonlinearity, both
component functions F(x) and G(y) must have high
generalized nonlinearity.



