Integer Factoring Utilizing PC Cluster

Kazumaro Aoki

maro at isl•ntt•co•jp

NTT

Contents

- Background
- Integer Factoring Algorithms
- World Records
- On 1024-bit GNFS
- My Experiences

Integer Factoring and Cryptology

until 1977: mostly for recreational purposes
since then, a somewhat better excuse: to figure out secure RSA key sizes
... A. Lenstra@SHARCS05
http://www.hyperelliptic.org/
tanja/SHARCS/talks/
ArjenLenstra.ppt

Integer Factoring Problem (IFP)

Input: composite N

Output: non-trivial factor $p(1<p<N, p \mid N)$
No known algorithm can efficiently find p.

Complexity of IF

method complexity effective range

TD	$L_{p}[1,1]$	$p \leq 2^{28}$
ECM	$L_{p}[1 / 2,1.414]$	$p \leq 2^{130}$
MPQS	$L_{N}[1 / 2,1.020]$	$N \leq 2^{320}$
SNFS	$L_{N}[1 / 3,1.526]$	$N>2^{320}$
GNFS	$L_{N}[1 / 3,1.923]$	$N>2^{320}$
MPGNFS	$L_{N}[1 / 3,1.902]$	$N>2^{2000}(?)$

$L_{x}[s, c]=\exp \left((c+o(1))(\log x)^{s}(\log \log x)^{1-s}\right)$

Trial Division (TD)

- Simply divide by $2,3,5, \ldots$
- Small divisors can be found by factor ($\mathrm{N}, 2^{\wedge} 31-1$) in PARI/GP. http://pari.math.u-bordeaux.fr/

Elliptic Curve Method (ECM)

- expect $\# E(\operatorname{GF}(p))$ is smooth by changing curves
- Excellent implementation in public: GMP-ECM
http://gforge.inria.fr/projects/ecm/
x is y-smooth $\Leftrightarrow \forall p \mid x, p$: prime $\Rightarrow p \leq y$

Quadratic Sieve (QS)

- Construct $x^{2} \equiv y^{2} \quad(\bmod N)$ efficiently using index calculus method $\operatorname{(gcd}(x \pm y, N) \mid N)$
- fastest if N is less than $\mathbf{1 0 0}$ digits
- Good implementation in public: msieve http://www.boo.net/~jasonp/ qs.html

Number Field Sieve (NFS)

- Developed at early 1990 s
- Similar to MPQS, construct $x^{2} \equiv y^{2}$ $(\bmod N)$ using index calculus method
- The asymptotically fastest algorithm known for general-type integer factoring
- recent factoring records are done by (G)NFS
- an implementation in public: GGNFS http://www.math.ttu.edu/
~cmonico/software/ggnfs/

Outline of NFS

find many relations, $(a, b) \in \mathbf{Z}^{2}$ s.t.

$$
\begin{aligned}
\left|(-b)^{\operatorname{deg} f_{1}} f_{1}\left(-\frac{a}{b}\right)\right| & =\prod_{p<B_{1}} p^{e_{p}^{(a, b)}} \\
\left|(-b)^{\operatorname{deg} f_{2}} f_{2}\left(-\frac{a}{b}\right)\right| & =\prod_{q<B_{2}} q^{e_{q}^{(a, b)}}
\end{aligned}
$$

find dependency in $\mathrm{GF}(2)$

$$
\begin{aligned}
& \quad\left\{\left[e_{p}^{(a, b)}, \ldots, e_{q}^{(a, b)}, \ldots\right]\right\}_{(a, b)} \\
& \Rightarrow x^{2} \equiv y^{2} \quad(\bmod N)
\end{aligned}
$$

Steps of NFS

find $x, y \in \mathbf{Z}$ s.t. $x^{2} \equiv y^{2} \quad(\bmod N)$

1. polynomial selection

2. sieving
3. filtering
4. linear algebra
5. square root

Polynomial Selection

for given $N, d=\operatorname{deg} f$
find $f(X) \in \mathbf{Z}[X], M \in \mathbf{Z}$
s.t. $f(M) \equiv 0 \quad(\bmod N)$

GNFS: choose $M \approx N^{1 /(d+1)}$, determine the coefficients of $f(X)$ by $N=\sum_{i=0}^{d} c_{i} M^{i}$
SNFS: determined automatically $\left|c_{i}\right| \approx 1$ from N

Sieving

find many $(a, b) \in \mathbf{Z}^{2}(\operatorname{gcd}(a, b)=1)$ s.t.

$$
\begin{aligned}
& F(a, b)=\left|(-b)^{d} f(-a / b)\right|=\prod_{p<B_{1}} p^{e_{p}} \\
& G(a, b)=|a+b M|=\prod_{p<B_{2}} p^{e_{p}}
\end{aligned}
$$

choose (a, b) nearby origin point, because $[a, b \rightarrow \infty] \Rightarrow[F, G \rightarrow \infty]$

- heaviest step in theory and experiments.
- sparsely connected distributed computing is possible, but considerably large memory is required.

Filtering

part of linear algebra step in theory

- removing duplicate relations
- find relation-sets that have non-trivial dependencies
- based on Gaussian elimination keeping sparse

The matrix size is reduced one over tens.
Example (GNFS176):
$456 \mathrm{M} \times 329 \mathrm{M}$ (w: 9G?) $\rightarrow 8.5 \mathrm{M} \times 8.5 \mathrm{M}$ (w: 1.7G)

Linear Algebra

- Find linear dependency in sparse and huge $G F(2)$-matrix (\approx tens of million for WR)
- block Lanczos or block Wiedemann algorithm are frequently used.
- dominate NFS in theory

It is not trivial to confirm the intermediate computation as correct.

Square Root

- Number theoretic knowledges are required only for this step.
- Negligible complexity, but long program code.

Records of GNFS

composite \# of bits YY/MM who

RSA-200
663
640 05/11 Bonn et al.
c176 in $11^{281}+1 \quad 582 \quad 05 / 05 \quad$ NTT et al.
RSA-576 576 03/12 Bonn et al.
c164 in $2^{1826}+1 \quad 545 \quad 03 / 12 \quad$ NTT et al.
RSA-160 530 03/04 Bonn
From http://www.crypto-world.com/ FactorAnnouncements.html and others

Records of SNFS

composite \# of bits YY/MM who c274 in $6^{353}-1$ 911(913) 06/01 NTT et al. c248 in $2^{1642}+1822 \quad$ 04/03 $2^{809}-1 \quad 809 \quad$ 03/01 NTT et al. Bonn c244 in $5^{349}-1$ 809(811) 06/04 Kruppa+Bonn c239 in $2^{811}-1$ 793(811) 04/06 NFSNET c234 in $3^{491}+1$ 777(779) 04/09 NFSNET+CWI c227 in $2^{773}+1$ 774(753) 00/11 CWI et al. From http://www.crypto-world.com/ FactorAnnouncements.html and others

Records of ECM

composite $\quad \log _{2} p \quad$ YY/MM who

c214 in $10^{381}+1222$ 06/08 Dodson
c180 in $3^{466}+1 \quad 219 \quad 05 / 04 \quad$ Dodson c311 in $10^{311}-1212$ 05/09 Aoki et al. c175 in $3^{533}+1 \quad 209 \quad 05 / 11 \quad$ Kruppa c187 in $2^{2034}+1205$ 05/04 Dodson c162 in $2^{905}+1 \quad 201$ 06/09 Dodson c242 in $2^{1099}+1197 \quad 05 / 10$ Dodson c162 in $10^{233}-1194$ 05/02 Dodson

From http://www.loria.fr/
~zimmerma/records/top100.html

On 1024-bit GNFS

- After proposing the special hardware device, for example, TWINKLE, many estimations were made.
- $o(1)=0$ approximation in $L_{N}[1 / 3,1.923]$ is very dangerous. We know the complexity increase about 3 times every 10 digits for $N \approx 2^{512}$. It means $o(1) \approx-0.279$.
- People want to know the complexity to factor 1024-bit RSA modulus using simple scale: "X-bit security"

On Pentium 4 [2.53GHz] Platform

RC5-72: 3,549,150 keys/sec (v2.9001-478)
RSA-150(496-bit) sieve: 20,597,260 seconds \rightarrow "46-bit security"

- 3 times every 10 digits
. . 72-bit security \approx 1024-bit IF
"at least a factor 200 gap between 1024-bit RSA and 80-bit security"
. . . A. Lenstra@SHARCS05
- Big factorings: GNFS164, SNFS248, GNFS176, ECM311, SNFS274
- Joint work with Kida, Shimoyama, Sonoda, and Ueda
- Partly supported by CRYPTREC project.

How to choose candidate composites?

- RSA challenge: 576, 640, 702, . . . bits
- old RSA challenge: every 10 digits
- Cunningham project: $\boldsymbol{b}^{e} \pm 1(2 \leq b \leq 12)$ (described as $b, e \pm$)
- partition number, near repunit, . . .
- ECM (removing small factor)
- GNFS vs SNFS (special type composite)

GNFS164 (1) - c164 in 2,1826L

- Our first attempt to make a world record. At that time, the world record is $\mathbf{1 6 0}$ digits.
- The polynomial selection step was started mid-Oct 2003, in parallel with GMP-ECM with B1=43M. A candidate, c165 in 2,2030L, was factored by ECM (44 digits factor).
- Franke team already finished sieving for RSA-576 at Sep 2003.

GNFS164 (2)

- Sieving: late Oct to early Dec
- Filtering: late Nov to early Dec
- Lenstra announced at Asiacrypt (Nov 30 Dec 4): a workshop for IF will be held Dec 12
- Linear algebra: Dec 3 to Dec 15

GNFS164 (3)

- RSA-576 factoring announcement was posted on sci. crypt Dec 4.
- Our factoring was completed Dec 18.

SNFS248: c248 in 2,1642M (1)

- We change the target from GNFS to SNFS. At that time, the world record is $\mathbf{2 4 4}$ digits.
- We found 56 digits factor by ECM (3rd largest at that time) Dec 17 in the first candidate (ECM started Dec 5, 2003).
- Sieving: mid-Dec 2003 to early Feb 2004 in parallel with GMP-ECM with B1=43M (finished Jan 10).
- NFSNET was already started sieving for c239 in 2,811-

SNFS248 (2)

- Filtering: early Feb 2004
- Linear algebra (CRYPTREC cluster): Feb 11 to Feb 24

SNFS248 (3)

- Square root: Feb 25, but failed
- Failure reason: 324 relations with $\operatorname{gcd}(a, b) \neq 1$ are included
- Go back to filtering step

Feb 28: CRYPTREC cluster deadline

- 2nd Filtering: late Feb 2004
- 2nd Linear algebra (Rikkyo Univ): Mar 1 to Mar 20 (including HW trouble, and manual operation mistakes)

SNFS248 (4)

- Our linear algebra code said: rank > \# of rows
- half day examination RAM using memtest 86
- 3rd Linear algebra (Rikkyo Univ): Mar 16 to Mar 25

SNFS248 (5)

- Our linear algebra code said: rank > \# of rows
- 4th Linear algebra (NTT): Mar 19 to Mar 29 (estimation)

NFSNET 2_811M Daily Reports

From http://www.nfsnet.org/stats2/ statsreporter.cgi?template=relations.html\& project=2_811M

SNFS248 (6)

- Mar 27 (Sat): one of PC crashes (disk trouble)
- 4th Linear algebra (NTT): Mar 29 (restart) to Apr 2 (estimation)

SNFS248 (7)

- Apr 2 (Fri) 1:20am: power stop by lightening strike
- 4th Linear algebra (NTT):

Apr 3 (restart) to Apr 3 midnight

- 33 dependencies are found
- Square root: Apr 3 to Apr 4 (midnight)
- 1st solution:
$\operatorname{gcd}(N, x+y)=\operatorname{gcd}(N, x-y)=1$

SNFS248 (8)

- When computing square root using 2nd dependencies, we found a factor by
$\operatorname{gcd}(N, x-y / 2)$
- after factoring we found the reason (a parameter is doubled)

Hardware failures in 3 years

40 servers including 32 2U P4[2.53GHz] servers.

- 15% HD were broken, but 90% were repaired by automatic reallocation of bad sectors.
- 2 power units were broken.
- 4 memory modules were broken.
- 8 CPUs sometimes produced incorrect result.
- 2 CPU fans were stopped.
- 1 motherboard was broken.
- 1 of 4 HUBs was broken.

GNFS176: c176 in 11,281+

- Our first world record of GNFS
- Feb 2, 2005 to Apr 22, 2005
poly sel 3.5 year @ P4[3.2GHz]
sieving 9.7 year @ P4[3.2GHz]
linear alg 5 day @ 36 P4[2.8GHz-3.2GHz] w/ GbE
- The record was only kept in a week.
- RSA-200 factoring was announced May 2005.

\# of PCs Used in Each Step

distributed \# of PCs for

Step

computing GNFS176

1 poly. sel. easy 52
2 sieve easy 400
3 filtering rel. easy 2
4 linear alg. tight conn. 36
5 square root rel. easy 36

Details of Our Program Running

time spent GNFS176

poly. sel.	$\begin{gathered} 20 d \\ 2 h \end{gathered}$	pol51m0b \rightarrow pol51opt mkprime
sieve	27d	ltsieve
filtering	4 h	classifyRel \rightarrow uniqRel, 32to64
	3 h	getLP \rightarrow countLP \rightarrow lptxt2bin
	2 h	sfctr
	8 h	scmpi
	1 h	compff \rightarrow mkprematrixbin
	2 d	splitpm + smerge
lin. alg.	1 h	shufflematrix \rightarrow mkmatrixbin
	1 h	cut 224 mat \rightarrow splitmatrix
	5 d	planczos256
	1h	solve224mat \rightarrow rff \rightarrow gaussext
$\sqrt{ }$	1h	anneal
	1 h	papprox
	1h	pcouveignes, rsqrt

Program Lines

Step	\# of lines	ratio
polynomial selection	5626	10%
sieve	16943	30%
filtering	17607	32%
linear algebra	7352	13%
square root	8150	15%
total	55678	100%
as of October 2005		

ECM311: 10,311-

- kilo-bit SNFS candidate
- 2nd largest factor found by ECM at that time: R311 = p64 \times p247
- We call the idle CPU time in NTT for Step 1, and Step 2 was done by our occupied PCs.
- 7.91 year @ Opteron[2.0GHz] w/ 4GB RAM (89 calendar days)

SNFS274: c274 in 6,353-

- SNFS record
- 911 bits number
- sieving tried to start Sep 11, 2005 (actually started Sep 10)
- factoring expected to complete Jan 19, 2006 (actually Jan 23)

sieving 16.6 year @ P4[3.2GHz]
(=17.3 year @ A64[2.0GHz])
linear alg 34.64 day @ 25 P4[3.2GHz] w/ GbE

Our contributed optimization

- Use of bucket sort for sieving step (Asiacrypt 2004)
- Variable sieving range for lattice sieve
- Sum share algorithm for linear algebra step (reinvention of wheel?)
- Network construction for PC cluster (reinvention of wheel?)

Sum Sharing

before: length l vector in n nodes after: sum of all vectors shared in all nodes

A full-duplex ring network can realize in
$2(n-1)\left\lceil\frac{l}{n}\right\rceil$, where length $\mathbf{1}$ vector can transfer in time 1.

Network Construction: 16 nodes

with 16-port HUB. each node has 1 NIC.

Network Construction: $\mathbf{3 6}$ nodes

$1-$	$1-$	12	12	13	13
$1-$	$1-$	12	12	13	13
12	12	$2-$	$2-$	23	23
12	12	$2-$	$2-$	23	23
13	13	23	23	$3-$	$3-$
13	13	23	23	$3-$	$3-$

using 3 20-port HUBs. each node has 2 NICs.

Final Remarks

- I feel that PC cluster is the best solution to factor big integer for $<\approx 500,000$ USD budget (not including human resources).
- It is very difficult to keep all nodes available.

Keep the factors coming!
. . Sam Wagstaff (Cunningham table maintainer)

