Integer Factoring Utilizing PC Cluster

Kazumaro Aoki

maro at isl·ntt·co·jp

NTT

Copyright 2006 ©NTT – p.1/47

Contents

- Background
- Integer Factoring Algorithms
- World Records
- On 1024-bit GNFS
- My Experiences

Integer Factoring and Cryptology

until 1977: mostly for recreational purposes since then, a somewhat better excuse: to figure out secure RSA key sizes

...A.Lenstra@SHARCS05
http://www.hyperelliptic.org/
tanja/SHARCS/talks/
ArjenLenstra.ppt

Integer Factoring Problem (IFP)

Input: composite N

Output: non-trivial factor p (1)

No known algorithm can efficiently find p.

Complexity of IF

method	complexity	effective range
TD	$L_{p}[1, 1]$	$p \le 2^{28}$
ECM	$L_p[1/2, 1.414]$	$p \le 2^{130}$
MPQS	$L_N[1/2, 1.020]$	$N \le 2^{320}$
SNFS	$L_N[1/3, 1.526]$	$N > 2^{320}$
GNFS	$L_N[1/3, 1.923]$	$N > 2^{320}$
MPGNFS	$L_N[1/3, 1.902]$	$N>2^{2000}$ (?)

 $L_x[s, c] = \exp((c + o(1))(\log x)^s (\log \log x)^{1-s}) _$

Trial Division (TD)

- **•** Simply divide by 2, 3, 5, . . .
- Small divisors can be found by factor(N, 2³1-1) in PARI/GP. http://pari.math.u-bordeaux.fr/

Elliptic Curve Method (ECM)

- expect $\#E(\operatorname{GF}(p))$ is smooth by changing curves
- Excellent implementation in public: GMP-ECM

http://gforge.inria.fr/projects/ecm/

 $x \text{ is } y \text{-smooth} \Leftrightarrow \forall p \mid x \text{, } p \text{: prime} \Rightarrow p \leq y$

Quadratic Sieve (QS)

- Construct $x^2 \equiv y^2 \pmod{N}$ efficiently using index calculus method $(\gcd(x \pm y, N) \mid N)$
- $\, {}_{m s}\,$ fastest if N is less than 100 digits
- Good implementation in public: msieve http://www.boo.net/~jasonp/ qs.html

Number Field Sieve (NFS)

- Developed at early 1990s
- Similar to MPQS, construct $x^2 \equiv y^2 \pmod{N}$ using index calculus method
- The asymptotically fastest algorithm known for general-type integer factoring
- recent factoring records are done by (G)NFS
- an implementation in public: GGNFS
 http://www.math.ttu.edu/
 ~cmonico/software/ggnfs/

Outline of NFS

find many relations,
$$(a, b) \in \mathbb{Z}^2$$
 s.t.

$$\begin{cases} \left| (-b)^{\deg f_1} f_1(-\frac{a}{b}) \right| = \prod_{p < B_1} p^{e_p^{(a,b)}} \\ \left| (-b)^{\deg f_2} f_2(-\frac{a}{b}) \right| = \prod_{q < B_2} q^{e_q^{(a,b)}} \end{cases}$$
find dependency in $\operatorname{GF}(2)$

$$\{[e_p^{(a,b)},\ldots,e_q^{(a,b)},\ldots]\}_{(a,b)}$$

$$\Rightarrow x^2 \equiv y^2 \pmod{N}$$

Steps of NFS

find
$$x, y \in \mathbb{Z}$$
 s.t. $x^2 \equiv y^2 \pmod{N}$

- 1. polynomial selection
- 2. sieving
- 3. filtering
- 4. linear algebra
- 5. square root

Polynomial Selection

for given N, $d = \deg f$ find $f(X) \in \mathbb{Z}[X], M \in \mathbb{Z}$ s.t. $f(M) \equiv 0 \pmod{N}$ GNFS: choose $M \approx N^{1/(d+1)}$, determine the coefficients of f(X) by $N = \sum c_i M^i$ i = 0**SNFS:** determined automatically $|c_i| \approx 1$ from N

Sieving

find many $(a,b) \in \mathbf{Z}^2$ ($\gcd(a,b) = 1$) s.t.

$$F(a,b) = |(-b)^d f(-a/b)| = \prod_{p < B_1} p^{e_p}$$

$$G(a,b) = |a+bM| = \prod_{p < B_2} p^{e_p}$$

choose (a, b) nearby origin point, because $[a, b \to \infty] \Rightarrow [F, G \to \infty]$

heaviest step in theory and experiments.

sparsely connected distributed computing is possible, but considerably large memory is required.

Filtering

part of linear algebra step in theory

- removing duplicate relations
- find relation-sets that have non-trivial dependencies
- based on Gaussian elimination keeping sparse

The matrix size is reduced one over tens. Example (GNFS176): $456M \times 329M$ (w: 9G?) $\rightarrow 8.5M \times 8.5M$ (w: 1.7G)

Linear Algebra

- Find linear dependency in sparse and huge GF(2)-matrix (\approx tens of million for WR)
- block Lanczos or block Wiedemann algorithm are frequently used.
- dominate NFS in theory

It is not trivial to confirm the intermediate computation as correct.

Square Root

- Number theoretic knowledges are required only for this step.
- Negligible complexity, but long program code.

Records of GNFS

composite	# of bits	YY/MM	who
RSA-200	663	05/05	Bonn et al.
RSA-640	640	05/11	Bonn et al.
c176 in 11^{281} +	1 582	05/05	NTT et al.
RSA-576	576	03/12	Bonn et al.
c164 in 2^{1826} +	1 545	03/12	NTT et al.
RSA-160	530	03/04	Bonn

From http://www.crypto-world.com/

FactorAnnouncements.html and others

Records of SNFS

composite	# of bits	YY/MM	who
c274 in $6^{353} - 1$	911(913)	06/01	NTT et al.
c248 in $2^{1642} + 1$	822	04/03	NTT et al.
$2^{809} - 1$	809	03/01	Bonn
c244 in $5^{349} - 1$	809(811)	06/04	Kruppa+Bonn
c239 in $2^{811} - 1$	793(811)	04/06	NFSNET
c234 in $3^{491} + 1$	777(779)	04/09	NFSNET+CWI
c227 in $2^{773} + 1$	774(753)	00/11	CWI et al.
From http://	www.cry	vpto-wa	orld.com/
FactorAnnou	incement	ts.htm	1 and others

Records of ECM

composite	$\log_2 p$	YY/MM	who
c214 in $10^{381} + 1$	222	06/08	Dodson
c180 in $3^{466} + 1$	219	05/04	Dodson
c311 in $10^{311} - 1$	212	05/09	Aoki et al.
c175 in $3^{533}+1$	209	05/11	Kruppa
c187 in $2^{2034} + 1$	205	05/04	Dodson
c162 in $2^{905}+1$	201	06/09	Dodson
c242 in $2^{1099} + 1$	197	05/10	Dodson
c162 in $10^{233} - 1$	194	05/02	Dodson
From http:	/ / wwv	v.lori	a.fr/

~zimmerma/records/top100.html

On 1024-bit GNFS

- After proposing the special hardware device, for example, TWINKLE, many estimations were made.
- o(1) = 0 approximation in $L_N[1/3, 1.923]$ is very dangerous. We know the complexity increase about 3 times every 10 digits for $N \approx 2^{512}$. It means $o(1) \approx -0.279$.
- People want to know the complexity to factor 1024-bit RSA modulus using simple scale: "X-bit security"

On Pentium 4 [2.53GHz] Platform

RC5-72: 3,549,150 keys/sec (v2.9001-478)

RSA-150(496-bit) sieve: 20,597,260 seconds \rightarrow "46-bit security"

• 3 times every 10 digits \cdots 72-bit security \approx 1024-bit IF

"at least a factor 200 gap between 1024-bit RSA and 80-bit security"

··· A. Lenstra@SHARCS05

My Experiences

- Big factorings: GNFS164, SNFS248, GNFS176, ECM311, SNFS274
- Joint work with Kida, Shimoyama, Sonoda, and Ueda
- Partly supported by CRYPTREC project.

How to choose candidate composites?

- **•** RSA challenge: 576, 640, 702, . . . bits
- old RSA challenge: every 10 digits
- Cunningham project: $b^e \pm 1$ ($2 \le b \le 12$) (described as $b, e \pm$)
- partition number, near repunit, . . .

- ECM (removing small factor)
- GNFS vs SNFS (special type composite)

GNFS164 (1) — c164 in 2,1826L

- Our first attempt to make a world record. At that time, the world record is 160 digits.
- The polynomial selection step was started mid-Oct 2003, in parallel with GMP-ECM with B1=43M. A candidate, c165 in 2,2030L, was factored by ECM (44 digits factor).
- Franke team already finished sieving for RSA-576 at Sep 2003.

GNFS164 (2)

- Sieving: late Oct to early Dec
- **•** Filtering: late Nov to early Dec
- Lenstra announced at Asiacrypt (Nov 30 -Dec 4): a workshop for IF will be held Dec 12
- Linear algebra: Dec 3 to Dec 15

GNFS164 (3)

- Our factoring was completed Dec 18.

SNFS248: c248 in 2,1642M (1)

- We change the target from GNFS to SNFS. At that time, the world record is 244 digits.
- We found 56 digits factor by ECM (3rd largest at that time) Dec 17 in the first candidate (ECM started Dec 5, 2003).
- Sieving: mid-Dec 2003 to early Feb 2004 in parallel with GMP-ECM with B1=43M (finished Jan 10).
- NFSNET was already started sieving for c239 in 2,811-.

SNFS248 (2)

- **Filtering: early Feb 2004**
- Linear algebra (CRYPTREC cluster): Feb 11 to Feb 24

SNFS248 (3)

- Square root: Feb 25, but failed
- Failure reason: 324 relations with $gcd(a, b) \neq 1$ are included
- Go back to filtering step
- Feb 28: CRYPTREC cluster deadline
- Ind Filtering: late Feb 2004
- Ind Linear algebra (Rikkyo Univ): Mar 1 to Mar 20 (including HW trouble, and manual operation mistakes)

SNFS248 (4)

- Our linear algebra code said:
 rank > # of rows
- half day examination RAM using memtest86
- 3rd Linear algebra (Rikkyo Univ): Mar 16 to Mar 25

SNFS248 (5)

- Our linear algebra code said:
 rank > # of rows
- 4th Linear algebra (NTT): Mar 19 to Mar 29 (estimation)

NFSNET 2_811M Daily Reports

From http://www.nfsnet.org/stats2/
statsreporter.cgi?template=relations.html&
project=2_811M

SNFS248 (6)

- Mar 27 (Sat): one of PC crashes (disk trouble)
- 4th Linear algebra (NTT):
 Mar 29 (restart) to Apr 2 (estimation)

SNFS248 (7)

- Apr 2 (Fri) 1:20am: power stop by lightening strike
- 4th Linear algebra (NTT): Apr 3 (restart) to Apr 3 midnight
- 33 dependencies are found
- Square root: Apr 3 to Apr 4 (midnight)
- Ist solution:

 $\gcd(N, x+y) = \gcd(N, x-y) = 1$

SNFS248 (8)

- When computing square root using 2nd dependencies, we found a factor by $\gcd(N, x y/2)$
- after factoring we found the reason (a parameter is doubled)

Hardware failures in 3 years

40 servers including 32 2U P4[2.53GHz] servers.

- 15% HD were broken, but 90% were repaired by automatic reallocation of bad sectors.
- 2 power units were broken.
- 4 memory modules were broken.
- SCPUs sometimes produced incorrect result.
- **9** 2 CPU fans were stopped.
- I motherboard was broken.
- I of 4 HUBs was broken.

GNFS176: c176 in 11,281+

- Our first world record of GNFS
- Feb 2, 2005 to Apr 22, 2005

poly sel	3.5 year @ P4[3.2GHz]
sieving	9.7 year @ P4[3.2GHz]
linear alg	5 day @ 36 P4[2.8GHz-3.2GHz] w/ GbE

- The record was only kept in a week.
- RSA-200 factoring was announced May 2005.

of PCs Used in Each Step

	Stop	distributed	# of PCs for	
	Step	computing	GNFS176	
1	poly. sel.	easy	52	
2	sieve	easy	400	
3	filtering	rel. easy	2	
4	linear alg.	tight conn.	36	
5	square root	rel. easy	36	

Details of Our Program Running

time spent GNFS176 poly. sel. 20d $pol51m0b \rightarrow pol51opt$ mkprime 2h sieve 27d ltsieve filtering 4h classifyRel \rightarrow uniqRel, 32to64 3h getLP \rightarrow countLP \rightarrow lptxt2bin 2h sfctr 8h scmpi 1h $compff \rightarrow mkprematrixbin$ 2d splitpm + smerge shufflematrix \rightarrow mkmatrixbin lin. alg. 1h 1h $cut224mat \rightarrow splitmatrix$ 5d planczos256 1h solve224mat \rightarrow rff \rightarrow gaussext 1h anneal 1h papprox pcouveignes, rsqrt 1h

Program Lines

Step	# of lines	ratio
polynomial selection	5626	10%
sieve	16943	30%
filtering	17607	32%
linear algebra	7352	13%
square root	8150	15%
total	55678	100%
as of October 2005		

ECM311: 10,311-

- kilo-bit SNFS candidate
- Ind largest factor found by ECM at that time: R311 = p64×p247
- We call the idle CPU time in NTT for Step 1, and Step 2 was done by our occupied PCs.
- 7.91 year @ Opteron[2.0GHz] w/ 4GB RAM (89 calendar days)

SNFS274: c274 in 6,353-

- SNFS record
- 911 bits number
- sieving tried to start Sep 11, 2005 (actually started Sep 10)
- factoring expected to complete Jan 19, 2006 (actually Jan 23)

sieving	16.6 year @ P4[3.2GHz] (=17.3 year @ A64[2.0GHz])
linear alg	34.64 day @ 25 P4[3.2GHz] w/ GbE

Our contributed optimization

- Use of bucket sort for sieving step (Asiacrypt 2004)
- Variable sieving range for lattice sieve
- Sum share algorithm for linear algebra step (reinvention of wheel?)
- Network construction for PC cluster (reinvention of wheel?)

Sum Sharing

before: length l vector in n nodes

after: sum of all vectors shared in all nodes

A full-duplex ring network can realize in $2(n-1) \left\lceil \frac{l}{n} \right\rceil$, where length 1 vector can transfer in time 1.

Network Construction: 16 nodes

with 16-port HUB. each node has 1 NIC.

Copyright 2006 CNTT - p.45/47

Network Construction: 36 nodes

using 3 20-port HUBs. each node has 2 NICs.

Final Remarks

- I feel that PC cluster is the best solution to factor big integer for $< \approx 500,000$ USD budget (not including human resources).
- It is very difficult to keep all nodes available.

Keep the factors coming! •••Sam Wagstaff (Cunningham table maintainer)