Side Channel Attacks against Block Ciphers Implementations and Countermeasures

Emmanuel Prouff e.prouff@ssi.gouv.fr

ANSSI

Tutorial CHES - August 2013

Intro. Embedded Systems and Crypto Applications

Smart Cards

Embedded Cryptogaphy

Part I. Passive Side Channel Attacks

Simple Attacks

Advanced (Univ.) Attacks

- Introduction in the context of AES
- Attacks Description (Univ. Case)
- Modeling
- Distinguishers
- Efficiency

Part II. Countermeasures & HOSCA

Introduction and General Principles

- Shuffling Method
- Masking Method

Masking of Block Ciphers

- Application to AES
- Other Maskings

Higher Order Side Channel Attacks

- Attacks Against Countermeasures: Core Ideas
- Attacks Against Masking
- Attacks Against Shuffling

Part III. Deafeating HOSCA and Proven Security

Towards Proven Security

Masking Schemes with Proven/Quantified Security

- Introduction
- Extension of ISW
 - Case of Power Functions
 - Case of Random S-Boxes
- Combining Additive and Multiplicative Maskings
- Other alternatives

Part I

Introduction

E. Prouff SCA and Countermeasures for BC Impl.

E. Prouff SCA and Countermeasures for BC Impl.

2 Embedded Cryptogaphy

- A Smart Card is a circuit embedded on a plastic support. It moreover has communication means, storage capacities and computation capacities.
- The physical characteristics of a smart card are standardized.
- The smart card enables the secure storage of sensitive data: a part of its memory is indeed protected in both writing and reading modes.

- A plastic Support
- Storage and computation means
 - Micro-controller (ST, Atmel,
 - NXP, Samsung, Infineon, etc.)
- Communication means
 - Connectors
 - Antenna

• A plastic Support

- Storage and computation means
 - Micro-controller (ST, Atmel,
 - NXP, Samsung, Infineon, etc.)
- Communication means
 - Connectors
 - Antenna

- A plastic Support
- Storage and computation means
 - Micro-controller (ST, Atmel, NXP, Samsung, Infineon, etc.)
- Communication means
 - Connectors
 - Antenna

- A plastic Support
- Storage and computation means
 - Micro-controller (ST, Atmel, NXP, Samsung, Infineon, etc.)
- Communication means
 - Connectors
 - Antenna

- A plastic Support
- Storage and computation means
 - Micro-controller (ST, Atmel, NXP, Samsung, Infineon, etc.)
- Communication means
 - Connectors
 - Antenna

- ROM contains the smart card OS.
- RAM is dedicated to the storage of local and volatile variables during the processings.
- EEPROM contains code and some data.
- Co-processor is dedicated to particular cryptographic (*e.g. arithmetic*) calculations.

- ROM contains the smart card OS.
- RAM is dedicated to the storage of local and volatile variables during the processings.
- EEPROM contains code and some data.
- Co-processor is dedicated to particular cryptographic (*e.g. arithmetic*) calculations.

- ROM contains the smart card OS.
- RAM is dedicated to the storage of local and volatile variables during the processings.
- EEPROM contains code and some data.
- Co-processor is dedicated to particular cryptographic (*e.g. arithmetic*) calculations.

- ROM contains the smart card OS.
- RAM is dedicated to the storage of local and volatile variables during the processings.
- EEPROM contains code and some data.
- Co-processor is dedicated to particular cryptographic (*e.g. arithmetic*) calculations.

- ROM contains the smart card OS.
- RAM is dedicated to the storage of local and volatile variables during the processings.
- EEPROM contains code and some data.
- Co-processor is dedicated to particular cryptographic (*e.g. arithmetic*) calculations.

- ROM contains the smart card OS.
- RAM is dedicated to the storage of local and volatile variables during the processings.
- EEPROM contains code and some data.
- Co-processor is dedicated to particular cryptographic (*e.g. arithmetic*) calculations.

- ROM contains the smart card OS.
- RAM is dedicated to the storage of local and volatile variables during the processings.
- EEPROM contains code and some data.
- Co-processor is dedicated to particular cryptographic (*e.g. arithmetic*) calculations.

- The first smart cards (Bull and Motorola) only had 36 bytes of RAM and 1600 bytes of ROM.
- Today, a smart card has;
 - between 16 and 512 Kbytes of ROM,
 - between 1 and 32 Kbytes of RAM,
 - a processor running at 100 MHz.
- ... it can;
 - embed several mega-bytes of Flash memory,
 - communicate in USB2.0,
 - embed a web server.

- The first smart cards (Bull and Motorola) only had 36 bytes of RAM and 1600 bytes of ROM.
- Today, a smart card has;
 - between 16 and 512 Kbytes of ROM,
 - between 1 and 32 Kbytes of RAM,
 - a processor running at 100 MHz.
- ... it can;
 - embed several mega-bytes of Flash memory,
 - communicate in USB2.0,
 - embed a web server.

- The first smart cards (Bull and Motorola) only had 36 bytes of RAM and 1600 bytes of ROM.
- Today, a smart card has;
 - between 16 and 512 Kbytes of ROM,
 - between 1 and 32 Kbytes of RAM,
 - a processor running at 100 MHz.
- ... it can;
 - embed several mega-bytes of Flash memory,
 - communicate in USB2.0,
 - embed a web server.

- The first smart cards (Bull and Motorola) only had 36 bytes of RAM and 1600 bytes of ROM.
- Today, a smart card has;
 - between 16 and 512 Kbytes of ROM,
 - between 1 and 32 Kbytes of RAM,
 - a processor running at 100 MHz.
- ... it can;
 - embed several mega-bytes of Flash memory,
 - communicate in USB2.0,
 - embed a web server.

- The first smart cards (Bull and Motorola) only had 36 bytes of RAM and 1600 bytes of ROM.
- Today, a smart card has;
 - between 16 and 512 Kbytes of ROM,
 - between 1 and 32 Kbytes of RAM,
 - a processor running at 100 MHz.
- ... it can;
 - embed several mega-bytes of Flash memory,
 - communicate in USB2.0,
 - embed a web server.

- The first smart cards (Bull and Motorola) only had 36 bytes of RAM and 1600 bytes of ROM.
- Today, a smart card has;
 - between 16 and 512 Kbytes of ROM,
 - between 1 and 32 Kbytes of RAM,
 - a processor running at 100 MHz.
- ... it can;
 - embed several mega-bytes of Flash memory,
 - communicate in USB2.0,
 - embed a web server.

- The first smart cards (Bull and Motorola) only had 36 bytes of RAM and 1600 bytes of ROM.
- Today, a smart card has;
 - between 16 and 512 Kbytes of ROM,
 - between 1 and 32 Kbytes of RAM,
 - a processor running at 100 MHz.
- ... it can;
 - embed several mega-bytes of Flash memory,
 - communicate in USB2.0,
 - embed a web server.

- Client (Bank, Operator, Government, etc.) has to deal with security issues: securing transactions, protecting citizen anonymity, limiting access to services, etc.
- In more than 95% of the cases it asks its internal security experts to find a solution.
 - A standard exists: it will certainly be chosen!
 - No satisfying standard exists: a new standardization process is initiated (*e.g. ETSI 3GPP, ISO, ICAO*).
 - No satisfying standard exists: a solution is designed by the internal experts (proprietary algorithms).
- Sometimes (in less than 5% of the cases) the Client asks Industrial experts to find a solution.
- As a consequence, the Smart Card Industry essentially implements standards (and even a very few of them!).

- Client (Bank, Operator, Government, etc.) has to deal with security issues: securing transactions, protecting citizen anonymity, limiting access to services, etc.
- In more than 95% of the cases it asks its internal security experts to find a solution.
 - A standard exists: it will certainly be chosen!
 - No satisfying standard exists: a new standardization process is initiated (*e.g. ETSI 3GPP, ISO, ICAO*).
 - No satisfying standard exists: a solution is designed by the internal experts (proprietary algorithms).
- Sometimes (in less than 5% of the cases) the Client asks Industrial experts to find a solution.
- As a consequence, the Smart Card Industry essentially implements standards (and even a very few of them!).

- Client (Bank, Operator, Government, etc.) has to deal with security issues: securing transactions, protecting citizen anonymity, limiting access to services, etc.
- In more than 95% of the cases it asks its internal security experts to find a solution.
 - A standard exists: it will certainly be chosen!
 - No satisfying standard exists: a new standardization process is initiated (*e.g. ETSI 3GPP, ISO, ICAO*).
 - No satisfying standard exists: a solution is designed by the internal experts (proprietary algorithms).
- Sometimes (in less than 5% of the cases) the Client asks Industrial experts to find a solution.
- As a consequence, the Smart Card Industry essentially implements standards (and even a very few of them!).

- Client (Bank, Operator, Government, etc.) has to deal with security issues: securing transactions, protecting citizen anonymity, limiting access to services, etc.
- In more than 95% of the cases it asks its internal security experts to find a solution.
 - A standard exists: it will certainly be chosen!
 - No satisfying standard exists: a new standardization process is initiated (*e.g. ETSI 3GPP, ISO, ICAO*).
 - No satisfying standard exists: a solution is designed by the internal experts (proprietary algorithms).
- Sometimes (in less than 5% of the cases) the Client asks Industrial experts to find a solution.
- As a consequence, the Smart Card Industry essentially implements standards (and even a very few of them!).

- Client (Bank, Operator, Government, etc.) has to deal with security issues: securing transactions, protecting citizen anonymity, limiting access to services, etc.
- In more than 95% of the cases it asks its internal security experts to find a solution.
 - A standard exists: it will certainly be chosen!
 - No satisfying standard exists: a new standardization process is initiated (*e.g. ETSI 3GPP, ISO, ICAO*).
 - No satisfying standard exists: a solution is designed by the internal experts (proprietary algorithms).
- Sometimes (in less than 5% of the cases) the Client asks Industrial experts to find a solution.
- As a consequence, the Smart Card Industry essentially implements standards (and even a very few of them!).

- Client (Bank, Operator, Government, etc.) has to deal with security issues: securing transactions, protecting citizen anonymity, limiting access to services, etc.
- In more than 95% of the cases it asks its internal security experts to find a solution.
 - A standard exists: it will certainly be chosen!
 - No satisfying standard exists: a new standardization process is initiated (*e.g. ETSI 3GPP, ISO, ICAO*).
 - No satisfying standard exists: a solution is designed by the internal experts (proprietary algorithms).
- Sometimes (in less than 5% of the cases) the Client asks Industrial experts to find a solution.
- As a consequence, the Smart Card Industry essentially implements standards (and even a very few of them!).

- Client (Bank, Operator, Government, etc.) has to deal with security issues: securing transactions, protecting citizen anonymity, limiting access to services, etc.
- In more than 95% of the cases it asks its internal security experts to find a solution.
 - A standard exists: it will certainly be chosen!
 - No satisfying standard exists: a new standardization process is initiated (*e.g. ETSI 3GPP, ISO, ICAO*).
 - No satisfying standard exists: a solution is designed by the internal experts (proprietary algorithms).
- Sometimes (in less than 5% of the cases) the Client asks Industrial experts to find a solution.
- As a consequence, the Smart Card Industry essentially implements standards (and even a very few of them!).

- Client (Bank, Operator, Government, etc.) has to deal with security issues: securing transactions, protecting citizen anonymity, limiting access to services, etc.
- In more than 95% of the cases it asks its internal security experts to find a solution.
 - A standard exists: it will certainly be chosen!
 - No satisfying standard exists: a new standardization process is initiated (*e.g. ETSI 3GPP, ISO, ICAO*).
 - No satisfying standard exists: a solution is designed by the internal experts (proprietary algorithms).
- Sometimes (in less than 5% of the cases) the Client asks Industrial experts to find a solution.
- As a consequence, the Smart Card Industry essentially implements standards (and even a very few of them!).

Cryptography in Smart Cards

Smart Cards implement a wide range of cryptographic algorithms:

- Block Ciphers: (Triple-)DES, AES, proprietary algorithms
- Hash functions: SHA family
- Data authentication: CBC-MAC, HMAC
- Symmetric key cryptography: RSA (OAEP, PKCS1-v1.5)
- Signature : RSA (PKCS1-v1.5, PSS), DSA, ECDSA
- Key exchange protocols: Diffie-Hellman, Diffie-Hellman on elliptic curves
Part II

Passive Side Channel Attacks

E. Prouff SCA and Countermeasures for BC Impl.

3 Simple Attacks

Advanced (Univ.) Attacks

- Introduction in the context of AES
- Attacks Description (Univ. Case)
- Modeling
- Distinguishers
- Efficiency

3 Simple Attacks

Advanced (Univ.) Attacks

- Introduction in the context of AES
- Attacks Description (Univ. Case)
- Modeling
- Distinguishers
- Efficiency

Exploitation : Simple Attacks (SPA)

SPA refers to attacks where the adversary focus on a single execution of an implementation (with possibility to average the observation for fixed inputs).

In some cases, this gives the adversary information about the manipulated secrets.

- The information leakage must be important.
- The secret must have a simple relationship with the leakage.

Example of SPA; PIN verification

The observation of execution timing enables to retrieve PIN with 4×10 tries instead of $10^4 = 10\,000$.

Example of SPA; PIN verification

Algo PIN comparison

INPUT(S): SPIN, PIN	
OUT	PUT(S) : ok/nok
1:	for $i = 0$ to 3 do
2:	if SPIN[i] \neq PIN[i] then
3:	return nok
4:	return ok

The observation of execution timing enables to retrieve PIN with 4×10 tries instead of $10^4 = 10\,000$.

Example of SPA; PIN verification

The observation of execution timing enables to retrieve PIN with 4×10 tries instead of $10^4 = 10\,000$.

3 Simple Attacks

Advanced (Univ.) Attacks

- Introduction in the context of AES
- Attacks Description (Univ. Case)
- Modeling
- Distinguishers
- Efficiency

- Advanced Side Channel Attacks can extract information from observations in contexts where SPA fails.
- They involve statistical tools (simple difference of means tests – or sophisticated – mutual information processing –).
- They need several (between 10 and more than 10⁶) traces such that:
 - the secret is constant,
 - the inputs are different and [optional] known.
 - [optional] some knowledge about the device architecture, the implementation or the noise characteristics.
- They follow a divide-and-conquer approach: the secret is rebuild piece by piece, where each piece is deduced from the behavior of an intermediate result. The size of the piece usually depends on the architecture size (*e.g.* 8, 16 or 32 bits).

- Advanced Side Channel Attacks can extract information from observations in contexts where SPA fails.
- They involve statistical tools (simple difference of means tests – or sophisticated – mutual information processing –).
- They need several (between 10 and more than 10⁶) traces such that:
 - the secret is constant,
 - the inputs are different and [optional] known.
 - [optional] some knowledge about the device architecture, the implementation or the noise characteristics.
- They follow a divide-and-conquer approach: the secret is rebuild piece by piece, where each piece is deduced from the behavior of an intermediate result. The size of the piece usually depends on the architecture size (*e.g.* 8, 16 or 32 bits).

- Advanced Side Channel Attacks can extract information from observations in contexts where SPA fails.
- They involve statistical tools (simple difference of means tests – or sophisticated – mutual information processing –).
- They need several (between 10 and more than 10⁶) traces such that:
 - the secret is constant,
 - the inputs are different and [optional] known.
 - [optional] some knowledge about the device architecture, the implementation or the noise characteristics.
- They follow a divide-and-conquer approach: the secret is rebuild piece by piece, where each piece is deduced from the behavior of an intermediate result. The size of the piece usually depends on the architecture size (*e.g.* 8, 16 or 32 bits).

- Advanced Side Channel Attacks can extract information from observations in contexts where SPA fails.
- They involve statistical tools (simple difference of means tests – or sophisticated – mutual information processing –).
- They need several (between 10 and more than 10⁶) traces such that:
 - the secret is constant,
 - the inputs are different and [optional] known.
 - [optional] some knowledge about the device architecture, the implementation or the noise characteristics.
- They follow a divide-and-conquer approach: the secret is rebuild piece by piece, where each piece is deduced from the behavior of an intermediate result. The size of the piece usually depends on the architecture size (*e.g.* 8, 16 or 32 bits).

- Advanced Side Channel Attacks can extract information from observations in contexts where SPA fails.
- They involve statistical tools (simple difference of means tests – or sophisticated – mutual information processing –).
- They need several (between 10 and more than 10⁶) traces such that:
 - the secret is constant,
 - the inputs are different and [optional] known.
 - [optional] some knowledge about the device architecture, the implementation or the noise characteristics.
- They follow a divide-and-conquer approach: the secret is rebuild piece by piece, where each piece is deduced from the behavior of an intermediate result. The size of the piece usually depends on the architecture size (*e.g.* 8, 16 or 32 bits).

- Advanced Side Channel Attacks can extract information from observations in contexts where SPA fails.
- They involve statistical tools (simple difference of means tests – or sophisticated – mutual information processing –).
- They need several (between 10 and more than 10⁶) traces such that:
 - the secret is constant,
 - the inputs are different and [optional] known.
 - [optional] some knowledge about the device architecture, the implementation or the noise characteristics.
- They follow a divide-and-conquer approach: the secret is rebuild piece by piece, where each piece is deduced from the behavior of an intermediate result. The size of the piece usually depends on the architecture size (*e.g.* 8, 16 or 32 bits).

- Advanced Side Channel Attacks can extract information from observations in contexts where SPA fails.
- They involve statistical tools (simple difference of means tests – or sophisticated – mutual information processing –).
- They need several (between 10 and more than 10⁶) traces such that:
 - the secret is constant,
 - the inputs are different and [optional] known.
 - [optional] some knowledge about the device architecture, the implementation or the noise characteristics.
- They follow a divide-and-conquer approach: the secret is rebuild piece by piece, where each piece is deduced from the behavior of an intermediate result. The size of the piece usually depends on the architecture size (*e.g.* 8, 16 or 32 bits).

- Advanced Side Channel Attacks can extract information from observations in contexts where SPA fails.
- They involve statistical tools (simple difference of means tests – or sophisticated – mutual information processing –).
- They need several (between 10 and more than 10⁶) traces such that:
 - the secret is constant,
 - the inputs are different and [optional] known.
 - [optional] some knowledge about the device architecture, the implementation or the noise characteristics.
- They follow a divide-and-conquer approach: the secret is rebuild piece by piece, where each piece is deduced from the behavior of an intermediate result. The size of the piece usually depends on the architecture size (*e.g.* 8, 16 or 32 bits).

AES Round - 8-bit Software Implementation

E. Prouff SCA and Countermeasures for BC Impl.

AES Round - 8-bit Software Implementation

E. Prouff SCA and Countermeasures for BC Impl.

AES Round - Parallel Hardware Implementation

AES Round - Parallel Hardware Implementation

E. Prouff SCA and Countermeasures for BC Impl.

AES Round - Parallel Hardware Implementation

E. Prouff SCA and Countermeasures for BC Impl.

AES Round - Parallel Hardware Implementation

Advanced Side Channel Attacks (DPA like attacks) AES Round - Software Implementation – SCA attack

... AES-Sbox $(X + \mathbf{K})$ with $\mathbf{K} = 1$ and X = cst.

For each time (abs.) and each value ℓ in a finite interval (ord.) we plotted in *z*-axis:

Example: pdf of the leakage for a device processing...

... AES-Sbox $(X + \mathbf{K})$ with $\mathbf{K} = 2$ and X = cst.

For each time (abs.) and each value ℓ in a finite interval (ord.) we plotted in *z*-axis:

Example: pdf of the leakage for a device processing...

... AES-Sbox $(X + \mathbf{K})$ with $\mathbf{K} = 3$ and X = cst.

For each time (abs.) and each value ℓ in a finite interval (ord.) we plotted in *z*-axis:

... AES-Sbox $(X + \mathbf{K})$ with $\mathbf{K} = 4$ and X = cst.

For each time (abs.) and each value ℓ in a finite interval (ord.) we plotted in *z*-axis:

 [Pre-computation] For every possible key k^{*} pre-compute the pdf of the leakage L.

- [Necessary Condition] Have an open access to a copy of the target device and be able to choose the key value.
- [Measurement] Measure the consumption for the target device and estimate the pdf of L for this target.

• [Key-recovery] Compare the pdf estimation with those pre-computed and output the most likely key candidate.
[Pre-computation] For every possible key k^{*} pre-compute the pdf of the leakage L.

- [Necessary Condition] Have an open access to a copy of the target device and be able to choose the key value.
- [Measurement] Measure the consumption for the target device and estimate the pdf of L for this target.

• [Key-recovery] Compare the pdf estimation with those pre-computed and output the most likely key candidate.

• [Pre-computation] For every possible key k* pre-compute the pdf of the leakage L.

- [Necessary Condition] Have an open access to a copy of the target device and be able to choose the key value.
- [Measurement] Measure the consumption for the target device and estimate the pdf of L for this target.

• [Key-recovery] Compare the pdf estimation with those pre-computed and output the most likely key candidate.

• [Pre-computation] For every possible key k* pre-compute the pdf of the leakage L.

- [Necessary Condition] Have an open access to a copy of the target device and be able to choose the key value.
- [Measurement] Measure the consumption for the target device and estimate the pdf of L for this target.

• [Key-recovery] Compare the pdf estimation with those pre-computed and output the most likely key candidate.

Advanced (Univ.) Attacks Attacks Description (Univ. Case)

Advanced Side Channel Attacks (DPA like attacks) Side Channel Analysis: General Framework.

Context: attack during the manipulation of S(X + k).

Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

Ø Model Selection :

• Design/Select a function **m**(·).

O Prediction :

• For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.

Oistinguisher Selection :

• Choose a statistical distinguisher Δ .

6 Key Discrimination :

• For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}
ight)$$
.

() Key Candidate Selection :

• Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of S(X + k).

() Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

2 Model Selection :

• Design/Select a function **m**(·).

O Prediction :

• For every \hat{k} , compute $m_{\hat{k},i}={f m}(S(x_i+\hat{k})).$

Oistinguisher Selection :

• Choose a statistical distinguisher Δ .

6 Key Discrimination :

• For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}\right)$$
.

() Key Candidate Selection :

• Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

Ø Model Selection :

• Design/Select a function $\mathbf{m}(\cdot)$.

B Prediction :

• For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.

- Oistinguisher Selection :
 - Choose a statistical distinguisher Δ .
- **6** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_i, \left(m_{\hat{k},i}\right)_i\right)$$
.

- **(6)** Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of S(X + k).

- Measurement :
 - get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.
- Ø Model Selection :
 - Design/Select a function $\mathbf{m}(\cdot)$.
- **O** Prediction :

• For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.

- Oistinguisher Selection :
 - Choose a statistical distinguisher Δ.
- **()** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left((\ell_{k,i})_i, (m_{\hat{k},i})_i\right)$$
.

- **6** Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

- Ø Model Selection :
 - Design/Select a function $\mathbf{m}(\cdot)$.
- Operation Prediction :

• For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.

Oistinguisher Selection :

• Choose a statistical distinguisher Δ .

6 Key Discrimination :

• For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}\right)$$
.

() Key Candidate Selection :

• Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

- Ø Model Selection :
 - Design/Select a function $\mathbf{m}(\cdot)$.
- **O** Prediction :

• For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.

- Oistinguisher Selection :
 - Choose a statistical distinguisher Δ .
- **()** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}\right) .$$

- **()** Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

- Ø Model Selection :
 - Design/Select a function $\mathbf{m}(\cdot)$.
- Operation Prediction :

• For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.

- Oistinguisher Selection :
 - Choose a statistical distinguisher Δ .
- **()** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{\boldsymbol{k},i}\right)_{i},\left(m_{\hat{k},i}\right)_{i}\right) \ .$$

- **6** Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Advanced Side Channel Attacks (DPA like attacks) Side Channel Analysis: attack Description Sheet/Form

Attack Description Sheet/Form

Type of Leakage: e.g. power consumption or electromagnetic emanation Model Function:e.g. one bit of Z or its Hamming weight Statistical Distinguisher: e.g. difference of means, correlation or entropy Key Candidate Selection: e.g. the candidate the maximizes the scores

Context: attack during the manipulation of S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

- Ø Model Selection :
 - Design/Select a function $\mathbf{m}(\cdot)$.
- O Prediction :
 - For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.
- O Distinguisher Selection :
 - Choose a statistical distinguisher Δ .
- **()** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{\boldsymbol{k},i}\right)_{i},\left(m_{\hat{k},i}\right)_{i}\right) .$$

- **(6)** Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

Ø Model Selection :

• Design/Select a function $\mathbf{m}(\cdot)$.

O Prediction :

• For every \hat{k} , compute $m_{\hat{k},i}={f m}(S(x_i+\hat{k})).$

Oistinguisher Selection :

- Choose a statistical distinguisher Δ.
- 6 Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left((\ell_{k,i})_i, (m_{\hat{k},i})_i\right)$$
.

- 6 Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of S(X + k).

1 Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

- Ø Model Selection :
 - Design/Select a function $\mathbf{m}(\cdot)$.
- O Prediction :

• For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.

- Oistinguisher Selection :
 - Choose a statistical distinguisher Δ.
- **6** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left((\ell_{k,i})_i, (m_{\hat{k},i})_i\right)$$
.

- 6 Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Side Channel Analysis: define a model for the consumption.

Goal: define the kind of dependency between the manipulated data and the device behaviour.

- First solution (template/profiled attacks principle):
 - use an exact copy of the attacked device and estimate the pdf of *L* for every possible pair (*X*, *k*).
 - see [Chari et al at CHES 2002].
- Second solution (unprofiled attacks principle):
 - model the function $\mathbf{E}[L| X = x, K = k]$.
 - see Messerges PhD Thesis.

Side Channel Analysis: define a model for the consumption.

Goal: define the kind of dependency between the manipulated data and the device behaviour.

- First solution (template/profiled attacks principle):
 - use an exact copy of the attacked device and estimate the pdf of *L* for every possible pair (*X*, *k*).
 - see [Chari et al at CHES 2002].
- Second solution (unprofiled attacks principle):
 - model the function $\mathbf{E}[L | X = x, K = k]$.
 - see Messerges PhD Thesis.

Side Channel Analysis: define a model for the consumption.

Goal: define the kind of dependency between the manipulated data and the device behaviour.

- First solution (template/profiled attacks principle):
 - use an exact copy of the attacked device and estimate the pdf of *L* for every possible pair (*X*, *k*).
 - see [Chari et al at CHES 2002].
- Second solution (unprofiled attacks principle):
 - model the function $\mathbf{E}[L | X = x, K = k]$.
 - see Messerges PhD Thesis.

Independent Noise Assumption (INA)

The random variable L related to the manipulation of Z equals Y + B, where Y is a function of Z and B is independent of Z.

- *B* is usually called the noise and is viewed as a continuous random variable.
- We usually assume B ~ N(0, σ²). (Gaussian Noise Assumption).
- Usually, we have Z = S(X + K) where
 - X is known,
 - k is the secret to recover
 - $S(\cdot)$ is a known cryptographic primitive (*e.g. an s-box*).

New problem statement

Independent Noise Assumption (INA)

The random variable L related to the manipulation of Z equals Y + B, where Y is a function of Z and B is independent of Z.

- *B* is usually called the noise and is viewed as a continuous random variable.
- We usually assume B ~ N(0, σ²). (Gaussian Noise Assumption).
- Usually, we have Z = S(X + K) where
 - X is known,
 - k is the secret to recover
 - $S(\cdot)$ is a known cryptographic primitive (*e.g. an s-box*).

New problem statement

Independent Noise Assumption (INA)

The random variable L related to the manipulation of Z equals Y + B, where Y is a function of Z and B is independent of Z.

- *B* is usually called the noise and is viewed as a continuous random variable.
- We usually assume B ~ N(0, σ²). (Gaussian Noise Assumption).
- Usually, we have Z = S(X + K) where
 - X is known,
 - k is the secret to recover
 - $S(\cdot)$ is a known cryptographic primitive (*e.g. an s-box*).

New problem statement

Independent Noise Assumption (INA)

The random variable L related to the manipulation of Z equals Y + B, where Y is a function of Z and B is independent of Z.

- *B* is usually called the noise and is viewed as a continuous random variable.
- We usually assume B ~ N(0, σ²). (Gaussian Noise Assumption).
- Usually, we have Z = S(X + K) where
 - X is known,
 - k is the secret to recover
 - $S(\cdot)$ is a known cryptographic primitive (*e.g. an s-box*).

New problem statement

Independent Noise Assumption (INA)

The random variable L related to the manipulation of Z equals Y + B, where Y is a function of Z and B is independent of Z.

- *B* is usually called the noise and is viewed as a continuous random variable.
- We usually assume B ~ N(0, σ²). (Gaussian Noise Assumption).
- Usually, we have Z = S(X + K) where
 - X is known,
 - k is the secret to recover
 - $S(\cdot)$ is a known cryptographic primitive (*e.g. an s-box*).

New problem statement

$$L \leftarrow Y + B = \varphi(Z) + B$$

- The deterministic part Y in a leakage L may be viewed as a multivariate polynomial in the bit-coordinate z_i of Z with coefficients in \mathbb{R} .
 - $\varphi(Z)$ is a polynomial in $\mathbb{R}[z_1, \dots, z_n]$ and this polynomial is a priori unknown to the adversary.
- The modelling problem hence reduces to a problem of polynomial interpolation in noisy context:
 - from noisy observations of φ(Y), we want to recover the coefficients ε₀, ε₁, ... such that:

$$\varphi(Z) = \underbrace{\varepsilon_0 z_0 + \varepsilon_1 z_1 + \dots}_{\text{linear part}} + \underbrace{\varepsilon_{0,1} z_0 z_1 + \varepsilon_{0,2} z_0 z_2 + \dots}_{\text{quadratic part}} + \underbrace{\dots}_{\text{etc.}}$$

$$L \leftarrow Y + B = \varphi(Z) + B$$

- The deterministic part Y in a leakage L may be viewed as a multivariate polynomial in the bit-coordinate z_i of Z with coefficients in ℝ.
 - $\varphi(Z)$ is a polynomial in $\mathbb{R}[z_1, \dots, z_n]$ and this polynomial is a priori unknown to the adversary.
- The modelling problem hence reduces to a problem of polynomial interpolation in noisy context:
 - from noisy observations of φ(Y), we want to recover the coefficients ε₀, ε₁, ... such that:

$$\varphi(Z) = \underbrace{\varepsilon_0 z_0 + \varepsilon_1 z_1 + \dots}_{\text{linear part}} + \underbrace{\varepsilon_{0,1} z_0 z_1 + \varepsilon_{0,2} z_0 z_2 + \dots}_{\text{quadratic part}} + \underbrace{\dots}_{\text{etc.}}$$

$$L \leftarrow Y + B = \varphi(Z) + B$$

- The deterministic part Y in a leakage L may be viewed as a multivariate polynomial in the bit-coordinate z_i of Z with coefficients in ℝ.
 - $\varphi(Z)$ is a polynomial in $\mathbb{R}[z_1, \dots, z_n]$ and this polynomial is a priori unknown to the adversary.
- The modelling problem hence reduces to a problem of polynomial interpolation in noisy context:
 - from noisy observations of φ(Y), we want to recover the coefficients ε₀, ε₁, ... such that:

$$\varphi(Z) = \underbrace{\varepsilon_0 z_0 + \varepsilon_1 z_1 + \dots}_{\text{linear part}} + \underbrace{\varepsilon_{0,1} z_0 z_1 + \varepsilon_{0,2} z_0 z_2 + \dots}_{\text{quadratic part}} + \underbrace{\dots}_{\text{etc.}}$$

$$L \leftarrow Y + B = \varphi(Z) + B$$

$$\varphi(Z) = \varepsilon_0 z_0 + \varepsilon_1 z_1 + \dots$$

- The polynomial interpolation with noise problem is usually solved thanks to linear regression techniques. See Schindler et al. at CHES 2005 or Doget et al at JCEN 2011.
- Usually, we assume the polynomial $\varphi(Z)$ is of degree 1.
- All the coefficients ε_i for degree-1 monomials are equal (to 1).
- The latter assumption (called Hamming Weight) is today pertinent for almost all smart card technologies.
- For recent ones (*e.g.* 65nm tech.), the non-linear terms must be taken into account. See Veyrat-Charvillon et al's paper at CRYPTO 2011.

$$L \leftarrow Y + B = \varphi(Z) + B$$

$$\varphi(Z) = \varepsilon_0 z_0 + \varepsilon_1 z_1 + \dots$$

- The polynomial interpolation with noise problem is usually solved thanks to linear regression techniques. See Schindler et al. at CHES 2005 or Doget et al at JCEN 2011.
- Usually, we assume the polynomial $\varphi(Z)$ is of degree 1.
- All the coefficients ε_i for degree-1 monomials are equal (to 1).
- The latter assumption (called Hamming Weight) is today pertinent for almost all smart card technologies.
- For recent ones (*e.g.* 65nm tech.), the non-linear terms must be taken into account. See Veyrat-Charvillon et al's paper at CRYPTO 2011.

$$L \leftarrow Y + B = \varphi(Z) + B$$

$$\varphi(Z) = \varepsilon_0 z_0 + \varepsilon_1 z_1 + \dots$$

- The polynomial interpolation with noise problem is usually solved thanks to linear regression techniques. See Schindler et al. at CHES 2005 or Doget et al at JCEN 2011.
- Usually, we assume the polynomial $\varphi(Z)$ is of degree 1.
- All the coefficients ε_i for degree-1 monomials are equal (to 1).
- The latter assumption (called Hamming Weight) is today pertinent for almost all smart card technologies.
- For recent ones (*e.g.* 65nm tech.), the non-linear terms must be taken into account. See Veyrat-Charvillon et al's paper at CRYPTO 2011.

$$L \leftarrow Y + B = \varphi(Z) + B$$

$$\varphi(Z) = \varepsilon_0 z_0 + \varepsilon_1 z_1 + \dots$$

- The polynomial interpolation with noise problem is usually solved thanks to linear regression techniques. See Schindler et al. at CHES 2005 or Doget et al at JCEN 2011.
- Usually, we assume the polynomial $\varphi(Z)$ is of degree 1.
- All the coefficients ε_i for degree-1 monomials are equal (to 1).
- The latter assumption (called Hamming Weight) is today pertinent for almost all smart card technologies.
- For recent ones (*e.g.* 65nm tech.), the non-linear terms must be taken into account. See Veyrat-Charvillon et al's paper at CRYPTO 2011.

$$L \leftarrow Y + B = \varphi(Z) + B$$

$$\varphi(Z) = \varepsilon_0 z_0 + \varepsilon_1 z_1 + \dots$$

- The polynomial interpolation with noise problem is usually solved thanks to linear regression techniques. See Schindler et al. at CHES 2005 or Doget et al at JCEN 2011.
- Usually, we assume the polynomial $\varphi(Z)$ is of degree 1.
- All the coefficients ε_i for degree-1 monomials are equal (to 1).
- The latter assumption (called Hamming Weight) is today pertinent for almost all smart card technologies.
- For recent ones (*e.g.* 65nm tech.), the non-linear terms must be taken into account. See Veyrat-Charvillon et al's paper at CRYPTO 2011.

$$L \leftarrow Y + B = \varphi(Z) + B$$

$$\varphi(Z) = \varepsilon_0 z_0 + \varepsilon_1 z_1 + \dots$$

- The polynomial interpolation with noise problem is usually solved thanks to linear regression techniques. See Schindler et al. at CHES 2005 or Doget et al at JCEN 2011.
- Usually, we assume the polynomial $\varphi(Z)$ is of degree 1.
- All the coefficients ε_i for degree-1 monomials are equal (to 1).
- The latter assumption (called Hamming Weight) is today pertinent for almost all smart card technologies.
- For recent ones (e.g. 65nm tech.), the non-linear terms must be taken into account. See Veyrat-Charvillon et al's paper at CRYPTO 2011.
Context: attack during the manipulation of S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

- Ø Model Selection :
 - Design/Select a function $\mathbf{m}(\cdot)$.
- O Prediction :
 - For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.
- O Distinguisher Selection :
 - Choose a statistical distinguisher Δ .
- **()** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{\boldsymbol{k},i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}\right) .$$

- **(6)** Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of S(X + k).

Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

Ø Model Selection :

• Design/Select a function $\mathbf{m}(\cdot)$.

O Prediction :

• For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.

- O Distinguisher Selection :
 - Choose a statistical distinguisher Δ.
- 6 Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left((\ell_{k,i})_i, (m_{\hat{k},i})_i\right)$$
.

- 6 Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

Ø Model Selection :

• Design/Select a function HW.

6 Prediction :

• For every \hat{k} , compute $m_{\hat{k},i} = HW(S(x_i + \hat{k}))$.

Oistinguisher Selection :

Choose a statistical distinguisher Δ.

- **(** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}\right)$$
.

- 6 Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

Ø Model Selection :

• Design/Select a function HW.

6 Prediction :

• For every \hat{k} , compute $m_{\hat{k},i} = HW(S(x_i + \hat{k}))$.

O Distinguisher Selection :

- Choose a statistical distinguisher Δ .
- 6 Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}\right)$$
.

- 6 Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Under INA assumption, the pdf f_L of L is a Gaussian Mixture:

$$f_L(\ell) = \sum_i \Pr[\varphi(Z) = i] \times \mathcal{N}(i, \sigma^2)$$

Figure : No noise ($\sigma = 0.2$)

Under INA assumption, the pdf f_L of L is a Gaussian Mixture:

$$f_L(\ell) = \sum_i \Pr[\varphi(Z) = i] \times \mathcal{N}(i, \sigma^2)$$

Figure : Small noise ($\sigma = 0.5$)

Figure : Medium noise ($\sigma = 2$)

Question: which property of this mixture depends on the secret k? Note: difficult question since the adversary does not know φ but a model **m** for it!

- DPA Kocher et al at CRYPTO 96,
- Multi-bit DPA Messerges in his PhD Thesis,
- CPA Brier et al at CHES 2004,
- Stochastic Attacks Schindler et al at CHES 2006
- or the MIA Gierlichs et al at CHES 2008.
- etc.

Question: which property of this mixture depends on the secret k? Note: difficult question since the adversary does not know φ but a model **m** for it!

- DPA Kocher et al at CRYPTO 96,
- Multi-bit DPA Messerges in his PhD Thesis,
- CPA Brier et al at CHES 2004,
- Stochastic Attacks Schindler et al at CHES 2006
- or the MIA Gierlichs et al at CHES 2008.
- etc.

Question: which property of this mixture depends on the secret k? Note: difficult question since the adversary does not know φ but a model **m** for it!

- DPA Kocher et al at CRYPTO 96,
- Multi-bit DPA Messerges in his PhD Thesis,
- CPA Brier et al at CHES 2004,
- Stochastic Attacks Schindler et al at CHES 2006
- or the MIA Gierlichs et al at CHES 2008.
- etc.

Question: which property of this mixture depends on the secret k? Note: difficult question since the adversary does not know φ but a model **m** for it!

- DPA Kocher et al at CRYPTO 96,
- Multi-bit DPA Messerges in his PhD Thesis,
- CPA Brier et al at CHES 2004,
- Stochastic Attacks Schindler et al at CHES 2006
- or the MIA Gierlichs et al at CHES 2008.
- etc.

Advanced Side Channel Attacks (DPA like attacks)

Side Channel Analysis: the statistical distinguisher

DPA attack Kocher et al at CRYPTO 96.

Attack Description Sheet/Form: DPA

Type of Leakage: no restriction. Model Function: the function $\mathbf{m} : Z \mapsto z_i$ for some index *i*. Statistical Distinguisher: difference of means Test. Key Candidate Selection: the candidate the maximizes the scores.

Score value $\Delta_{\hat{k}}$: a statistical estimator of

$$\Delta_{\hat{k}} = \mathsf{E}(L \mid M_{\hat{k}} = 1) - \mathsf{E}(L \mid M_{\hat{k}} = 0)$$

with $M_{\hat{k}}$ equal to the *i*th bit of $Z = S(X + \hat{k})$.

DPA attack Kocher et al at CRYPTO 96.

Attack Description Sheet/Form: DPA

Type of Leakage: no restriction. Model Function: the function $\mathbf{m} : Z \mapsto z_i$ for some index *i*. Statistical Distinguisher: difference of means Test. Key Candidate Selection: the candidate the maximizes the scores.

Score value $\Delta_{\hat{k}}$: a statistical estimator of

$$\Delta_{\hat{k}} = \mathsf{E}(L \mid M_{\hat{k}} = 1) - \mathsf{E}(L \mid M_{\hat{k}} = 0)$$

with $M_{\hat{k}}$ equal to the *i*th bit of $Z = S(X + \hat{k})$.

DPA attack Kocher et al at CRYPTO 96. Why does it work?

$$\begin{split} \Delta_{\hat{k}} &= \mathbf{E}(L \mid M_{\hat{k}} = 1) - \mathbf{E}(L \mid M_{\hat{k}} = 0) \\ &= \mathbf{E}(\varphi(Z) + B \mid M_{\hat{k}} = 1) - \mathbf{E}(\varphi(Z) + B \mid M_{\hat{k}} = 0) \end{split}$$

Since the noise B is independent of Z,

$$\Delta_{\hat{k}} = \mathbf{E}(\varphi(Z) \mid M_{\hat{k}} = 1) - \mathbf{E}(\varphi(Z) \mid M_{\hat{k}} = 0)$$

= $\mathbf{E}(\varepsilon_i z_i + (\varphi(Z) - \varepsilon_i z_i) \mid M_{\hat{k}} = 1) - \mathbf{E}(\varepsilon_i z_i + (\varphi(Z) - \varepsilon_i z_i) \mid M_{\hat{k}} = 0)$

Let us assume that $(\varphi(Z) - \varepsilon_i z_i)$ is independent of z_i and $M_{\hat{k}}$ (true in practice).

$$\Delta_{\hat{k}} = \varepsilon_i \left(\mathsf{E}(z_i \mid M_{\hat{k}} = 1) - \mathsf{E}(z_i \mid M_{\hat{k}} = 0) \right)$$

$$\Delta_{\hat{k}} = \varepsilon_i \left(\mathsf{E}(z_i \mid M_{\hat{k}} = 1) - \mathsf{E}(z_i \mid M_{\hat{k}} = 0) \right)$$

where

•
$$z_i$$
 is the *i*th bit of $S(M + k)$
• $M_{\hat{k}}$ is the *i*th bit of $S(M + \hat{k})$
If $k = \hat{k}$, then $z_i = M_{\hat{k}}$ and :

$$\Delta_{\hat{k}} = \varepsilon_i \left(1 - 0 \right) = \varepsilon_i$$

If $k = \hat{k}$, then z_i and $M_{\hat{k}}$ are independent (due to properties of S) and

$$\Delta_{\hat{k}} = \varepsilon_i \left(\mathsf{E}(z_i) - \mathsf{E}(z_i) \right) = 0$$

DPA attack Kocher et al at CRYPTO 96.

- Pros: no need for assumption on the device properties, quite efficient in practice.
- Cons: does not use all the information in the trace and attack each bit of the target separately.

Multi-bit DPA attack Messerges in his PhD Thesis.

Attack Description Sheet/Form: Multi-bit DPA

Type of Leakage: no restriction. Model Function **m**: the Hamming weight function. Statistical Distinguisher: difference of means for a parameter τ . Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value $\Delta_{\hat{k}}$: a statistical estimator of

$$\Delta_{\hat{k}} = \mathsf{E}(L \mid M_{\hat{k}} \leq au) - \mathsf{E}(L \mid M_{\hat{k}} > au)$$

with $M_{\hat{k}}$ equal to the HW[$S(X + \hat{k})$].

- Pros: exploit more information than the DPA.
- Cons: need assumption (Hamming weight) on the device behaviour.

Multi-bit DPA attack Messerges in his PhD Thesis.

Attack Description Sheet/Form: Multi-bit DPA

Type of Leakage: no restriction. Model Function **m**: the Hamming weight function. Statistical Distinguisher: difference of means for a parameter τ . Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value $\Delta_{\hat{k}}$: a statistical estimator of

$$\Delta_{\hat{k}} = \mathsf{E}(L \mid M_{\hat{k}} \leq au) - \mathsf{E}(L \mid M_{\hat{k}} > au)$$

with $M_{\hat{k}}$ equal to the HW[$S(X + \hat{k})$].

- Pros: exploit more information than the DPA.
- Cons: need assumption (Hamming weight) on the device behaviour.

Multi-bit DPA attack Messerges in his PhD Thesis.

Attack Description Sheet/Form: Multi-bit DPA

Type of Leakage: no restriction. Model Function **m**: the Hamming weight function. Statistical Distinguisher: difference of means for a parameter τ . Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value $\Delta_{\hat{k}}$: a statistical estimator of

$$\Delta_{\hat{k}} = \mathsf{E}(L \mid M_{\hat{k}} \leq au) - \mathsf{E}(L \mid M_{\hat{k}} > au)$$

with $M_{\hat{k}}$ equal to the HW[$S(X + \hat{k})$].

- Pros: exploit more information than the DPA.
- Cons: need assumption (Hamming weight) on the device behaviour.

CPA attack Brier et al at CHES 2004.

Attack Description Sheet/Form: CPA

Type of Leakage: no restriction. Model Function **m**: possibly any function (in practice HW). Statistical Distinguisher: linear correlation coefficient. Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value $\Delta_{\hat{k}}$: a statistical estimator of

 $\Delta_{\hat{k}} =
ho(L, M_{\hat{k}})$

- Pros: exploit more information than the previous ones and is more powerful
- Cons: need assumption (Hamming weight) on the device behaviour.

CPA attack Brier et al at CHES 2004.

Attack Description Sheet/Form: CPA

Type of Leakage: no restriction. Model Function **m**: possibly any function (in practice HW). Statistical Distinguisher: linear correlation coefficient. Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value $\Delta_{\hat{k}}$: a statistical estimator of

 $\Delta_{\hat{k}} = \rho(L, M_{\hat{k}})$

- Pros: exploit more information than the previous ones and is more powerful
- Cons: need assumption (Hamming weight) on the device behaviour.

CPA attack Brier et al at CHES 2004.

Attack Description Sheet/Form: CPA

Type of Leakage: no restriction. Model Function **m**: possibly any function (in practice HW). Statistical Distinguisher: linear correlation coefficient. Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value $\Delta_{\hat{k}}$: a statistical estimator of

 $\Delta_{\hat{k}} = \rho(L, M_{\hat{k}})$

- Pros: exploit more information than the previous ones and is more powerful
- Cons: need assumption (Hamming weight) on the device behaviour.

MIA attack Gierlichs et al at CHES 2008.

Attack Description Sheet/Form: MIA

Type of Leakage: no restriction. Model Function **m**: any non-injective function (in practice HW). Statistical Distinguisher: mutual information (MI). Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value $\Delta_{\hat{k}}$: a statistical estimator of

 $\Delta_{\hat{k}} = MI(L; M_{\hat{k}}) = entropy(L) - entropy(L \mid M_{\hat{k}})$

- Pros: theoretically able to detect any kind of dependency whatever the quality of the model if the function x → m ∘ S(x + k) is non-injective!
- Cons: need for efficient estimators of the entropy (currently less efficient than the CPA) Batina *et al*, *Journal of Cryptology 2011*.

MIA attack Gierlichs et al at CHES 2008.

Attack Description Sheet/Form: MIA

Type of Leakage: no restriction. Model Function **m**: any non-injective function (in practice HW). Statistical Distinguisher: mutual information (MI). Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value $\Delta_{\hat{k}}$: a statistical estimator of

 $\Delta_{\hat{k}} = MI(L; M_{\hat{k}}) = entropy(L) - entropy(L \mid M_{\hat{k}})$

- Pros: theoretically able to detect any kind of dependency whatever the quality of the model if the function $x \mapsto \mathbf{m} \circ S(x+k)$ is non-injective!
- Cons: need for efficient estimators of the entropy (currently less efficient than the CPA) Batina *et al*, *Journal of Cryptology 2011*.

Advanced Side Channel Attacks (DPA like attacks) Other attacks

- Stochastic attacks: See Schindler et al. at CHES 2005 or Doget et al at JCEN 2011.
 - Good alternative when classical (e.g. HW) models fail.
 - Amounts to process an Euclidean distance between the leakage values and the estimations in the regressed model.
- Kolmogorov-Smirnov Based attacks: Whitnall et al. at CARDIS 2011.
 - Good alternative to the MIA.
- PPA, EPA, VPA, etc: other attacks exist but are often very ad hoc ones with no clear advantage to the "classical" ones.
- Works comparing the attacks:
 - "How to Compare Profiled Side-Channel Attacks?" Standaert *et al, ACNS 2009.*
 - "A fair evaluation framework for comparing side-channel distinguishers" by Withnall *et al*, *JCEN 2011*.
 - "Univariate Side Channel Attacks and Leakage Modeling" by Doget *et al*, *JCEN 2011*.

Distinguishers Processing ... a partitioning description.

Combine the statistics

$$\Delta_{\hat{k}} = \sum_{i} \delta_{i} \times \mathbb{P}[M_{\hat{k}} = i]$$

Attack Efficiency

The efficiency of an SCA given a success rate β is the smallest value N such that:

 $\Pr(\text{Attack succeeds in recovering } k \text{ with } N \text{ measurements}) \geq \beta$.

Particular case: the attack involves correlation coefficient $(i.e.\Delta = \rho)$:

$$\Pr\left(\hat{
ho}_k(N) > \max_{\hat{k}
eq k} \hat{
ho}_{\hat{k}}(N)
ight) \geq eta \; .$$

where $\hat{\rho}_k(N)$ denotes the estimation of ρ_k based on N.

Attack Efficiency

The efficiency of an SCA given a success rate β is the smallest value N such that:

 $\Pr(\text{Attack succeeds in recovering } k \text{ with } N \text{ measurements}) \geq \beta$.

Particular case: the attack involves correlation coefficient $(i.e.\Delta = \rho)$:

$$\Pr\left(\hat{
ho}_k(N) > \max_{\hat{k} \neq k} \hat{
ho}_{\hat{k}}(N)
ight) \geq eta \; .$$

where $\hat{\rho}_k(N)$ denotes the estimation of ρ_k based on N.

Attack Efficiency

The efficiency of an SCA given a success rate β is the smallest value N such that:

 $\Pr(\text{Attack succeeds in recovering } k \text{ with } N \text{ measurements}) \geq eta$.

Particular case: the attack involves correlation coefficient (*i.e.* $\Delta = \rho$):

$$\mathsf{Pr}\left(\hat{
ho}_k({\sf N}) > \max_{\hat{k}
eq k} \hat{
ho}_{\hat{k}}({\sf N})
ight) \geq eta \; .$$

where $\hat{\rho}_k(N)$ denotes the estimation of ρ_k based on N.

• Fisher: when $\hat{\rho}_{\hat{k}}(N)$ is computed between samples that have a joint normal distribution, $Z_{N,\hat{k}} = \frac{1}{2} \ln \left(\frac{1 + \hat{\rho}_k(N)}{1 - \hat{\rho}_{\hat{k}}(N)} \right)$ has a normal distribution with parameters

$$\mathbf{E}(Z_{N,\hat{k}}) = \frac{1}{2} \ln \left(\frac{1+\rho_k}{1-\rho_{\hat{k}}} \right)$$
 and $\operatorname{Var}(Z_{N,\hat{k}}) = (N-3)^{-2}$.

• [Mangard at CT-RSA 2004] So, $Pr(\hat{\rho}_k(N) > \hat{\rho}_k(N)) = \beta$ implies:

$$N=3+8\left(rac{\Phi^{-1}(eta)}{\ln\left(rac{1+
ho_k}{1-
ho_k^*}
ight)}
ight)^2 \; ,$$

where Φ denotes the pdf of $\mathcal{N}(0,1)$.

• Fisher: when $\hat{\rho}_{\hat{k}}(N)$ is computed between samples that have a joint normal distribution, $Z_{N,\hat{k}} = \frac{1}{2} \ln \left(\frac{1 + \hat{\rho}_k(N)}{1 - \hat{\rho}_{\hat{k}}(N)} \right)$ has a normal distribution with parameters

$$\mathbf{E}(Z_{N,\hat{k}}) = \frac{1}{2} \ln \left(\frac{1+\rho_k}{1-\rho_{\hat{k}}} \right)$$
 and $\operatorname{Var}(Z_{N,\hat{k}}) = (N-3)^{-2}$.

• [Mangard at CT-RSA 2004] So, $Pr(\hat{\rho}_k(N) > \hat{\rho}_k(N)) = \beta$ implies:

$$N = 3 + 8 \left(rac{\Phi^{-1}(eta)}{\ln\left(rac{1+
ho_k}{1-
ho_k}
ight)}
ight)^2 \; ,$$

where Φ denotes the pdf of $\mathcal{N}(0,1)$.

• Fisher: when $\hat{\rho}_{\hat{k}}(N)$ is computed between samples that have a joint normal distribution, $Z_{N,\hat{k}} = \frac{1}{2} \ln \left(\frac{1 + \hat{\rho}_k(N)}{1 - \hat{\rho}_{\hat{k}}(N)} \right)$ has a normal distribution with parameters

$$\mathbf{E}(Z_{N,\hat{k}}) = \frac{1}{2} \ln \left(\frac{1+\rho_k}{1-\rho_{\hat{k}}} \right)$$
 and $\operatorname{Var}(Z_{N,\hat{k}}) = (N-3)^{-2}$.

• [Mangard at CT-RSA 2004] Assuming $\rho_{\hat{k}}(N) = 0$ we get:

$$N pprox 8 imes \Phi^{-1}(eta)^2 imes
ho_k^{-2} \; ,$$

since $\ln(1+x) \approx x$ if |x| < 1.

• Let us define the SNR by:

$$SNR = \frac{Var[L] - E[Var[L \mid Z]]}{E[Var[L \mid Z]]} = \frac{Var[\varphi(Z)]}{E[Var[L \mid Z]]}$$

Note: can be computed without knowing φ ! • [Mangard at CT-RSA 2004] If SNR \ll 1, we have

$$\rho_{\hat{k}}(N) = \mathsf{SNR} \times \rho_{\hat{k}}^{\mathsf{0}}(N)$$

where $\rho_{\hat{k}}^0(N)$ denotes the correl. when there is no stoch. noise. • Consequently,

$$N \sim \frac{1}{SNR}$$

SNR = 0.01	\rightarrow	around 100 traces	\rightarrow	few seconds
SNR = 0.001	\rightarrow	around 1000 traces	\rightarrow	less than $1/_{4}$ hour
SNR = 0.0001	\rightarrow	around 10^5 traces	\rightarrow	several hours
$SNR = 10^{-6}$	\rightarrow	several millions of traces	\rightarrow	several days

• Let us define the SNR by:

$$\mathsf{SNR} = \frac{\mathsf{Var}[\mathsf{L}] - \mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]}{\mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]} = \frac{\mathsf{Var}[\varphi(Z)]}{\mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]}$$

Note: can be computed without knowing $\varphi!$

 $\bullet~$ [Mangard at CT-RSA 2004] If SNR \ll 1, we have

$$\rho_{\hat{k}}(N) = \mathsf{SNR} \times \rho_{\hat{k}}^{\mathsf{0}}(N)$$

where $\rho_k^0(N)$ denotes the correl. when there is no stoch. noise. • Consequently,

$$N \sim \frac{1}{SNR}$$

SNR = 0.01	\rightarrow	around 100 traces	\rightarrow	few seconds
SNR = 0.001	\rightarrow	around 1000 traces	\rightarrow	less than $^{1}\!/_{4}$ hour
SNR = 0.0001	\rightarrow	around 10^5 traces	\rightarrow	several hours
$SNR = 10^{-6}$	\rightarrow	several millions of traces	\rightarrow	several days

• Let us define the SNR by:

$$\mathsf{SNR} = \frac{\mathsf{Var}[\mathsf{L}] - \mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]}{\mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]} = \frac{\mathsf{Var}[\varphi(Z)]}{\mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]}$$

Note: can be computed without knowing $\varphi!$

• [Mangard at CT-RSA 2004] If SNR \ll 1, we have

$$\rho_{\hat{k}}(N) = \mathsf{SNR} \times \rho_{\hat{k}}^{0}(N)$$

where $\rho_{\hat{k}}^{0}(N)$ denotes the correl. when there is no stoch. noise. • Consequently,

SNR = 0.01	\rightarrow	around 100 traces	\rightarrow	few seconds
SNR = 0.001	\rightarrow	around 1000 traces	\rightarrow	less than $1/_4$ hour
NR = 0.0001	\rightarrow	around 10^5 traces	\rightarrow	several hours
$SNR = 10^{-6}$	\rightarrow	several millions of traces	\rightarrow	several days

• Let us define the SNR by:

$$\mathsf{SNR} = \frac{\mathsf{Var}[\mathsf{L}] - \mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]}{\mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]} = \frac{\mathsf{Var}[\varphi(Z)]}{\mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]}$$

Note: can be computed without knowing $\varphi!$

 $\bullet~[{\rm Mangard~at~CT}{-}{\rm RSA~2004}]$ If SNR \ll 1, we have

$$\rho_{\hat{k}}(N) = \mathsf{SNR} \times \rho_{\hat{k}}^{0}(N)$$

where $\rho_{\hat{k}}^0(N)$ denotes the correl. when there is no stoch. noise. • Consequently,

$$N \sim rac{1}{SNR}$$

SNR = 0.01	\rightarrow	around 100 traces	\rightarrow	few seconds
SNR = 0.001	\rightarrow	around 1000 traces	\rightarrow	less than $1/_4$ hour
SNR = 0.0001	\rightarrow	around 10^5 traces	\rightarrow	several hours
$SNR = 10^{-6}$	\rightarrow	several millions of traces	\rightarrow	several days

Advanced Side Channel Attacks (DPA like attacks) More accurate efficiency evaluations

- Core Idea: relax the assumption $\rho_{\hat{k}}(N) = 0$ for any $\hat{k} \neq 0$.
- Note: this assumption contradicts the ghost Peaks phenomenon ... which is however observed in practice!
- Recent works on this subject: Rivain, SAC 2008, Fei, Luo, Ding, CHES 2012, Thillard, Prouff, Roche, CHES 2013.

Advanced Side Channel Attacks (DPA like attacks) More accurate efficiency evaluations

- Core Idea: relax the assumption $\rho_{\hat{k}}(N) = 0$ for any $\hat{k} \neq 0$.
- Note: this assumption contradicts the ghost Peaks phenomenon ... which is however observed in practice!
- Recent works on this subject: Rivain, SAC 2008, Fei, Luo, Ding, CHES 2012, Thillard, Prouff, Roche, CHES 2013.

Advanced Side Channel Attacks (DPA like attacks) More accurate efficiency evaluations

- Core Idea: relax the assumption $\rho_{\hat{k}}(N) = 0$ for any $\hat{k} \neq 0$.
- Note: this assumption contradicts the ghost Peaks phenomenon ... which is however observed in practice!
- Recent works on this subject: Rivain, SAC 2008, Fei, Luo, Ding, CHES 2012, Thillard, Prouff, Roche, CHES 2013.

Advanced Side Channel Attacks (DPA like attacks) More accurate efficiency evaluations

- Core Idea: relax the assumption $\rho_{\hat{k}}(N) = 0$ for any $\hat{k} \neq 0$.
- Note: this assumption contradicts the ghost Peaks phenomenon ... which is however observed in practice!
- Recent works on this subject: Rivain, SAC 2008, Fei, Luo, Ding, CHES 2012, Thillard, Prouff, Roche, CHES 2013.

• When provided with the same *a priori* information about the leakage, CPA, MIA, DPA and Gaussian template attacks are asymptotically equivalent Mangard *et al*, *IET Information Security* 2011.

• \implies Efficiency formula $N \approx 8 \times \Phi^{-1}(\beta)^2 \times \Delta_k^{-2}$ stays true for the corresponding distinguishers.

- Note: for Template attacks, the cost of the on-line phase may be constant but the cost of the off-line templates building will be linear in *SNR*⁻¹.
- In conclusion, adding security consists in finding efficient way(s) to decrease Δ_k as much as possible.
 - *i.e.*specify the algorithm implementation such that for any instantaneous leakage *L*, for any key part *k* and for any function *g*:

$\Delta(L,g(X,k))<arepsilon$,

• When provided with the same *a priori* information about the leakage, CPA, MIA, DPA and Gaussian template attacks are asymptotically equivalent Mangard *et al*, *IET Information Security* 2011.

• \implies Efficiency formula $N \approx 8 \times \Phi^{-1}(\beta)^2 \times \Delta_k^{-2}$ stays true for the corresponding distinguishers.

- Note: for Template attacks, the cost of the on-line phase may be constant but the cost of the off-line templates building will be linear in *SNR*⁻¹.
- In conclusion, adding security consists in finding efficient way(s) to decrease Δ_k as much as possible.
 - *i.e.*specify the algorithm implementation such that for any instantaneous leakage *L*, for any key part *k* and for any function *g*:

$\Delta(L,g(X,k))<arepsilon$,

• When provided with the same *a priori* information about the leakage, CPA, MIA, DPA and Gaussian template attacks are asymptotically equivalent Mangard *et al*, *IET Information Security* 2011.

• \implies Efficiency formula $N \approx 8 \times \Phi^{-1}(\beta)^2 \times \Delta_k^{-2}$ stays true for the corresponding distinguishers.

- Note: for Template attacks, the cost of the on-line phase may be constant but the cost of the off-line templates building will be linear in *SNR*⁻¹.
- In conclusion, adding security consists in finding efficient way(s) to decrease Δ_k as much as possible.
 - *i.e.*specify the algorithm implementation such that for any instantaneous leakage *L*, for any key part *k* and for any function *g*:

$\Delta(L,g(X,k))<arepsilon$,

- When provided with the same *a priori* information about the leakage, CPA, MIA, DPA and Gaussian template attacks are asymptotically equivalent Mangard *et al*, *IET Information Security* 2011.
 - \implies Efficiency formula $N \approx 8 \times \Phi^{-1}(\beta)^2 \times \Delta_k^{-2}$ stays true for the corresponding distinguishers.
- Note: for Template attacks, the cost of the on-line phase may be constant but the cost of the off-line templates building will be linear in *SNR*⁻¹.
- In conclusion, adding security consists in finding efficient way(s) to decrease Δ_k as much as possible.
 - *i.e.*specify the algorithm implementation such that for any instantaneous leakage *L*, for any key part *k* and for any function *g*:

$\Delta(L,g(X,k))<arepsilon$,

- When provided with the same *a priori* information about the leakage, CPA, MIA, DPA and Gaussian template attacks are asymptotically equivalent Mangard *et al*, *IET Information Security* 2011.
 - ⇒ Efficiency formula N ≈ 8 × Φ⁻¹(β)² × Δ_k⁻² stays true for the corresponding distinguishers.
- Note: for Template attacks, the cost of the on-line phase may be constant but the cost of the off-line templates building will be linear in *SNR*⁻¹.
- In conclusion, adding security consists in finding efficient way(s) to decrease Δ_k as much as possible.
 - *i.e.*specify the algorithm implementation such that for any instantaneous leakage *L*, for any key part *k* and for any function *g*:

$\Delta(L,g(X,k))<arepsilon$,

- When provided with the same *a priori* information about the leakage, CPA, MIA, DPA and Gaussian template attacks are asymptotically equivalent Mangard *et al*, *IET Information Security* 2011.
 - ⇒ Efficiency formula N ≈ 8 × Φ⁻¹(β)² × Δ_k⁻² stays true for the corresponding distinguishers.
- Note: for Template attacks, the cost of the on-line phase may be constant but the cost of the off-line templates building will be linear in *SNR*⁻¹.
- In conclusion, adding security consists in finding efficient way(s) to decrease Δ_k as much as possible.
 - *i.e.*specify the algorithm implementation such that for any instantaneous leakage *L*, for any key part *k* and for any function *g*:

$\Delta(L,g(X,k))<arepsilon$,

- When provided with the same *a priori* information about the leakage, CPA, MIA, DPA and Gaussian template attacks are asymptotically equivalent Mangard *et al*, *IET Information Security* 2011.
 - ⇒ Efficiency formula N ≈ 8 × Φ⁻¹(β)² × Δ_k⁻² stays true for the corresponding distinguishers.
- Note: for Template attacks, the cost of the on-line phase may be constant but the cost of the off-line templates building will be linear in *SNR*⁻¹.
- In conclusion, adding security consists in finding efficient way(s) to decrease Δ_k as much as possible.
 - *i.e.*specify the algorithm implementation such that for any instantaneous leakage *L*, for any key part *k* and for any function *g*:

$$\Delta(L,g(X,k)) < \varepsilon$$
,

Part III

Software Countermeasures for AES and HOSCA

E. Prouff SCA and Countermeasures for BC Impl.

Outline

5 Introduction and General Principles

- Shuffling Method
- Masking Method
- Masking of Block Ciphers
 Application to AES
 Other Maskings
- Higher Order Side Channel Attacks
 - Attacks Against Countermeasures: Core Ideas
 - Attacks Against Masking
 - Attacks Against Shuffling

Plan

5 Introduction and General Principles

- Shuffling Method
- Masking Method
- Masking of Block Ciphers
 Application to AES
 Other Maskings
- Higher Order Side Channel Attacks
 Attacks Against Countermeasures: Core Ideas
 Attacks Against Masking
 Attacks Against Shuffling

- Masking [IBM Team at CRYPTO 1999].
 - Efficient against SCA in practice.
 - Difficult to implement for non-linear transformations.
- Shuffling [Researchers from Graz University at ACNS 2006].
 - Less efficient against SCA in practice.
 - Easy to implement for every transformation.
- Whitening [Kocher Jaffe June, CRYPTO 1999].
 - Less efficient than masking when used alone and costly in Hardware.
 - Easy to implement for every transformation.

- Masking [IBM Team at CRYPTO 1999].
 - Efficient against SCA in practice.
 - Difficult to implement for non-linear transformations.
- Shuffling [Researchers from Graz University at ACNS 2006].
 - Less efficient against SCA in practice.
 - Easy to implement for every transformation.
- Whitening [Kocher Jaffe June, CRYPTO 1999].
 - Less efficient than masking when used alone and costly in Hardware.
 - Easy to implement for every transformation.

- Masking [IBM Team at CRYPTO 1999].
 - Efficient against SCA in practice.
 - Difficult to implement for non-linear transformations.
- Shuffling [Researchers from Graz University at ACNS 2006].
 - Less efficient against SCA in practice.
 - Easy to implement for every transformation.
- Whitening [Kocher Jaffe June, CRYPTO 1999].
 - Less efficient than masking when used alone and costly in Hardware.
 - Easy to implement for every transformation.

- Masking [IBM Team at CRYPTO 1999].
 - Efficient against SCA in practice.
 - Difficult to implement for non-linear transformations.
- Shuffling [Researchers from Graz University at ACNS 2006].
 - Less efficient against SCA in practice.
 - Easy to implement for every transformation.
- Whitening [Kocher Jaffe June, CRYPTO 1999].
 - Less efficient than masking when used alone and costly in Hardware.
 - Easy to implement for every transformation.

E. Prouff SCA and Countermeasures for BC Impl.

- Core Idea: spread the sensitive signal related to Z over t different signals S_1, \ldots, S_t leaking at different times.
- Select an index at random:

- Impact: decreases the attack efficiency by a factor of t(*i.e.* $\Delta_k^2 \longrightarrow \Delta_k^2/t$)
- Asset: can be used to protect any operation *Op* on *Z*.
- Issue: *t* must be very large to have satisfying security.

- Core Idea: spread the sensitive signal related to Z over t different signals S_1, \ldots, S_t leaking at different times.
- Select an index at random:

- Impact: decreases the attack efficiency by a factor of t(*i.e.* $\Delta_k^2 \longrightarrow \Delta_k^2/t$)
- Asset: can be used to protect any operation *Op* on *Z*.
- Issue: *t* must be very large to have satisfying security.

- Core Idea: spread the sensitive signal related to Z over t different signals S_1, \ldots, S_t leaking at different times.
- Select an index at random:

- Impact: decreases the attack efficiency by a factor of t(*i.e.* $\Delta_k^2 \longrightarrow \Delta_k^2/t$)
- Asset: can be used to protect any operation *Op* on *Z*.
- Issue: *t* must be very large to have satisfying security.

- Core Idea: spread the sensitive signal related to Z over t different signals S_1, \ldots, S_t leaking at different times.
- Select an index at random:

- Impact: decreases the attack efficiency by a factor of t(*i.e.* $\Delta_k^2 \longrightarrow \Delta_k^2/t$)
- Asset: can be used to protect any operation *Op* on *Z*.
- Issue: t must be very large to have satisfying security.

- Core Idea: spread the sensitive signal related to Z over t different signals S_1, \ldots, S_t leaking at different times.
- Select an index at random:

- Impact: decreases the attack efficiency by a factor of t(*i.e.* $\Delta_k^2 \longrightarrow \Delta_k^2/t$)
- Asset: can be used to protect any operation *Op* on *Z*.
- Issue: *t* must be very large to have satisfying security.

- Core Idea: spread the sensitive signal related to Z over t different signals S_1, \ldots, S_t leaking at different times.
- Select an index at random:

- Impact: decreases the attack efficiency by a factor of t(*i.e.* $\Delta_k^2 \longrightarrow \Delta_k^2/t$)
- Asset: can be used to protect any operation *Op* on *Z*.
- Issue: *t* must be very large to have satisfying security.

- Core Idea: spread the sensitive signal related to Z over t different signals S_1, \ldots, S_t leaking at different times.
- Select an index at random:

- Impact: decreases the attack efficiency by a factor of t(*i.e.* $\Delta_k^2 \longrightarrow \Delta_k^2/t$)
- Asset: can be used to protect any operation *Op* on *Z*.
- Issue: *t* must be very large to have satisfying security.

- Core Idea: spread the sensitive signal related to Z over t different signals S_1, \ldots, S_t leaking at different times.
- Select an index at random:

- Impact: decreases the attack efficiency by a factor of t(*i.e.* $\Delta_k^2 \longrightarrow \Delta_k^2/t$)
- Asset: can be used to protect any operation *Op* on *Z*.
- Issue: t must be very large to have satisfying security.

- Core Idea: spread the sensitive signal related to Z over t different signals S_1, \ldots, S_t leaking at different times.
- Select an index at random:

- Impact: decreases the attack efficiency by a factor of t(*i.e.* $\Delta_k^2 \longrightarrow \Delta_k^2/t$)
- Asset: can be used to protect any operation *Op* on *Z*.
- Issue: t must be very large to have satisfying security.

- Impact: attack efficiency decreases exponentially w.r.t. *d*, the base of the exponential being the noise std [CJRR99].
- Impact: for d = 2 the distinguisher value Δ_k of first-order SCA is reduced to 0!
- Asset: easy to apply when *Op* is linear.
- Issue: even for small *d*, it is costly when *Op* is non linear (*e.g.* an *s*-box).

- Impact: attack efficiency decreases exponentially w.r.t. *d*, the base of the exponential being the noise std [CJRR99].
- Impact: for d = 2 the distinguisher value Δ_k of first-order SCA is reduced to 0!
- Asset: easy to apply when *Op* is linear.
- Issue: even for small *d*, it is costly when *Op* is non linear (*e.g.* an *s*-box).

SCA Countermeasures Masking Method

• Core idea: randomly split Z into d + 1 shares $M_0, ..., M_d$ s.t

- Impact: attack efficiency decreases exponentially w.r.t. *d*, the base of the exponential being the noise std [CJRR99].
- Impact: for d = 2 the distinguisher value Δ_k of first-order SCA is reduced to 0!
- Asset: easy to apply when *Op* is linear.
- Issue: even for small *d*, it is costly when *Op* is non linear (e.g., an s-box)

- Impact: attack efficiency decreases exponentially w.r.t. *d*, the base of the exponential being the noise std [CJRR99].
- Impact: for d = 2 the distinguisher value Δ_k of first-order SCA is reduced to 0!
- Asset: easy to apply when *Op* is linear.
- Issue: even for small *d*, it is costly when *Op* is non linear (*e.g.* an *s*-box).

- Impact: attack efficiency decreases exponentially w.r.t. *d*, the base of the exponential being the noise std [CJRR99].
- Impact: for d = 2 the distinguisher value Δ_k of first-order SCA is reduced to 0!
- Asset: easy to apply when *Op* is linear.
- Issue: even for small *d*, it is costly when *Op* is non linear (*e.g.* an *s*-box).

- Impact: attack efficiency decreases exponentially w.r.t. *d*, the base of the exponential being the noise std [CJRR99].
- Impact: for d = 2 the distinguisher value Δ_k of first-order SCA is reduced to 0!
- Asset: easy to apply when *Op* is linear.
- Issue: even for small *d*, it is costly when *Op* is non linear (*e.g.* an *s*-box).
• Core idea: randomly split Z into d + 1 shares $M_0, ..., M_d$ s.t

 $M_0\oplus\cdots\oplus M_d=Z$.

- Impact: attack efficiency decreases exponentially w.r.t. *d*, the base of the exponential being the noise std [CJRR99].
- Impact: for d = 2 the distinguisher value Δ_k of first-order SCA is reduced to 0!
- Asset: easy to apply when *Op* is linear.
- Issue: even for small *d*, it is costly when *Op* is non linear (*e.g.* an s-box).

SCA Countermeasures Masking-and-Shuffling Method

 $Z = M_1 \oplus M_2 \oplus M_3 \oplus M_4$

Introduction and General Principles
 Shuffling Method
 Masking Method

Masking of Block Ciphers
 Application to AES
 Other Maskings

Higher Order Side Channel Attacks
 Attacks Against Countermeasures: Core Ideas
 Attacks Against Masking
 Attacks Against Shuffling

• SPN networks (e.g. DES, AES)

• The different transformations must satisfy:

Completeness

The masked variable M_0 and the masks M_i must verify:

 $M_0\oplus\cdots\oplus M_d=Z$.

Security

All the shares M_i must be manipulated at different times.

- SPN networks (e.g. DES, AES)
- The different transformations must satisfy:

Completeness

The masked variable M_0 and the masks M_i must verify:

$$M_0\oplus\cdots\oplus M_d=Z$$
.

Security

All the shares M_i must be manipulated at different times.

- SPN networks (e.g. DES, AES)
- The different transformations must satisfy:

Completeness

The masked variable M_0 and the masks M_i must verify:

$$M_0\oplus\cdots\oplus M_d=Z$$
.

Security

All the shares M_i must be manipulated at different times.

• Propagation through linear transformation

lssue

• Propagation through linear transformation

lssue

• Propagation through linear transformation

lssue

• Propagation through s-box

lssue

• Propagation through s-box

Issue

SCA Countermeasures Masking Scheme for first order

• Method by table recomputation for d = 1

Table Recomputation

For every x: $S^*(x) \leftarrow S(x \oplus M_1) \oplus M_1'$

• $M'_0 \leftarrow S^*(M_0)$

SCA Countermeasures Masking Scheme for first order

• Method by table recomputation for d = 1

Table Recomputation

For every x: $S^*(x) \leftarrow S(x \oplus M_1) \oplus M_1'$

• $M'_0 \leftarrow S^*(M_0)$

SCA Countermeasures Masking Scheme for first order

• Method by table recomputation for d = 1

Table Recomputation

For every *x*: $S^*(x) \leftarrow S(x \oplus M_1) \oplus M_1'$

• $M'_0 \leftarrow S^*(M_0) = S(M_0 \oplus M_1) \oplus M'_1 = S(Z) \oplus M'_1$

Algo Firs-Order Masking Pre-processing

INPUT(S) : A table representation of the function *S*, an input mask M_1 and an output mask M'_1 **OUTPUT(S)** : The table representation of the function $X \mapsto S(X \oplus M_1) \oplus M'_1$ 1: for x = 0 to $2^n - 1$ do 2: $T[x \oplus M_1] \leftarrow T[x] \oplus M'_1$ 3: return *T*

Algo Firs-Order Masking of an s-box processing

INPUT(S): A masked input $Z + M_1$ (e.g. $Z = S(M \oplus k)$) **OUTPUT(S)**: The value $Y = S(Z) \oplus N_1$ where M'_1 is a known random value 1: $Y \leftarrow T^*(Z)$ 2: return Y

SCA Countermeasures Illustration with a software AES Herbst et al., ACNS 2006

Illustration with a software AES Herbst et al., ACNS 2006

Masking of Block Ciphers

Application to AES

Masking Schemes for first order: other proposals...

- Multiplicative Masking. Gollic et al at CHES 2002 or Genelle et al at ACNS 2010: $M_0 \times Z$ with $M_0 \neq 0$.
- Affine Masking. von Willich at IMAI 2001 or Fumarolli et al at SCA 2010: $M_0 \times Z + M_1$ with $M_0 \neq 0$.
- Modular Additive Masking. Coron, CHES 1999: $M_0 + Z \mod n$.
- Homographic Masking. Courtois and Goubin, ICISC 2005
 - $\frac{M_0 \times Z + M_1}{M_2 \times Z + M_3}$ or ∞ if $Z = -\frac{M_3}{M_2}$ or $\frac{M_0}{M_2}$ if $Z = \infty$.
 - $M_0 \times M_3 \neq M_1 \times M_2$ and Z belongs to $\mathbb{K} \cup \{\infty\}$ where \mathbb{K} is a field.
- Leakage squeeezing Bhasin et al, Eprint 2013
 - $Z \oplus M_0$ where M_0 belongs to a Code with high dual distance.

Masking Schemes for first order: other proposals...

- Multiplicative Masking. Gollic et al at CHES 2002 or Genelle et al at ACNS 2010: $M_0 \times Z$ with $M_0 \neq 0$.
- Affine Masking. von Willich at IMAI 2001 or Fumarolli et al at SCA 2010: $M_0 \times Z + M_1$ with $M_0 \neq 0$.
- Modular Additive Masking. Coron, CHES 1999: $M_0 + Z \mod n$.
- Homographic Masking. Courtois and Goubin, ICISC 2005
 - $\frac{M_0 \times Z + M_1}{M_2 \times Z + M_3}$ or ∞ if $Z = -\frac{M_3}{M_2}$ or $\frac{M_0}{M_2}$ if $Z = \infty$.
 - $M_0 \times M_3 \neq M_1 \times M_2$ and Z belongs to $\mathbb{K} \cup \{\infty\}$ where \mathbb{K} is a field.
- Leakage squeeezing Bhasin et al, Eprint 2013
 - $Z \oplus M_0$ where M_0 belongs to a Code with high dual distance.

Masking Schemes for first order: other proposals...

- Multiplicative Masking. Gollic et al at CHES 2002 or Genelle et al at ACNS 2010: $M_0 \times Z$ with $M_0 \neq 0$.
- Affine Masking. von Willich at IMAI 2001 or Fumarolli et al at SCA 2010: $M_0 \times Z + M_1$ with $M_0 \neq 0$.
- Modular Additive Masking. Coron, CHES 1999: $M_0 + Z \mod n$.
- Homographic Masking. Courtois and Goubin, ICISC 2005
 - $\frac{M_0 \times Z + M_1}{M_2 \times Z + M_3}$ or ∞ if $Z = -\frac{M_3}{M_2}$ or $\frac{M_0}{M_2}$ if $Z = \infty$.
 - $M_0 \times M_3 \neq M_1 \times M_2$ and Z belongs to $\mathbb{K} \cup \{\infty\}$ where \mathbb{K} is a field.
- Leakage squeeezing Bhasin et al, Eprint 2013
 - $Z \oplus M_0$ where M_0 belongs to a Code with high dual distance.

Masking Schemes for first order: other proposals...

- Multiplicative Masking. Gollic et al at CHES 2002 or Genelle et al at ACNS 2010: $M_0 \times Z$ with $M_0 \neq 0$.
- Affine Masking. von Willich at IMAI 2001 or Fumarolli et al at SCA 2010: $M_0 \times Z + M_1$ with $M_0 \neq 0$.
- Modular Additive Masking. Coron, CHES 1999: $M_0 + Z \mod n$.
- Homographic Masking. Courtois and Goubin, ICISC 2005
 - $\frac{M_0 \times Z + M_1}{M_2 \times Z + M_3}$ or ∞ if $Z = -\frac{M_3}{M_2}$ or $\frac{M_0}{M_2}$ if $Z = \infty$.
 - $M_0 \times M_3 \neq M_1 \times M_2$ and Z belongs to $\mathbb{K} \cup \{\infty\}$ where \mathbb{K} is a field.
- Leakage squeeezing Bhasin et al, Eprint 2013
 - $Z \oplus M_0$ where M_0 belongs to a Code with high dual distance.

Masking Schemes for first order: other proposals...

- Multiplicative Masking. Gollic et al at CHES 2002 or Genelle et al at ACNS 2010: $M_0 \times Z$ with $M_0 \neq 0$.
- Affine Masking. von Willich at IMAI 2001 or Fumarolli et al at SCA 2010: $M_0 \times Z + M_1$ with $M_0 \neq 0$.
- Modular Additive Masking. Coron, CHES 1999: $M_0 + Z \mod n$.
- Homographic Masking. Courtois and Goubin, ICISC 2005

 - $\frac{M_0 \times Z + M_1}{M_2 \times Z + M_3}$ or ∞ if $Z = -\frac{M_3}{M_2}$ or $\frac{M_0}{M_2}$ if $Z = \infty$. $M_0 \times M_3 \neq M_1 \times M_2$ and Z belongs to $\mathbb{K} \cup \{\infty\}$ where \mathbb{K} is a field.
- Leakage squeeezing Bhasin et al, Eprint 2013
 - $Z \oplus M_0$ where M_0 belongs to a Code with high dual distance.

Masking Schemes for first order: other proposals...

- Multiplicative Masking. Gollic et al at CHES 2002 or Genelle et al at ACNS 2010: $M_0 \times Z$ with $M_0 \neq 0$.
- Affine Masking. von Willich at IMAI 2001 or Fumarolli et al at SCA 2010: $M_0 \times Z + M_1$ with $M_0 \neq 0$.
- Modular Additive Masking. Coron, CHES 1999: $M_0 + Z \mod n$.
- Homographic Masking. Courtois and Goubin, ICISC 2005

 - $\frac{M_0 \times Z + M_1}{M_2 \times Z + M_3}$ or ∞ if $Z = -\frac{M_3}{M_2}$ or $\frac{M_0}{M_2}$ if $Z = \infty$. $M_0 \times M_3 \neq M_1 \times M_2$ and Z belongs to $\mathbb{K} \cup \{\infty\}$ where \mathbb{K} is a field.
- Leakage squeeezing Bhasin et al, Eprint 2013
 - $Z \oplus M_0$ where M_0 belongs to a Code with high dual distance.

Masking Schemes for first order: other proposals...

- Multiplicative Masking. Gollic et al at CHES 2002 or Genelle et al at ACNS 2010: $M_0 \times Z$ with $M_0 \neq 0$.
- Affine Masking. von Willich at IMAI 2001 or Fumarolli et al at SCA 2010: $M_0 \times Z + M_1$ with $M_0 \neq 0$.
- Modular Additive Masking. Coron, CHES 1999: $M_0 + Z \mod n$.
- Homographic Masking. Courtois and Goubin, ICISC 2005

 - $\frac{M_0 \times Z + M_1}{M_2 \times Z + M_3}$ or ∞ if $Z = -\frac{M_3}{M_2}$ or $\frac{M_0}{M_2}$ if $Z = \infty$. $M_0 \times M_3 \neq M_1 \times M_2$ and Z belongs to $\mathbb{K} \cup \{\infty\}$ where \mathbb{K} is a field.
- Leakage squeeezing Bhasin et al, Eprint 2013
 - $Z \oplus M_0$ where M_0 belongs to a Code with high dual distance.

Note: all those masking does not lead to perfect security against first-order SCA (*i.e.* $\Delta_k \neq 0$).

Practical security is however sometimes achieved since the information leakage is significantly reduced (*i.e.* $\Delta_k < \varepsilon$).

Masking Schemes for first order: other proposals...

- Multiplicative Masking. Gollic et al at CHES 2002 or Genelle et al at ACNS 2010: $M_0 \times Z$ with $M_0 \neq 0$.
- Affine Masking. von Willich at IMAI 2001 or Fumarolli et al at SCA 2010: $M_0 \times Z + M_1$ with $M_0 \neq 0$.
- Modular Additive Masking. Coron, CHES 1999: $M_0 + Z \mod n$.
- Homographic Masking. Courtois and Goubin, ICISC 2005

 - $\frac{M_0 \times Z + M_1}{M_2 \times Z + M_3}$ or ∞ if $Z = -\frac{M_3}{M_2}$ or $\frac{M_0}{M_2}$ if $Z = \infty$. $M_0 \times M_3 \neq M_1 \times M_2$ and Z belongs to $\mathbb{K} \cup \{\infty\}$ where \mathbb{K} is a field.
- Leakage squeeezing Bhasin et al, Eprint 2013
 - $Z \oplus M_0$ where M_0 belongs to a Code with high dual distance.

Plan

Introduction and General Principles
 Shuffling Method

- Masking Method
- Masking of Block Ciphers
 Application to AES
 Other Maskings

Higher Order Side Channel Attacks

- Attacks Against Countermeasures: Core Ideas
- Attacks Against Masking
- Attacks Against Shuffling

Higher Order Side Channel Attacks Core Principle

- First Order Masking: $M_0 = Z \oplus M_1$
- \implies Second Order SCA:

Higher Order Side Channel Attacks Core Principle

- Masking of order $d: M_0 = Z \oplus M_1 \oplus \cdots \oplus M_d$
- Attack of order d + 1:

- *d*th-order Masking: HO-SCA
 - [Messerges in his PhD Thesis]
 - Improved latter in Prouff et al at IEEE TC 2009 or in Gierlichs et al at Journal of Cryptology 2011
- *t*th-order Shuffling: Integrated Attacks
 - [Clavier et al at CHES 2000]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA
 - [Tillich et al at ACNS 2007]
 - Improved in [Rivain et al at CHES 2009]

- *d*th-order Masking: HO-SCA
 - [Messerges in his PhD Thesis]
 - Improved latter in Prouff et al at IEEE TC 2009 or in Gierlichs et al at Journal of Cryptology 2011
- *t*th-order Shuffling: Integrated Attacks
 - [Clavier et al at CHES 2000]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA
 - [Tillich et al at ACNS 2007]
 - Improved in [Rivain et al at CHES 2009]

- *d*th-order Masking: HO-SCA
 - [Messerges in his PhD Thesis]
 - Improved latter in Prouff et al at IEEE TC 2009 or in Gierlichs et al at Journal of Cryptology 2011
- *t*th-order Shuffling: Integrated Attacks
 - [Clavier et al at CHES 2000]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA
 - [Tillich et al at ACNS 2007]
 - Improved in [Rivain et al at CHES 2009]

- *d*th-order Masking: HO-SCA
 - [Messerges in his PhD Thesis]
 - Improved latter in Prouff et al at IEEE TC 2009 or in Gierlichs et al at Journal of Cryptology 2011
- *t*th-order Shuffling: Integrated Attacks
 - [Clavier et al at CHES 2000]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA
 - [Tillich et al at ACNS 2007]
 - Improved in [Rivain et al at CHES 2009]

- *d*th-order Masking: HO-SCA
 - [Messerges in his PhD Thesis]
 - Improved latter in Prouff et al at IEEE TC 2009 or in Gierlichs et al at Journal of Cryptology 2011
- *t*th-order Shuffling: Integrated Attacks
 - [Clavier et al at CHES 2000]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA
 - [Tillich et al at ACNS 2007]
 - Improved in [Rivain et al at CHES 2009]

All the previous SCA follow the same outlines.

- 1 Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **(2)** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- 4 For every hypothesis $HW[S(M + \hat{k})]$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(\mathsf{HW}[S(M+\hat{k})], f((L_i)_i))| .$

(b) Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

All the previous SCA follow the same outlines.

- 1 Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **(2)** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- 4 For every hypothesis $HW[S(M + \hat{k})]$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(\mathsf{HW}[S(M+\hat{k})], f((L_i)_i))| .$

(5) Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

All the previous SCA follow the same outlines.

- Input: set of observations for the signals (L_i)_i related to a sensitive datum Z
- **(2)** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- 4 For every hypothesis $HW[S(M + \hat{k})]$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(\mathsf{HW}[S(M+\hat{k})], f((L_i)_i))| .$

(b) Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

All the previous SCA follow the same outlines.

- **()** Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **Q** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- 4 For every hypothesis $HW[S(M + \hat{k})]$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(\mathsf{HW}[S(M+\hat{k})], f((L_i)_i))| .$

(5) Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

All the previous SCA follow the same outlines.

- **()** Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **Q** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- 4 For every hypothesis $HW[S(M + \hat{k})]$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(\mathsf{HW}[S(M+\hat{k})], f((L_i)_i))| .$

(b) Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

All the previous SCA follow the same outlines.

- **()** Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **Q** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- **(4)** For every hypothesis $M_{\hat{k}}$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(M_{\hat{k}}, f((L_i)_i))| .$

(b) Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

All the previous SCA follow the same outlines.

- **()** Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- (2) Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- **(4)** For every hypothesis $M_{\hat{k}}$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(M_{\hat{k}}, f((L_i)_i))| .$

() Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

All the previous SCA follow the same outlines.

- **()** Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **Q** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- **(4)** For every hypothesis $HW[S(M + \hat{k})]$ on Z, estimate

$\Delta_{\hat{k}} = |\Delta(\mathsf{HW}[S(M+\hat{k})], f((L_i)_i))| .$

() Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

Example: if Z = S(M + k) and $M_{\hat{k}} = HW[S(M + \hat{k})]$, we have ... Note: if the mutual information is used instead of the correlation coefficient, there is not need for a pre-processing function f. In other cases, the single difference is the function f.

All the previous SCA follow the same outlines.

- **()** Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **Q** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- 4 For every hypothesis $HW[S(M + \hat{k})]$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(\mathsf{HW}[S(M+\hat{k})], f((L_i)_i))| .$

() Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

All the previous SCA follow the same outlines.

- **()** Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **Q** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- 4 For every hypothesis $HW[S(M + \hat{k})]$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(\mathsf{HW}[S(M+\hat{k})], f((L_i)_i))| .$

() Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

Context: sensitive variable Z split into d + 1 shares $M_0, ..., M_d$ Notation: L_i is the signal related to M_i .

Function *f* is a normalized product:

$$f(L_0,\cdots,L_d)=\prod_{i=0}^d (L_i-\mathbf{E}(L_i)) \ .$$

In the Hamming Weight Model, the efficiency satisfies:

$$ho_k = rac{cst_1}{\left(\sqrt{1+cst_2\cdot\sigma^2}
ight)^{d+1}} \; .$$

Context: sensitive variable Z split into d + 1 shares $M_0, ..., M_d$ Notation: L_i is the signal related to M_i .

Function *f* is a normalized product:

$$f(L_0,\cdots,L_d)=\prod_{i=0}^d (L_i-\mathbf{E}(L_i)) \ .$$

In the Hamming Weight Model, the efficiency satisfies:

$$ho_k = rac{cst_1}{\left(\sqrt{1+cst_2\cdot\sigma^2}
ight)^{d+1}} \; .$$

Context: sensitive variable Z split into d + 1 shares $M_0, ..., M_d$ Notation: L_i is the signal related to M_i .

Function *f* is a normalized product:

$$f(L_0,\cdots,L_d)=\prod_{i=0}^d (L_i-\mathbf{E}(L_i)) \ .$$

In the Hamming Weight Model, the efficiency satisfies:

$$ho_k = rac{\mathit{cst}_1}{\left(\sqrt{1+\mathit{cst}_2\cdot \sigma^2}
ight)^{d+1}} \; .$$

Context: sensitive variable Z split into d + 1 shares $M_0, ..., M_d$ Notation: L_i is the signal related to M_i .

Function *f* is a normalized product:

$$f(L_0,\cdots,L_d)=\prod_{i=0}^d (L_i-\mathbf{E}(L_i)) \ .$$

In the Hamming Weight Model, the efficiency satisfies:

$$ho_k = rac{\mathit{cst}_1}{\left(\sqrt{1+\mathit{cst}_2\cdot \sigma^2}
ight)^{d+1}} \; .$$

Context: sensitive variable Z split into d + 1 shares $M_0, ..., M_d$ Notation: L_i is the signal related to M_i .

Function *f* is a normalized product:

$$f(L_0,\cdots,L_d)=\prod_{i=0}^d (L_i-\mathbf{E}(L_i)) \ .$$

In the Hamming Weight Model, the efficiency satisfies:

$$ho_k = rac{cst_1}{\left(\sqrt{1+cst_2\cdot \sigma^2}
ight)^{d+1}} \; .$$

Integrated SCA Against Shuffling Illustration with Δ being Pearson' Correlation Coefficient

Context: the signal S containing information about Z is randomly spread over t different signals $L_1, ..., L_t$.

Function *f* is an Integrated signal:

$$f(L_1, \cdots, L_t) = L_1 + L_2 + \dots + L_t$$

Note: the sum always contains the term S. In the Hamming Weight Model, the efficiency satisfies:

$$\rho_k = \frac{1}{\sqrt{t}\sqrt{1+\textit{cst}_2\cdot \sigma^2}} \; .$$

Integrated SCA Against Shuffling Illustration with Δ being Pearson' Correlation Coefficient

Context: the signal S containing information about Z is randomly spread over t different signals $L_1, ..., L_t$.

Function *f* is an Integrated signal:

$$f(L_1, \cdots, L_t) = L_1 + L_2 + \dots + L_t$$

Note: the sum always contains the term *S*. In the Hamming Weight Model, the efficiency satisfies:

$$\rho_k = \frac{1}{\sqrt{t}\sqrt{1+\textit{cst}_2\cdot \sigma^2}} \; .$$

Context: the signal S containing information about Z is randomly spread over t different signals $L_1, ..., L_t$.

Function *f* is an Integrated signal:

$$f(L_1, \cdots, L_t) = L_1 + L_2 + \dots + L_t$$

Note: the sum always contains the term *S*. In the Hamming Weight Model, the efficiency satisfies:

$$\rho_k = \frac{1}{\sqrt{t}\sqrt{1+\textit{cst}_2\cdot\sigma^2}} \; .$$

Context: the signal S containing information about Z is randomly spread over t different signals $L_1, ..., L_t$.

Function *f* is an Integrated signal:

$$f(L_1, \cdots, L_t) = L_1 + L_2 + \dots + L_t$$

Note: the sum always contains the term S. In the Hamming Weight Model, the efficiency satisfies:

$$\rho_k = \frac{1}{\sqrt{t}\sqrt{1+cst_2\cdot\sigma^2}} \; .$$

Part IV

Deafeating HOSCA and Proven Security

E. Prouff SCA and Countermeasures for BC Impl.

Towards Proven Security

Masking Schemes with Proven/Quantified Security

- Introduction
- Extension of ISW
 - Case of Power Functions
 - Case of Random S-Boxes
- Combining Additive and Multiplicative Maskings
- Other alternatives

Towards Proven Security

Masking Schemes with Proven/Quantified Security Introduction

- Extension of ISW
 - Case of Power Functions
 - Case of Random S-Boxes
- Combining Additive and Multiplicative Maskings
- Other alternatives

Which security guaranty?

Provable security for embedded systems. Two main approaches...

First approach consists in designing cryptosystems that can be proved secure for some leakage models.

- Recent interest from the crypto theory community (start with DziembowskiPietrzak2007).
- Proofs are given for some leakage models:
 - Bounded Retrieval Model (BRM): the overall sensitive leakage is bounded.
 - (coutinuous) Leakage-resilient cryptography (LRC): the leakage is limited for each invocation only.
- BRM primitives are insecure against DPA and its practical relevence is still under discussion.
- LRC primitives aims at DPA-security
 - Based on re-keying techniques
 - The kind of adversary catched by those models is too strong, which strongly impacts the efficiency.

Which security guaranty? Provable security for embedded systems. Two main approaches...

First approach consists in designing cryptosystems that can be proved secure for some leakage models.

- Recent interest from the crypto theory community (start with DziembowskiPietrzak2007).
- Proofs are given for some leakage models:
 - Bounded Retrieval Model (BRM): the overall sensitive leakage is bounded.
 - (coutinuous) Leakage-resilient cryptography (LRC): the leakage is limited for each invocation only.
- BRM primitives are insecure against DPA and its practical relevence is still under discussion.
- LRC primitives aims at DPA-security
 - Based on re-keying techniques
 - The kind of adversary catched by those models is too strong, which strongly impacts the efficiency.

Which security guaranty? Provable security for embedded systems. Two main approaches...

First approach consists in designing cryptosystems that can be proved secure for some leakage models.

- Recent interest from the crypto theory community (start with DziembowskiPietrzak2007).
- Proofs are given for some leakage models:
 - Bounded Retrieval Model (BRM): the overall sensitive leakage is bounded.
 - (coutinuous) Leakage-resilient cryptography (LRC): the leakage is limited for each invocation only.
- BRM primitives are insecure against DPA and its practical relevence is still under discussion.
- LRC primitives aims at DPA-security
 - Based on re-keying techniques
 - The kind of adversary catched by those models is too strong, which strongly impacts the efficiency.
Which security guaranty? Provable security for embedded systems. Two main approaches...

First approach consists in designing cryptosystems that can be proved secure for some leakage models.

- Recent interest from the crypto theory community (start with DziembowskiPietrzak2007).
- Proofs are given for some leakage models:
 - Bounded Retrieval Model (BRM): the overall sensitive leakage is bounded.
 - (coutinuous) Leakage-resilient cryptography (LRC): the leakage is limited for each invocation only.
- BRM primitives are insecure against DPA and its practical relevence is still under discussion.
- LRC primitives aims at DPA-security
 - Based on re-keying techniques
 - The kind of adversary catched by those models is too strong, which strongly impacts the efficiency.

Which security guaranty? Provable security for embedded systems. Two main approaches...

First approach consists in designing cryptosystems that can be proved secure for some leakage models.

- Recent interest from the crypto theory community (start with DziembowskiPietrzak2007).
- Proofs are given for some leakage models:
 - Bounded Retrieval Model (BRM): the overall sensitive leakage is bounded.
 - (coutinuous) Leakage-resilient cryptography (LRC): the leakage is limited for each invocation only.
- BRM primitives are insecure against DPA and its practical relevence is still under discussion.
- LRC primitives aims at DPA-security
 - Based on re-keying techniques
 - The kind of adversary catched by those models is too strong, which strongly impacts the efficiency.

Which security guaranty? Provable security for embedded systems. Two main approaches...

First approach consists in designing cryptosystems that can be proved secure for some leakage models.

- Recent interest from the crypto theory community (start with DziembowskiPietrzak2007).
- Proofs are given for some leakage models:
 - Bounded Retrieval Model (BRM): the overall sensitive leakage is bounded.
 - (coutinuous) Leakage-resilient cryptography (LRC): the leakage is limited for each invocation only.
- BRM primitives are insecure against DPA and its practical relevence is still under discussion.
- LRC primitives aims at DPA-security
 - Based on re-keying techniques
 - The kind of adversary catched by those models is too strong, which strongly impacts the efficiency.

Second approach consists in securing the implementation using secret sharing techniques.

- First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.
- Soundness based on the following remark:
- Bit x masked $\mapsto x_0, x_1, \ldots, x_d$
- Leakage : $L_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$
- Number q of leakage samples to test $((L_i)_i | x = 0) \stackrel{!}{=} ((L_i)_i | x = 1)$:

- Until now, two options exist to prove the security:
 - the probing Adversary model
 - the Information Bounded model.

Second approach consists in securing the implementation using secret sharing techniques.

- First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.
- Soundness based on the following remark:
- Bit x masked $\mapsto x_0, x_1, \ldots, x_d$

• Leakage :
$$L_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$$

• Number q of leakage samples to test $((L_i)_i | \mathbf{x} = \mathbf{0}) \stackrel{!}{=} ((L_i)_i | \mathbf{x} = \mathbf{1})$:

- Until now, two options exist to prove the security:
 - the probing Adversary model
 - the Information Bounded model.

Second approach consists in securing the implementation using secret sharing techniques.

- First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.
- Soundness based on the following remark:
- Bit x masked $\mapsto x_0, x_1, \ldots, x_d$

• Leakage :
$$L_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$$

• Number q of leakage samples to test $((L_i)_i | x = 0) \stackrel{!}{=} ((L_i)_i | x = 1)$:

- Until now, two options exist to prove the security:
 - the probing Adversary model
 - the Information Bounded model.

Second approach consists in securing the implementation using secret sharing techniques.

- First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.
- Soundness based on the following remark:
- Bit \mathbf{x} masked $\mapsto x_0, x_1, \ldots, x_d$

• Leakage :
$$L_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$$

• Number q of leakage samples to test $((L_i)_i | \mathbf{x} = \mathbf{0}) \stackrel{!}{=} ((L_i)_i | \mathbf{x} = \mathbf{1})$:

- Until now, two options exist to prove the security:
 - the probing Adversary model
 - the Information Bounded model.

Second approach consists in securing the implementation using secret sharing techniques.

- First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.
- Soundness based on the following remark:
- Bit \mathbf{x} masked $\mapsto x_0, x_1, \ldots, x_d$

• Leakage :
$$L_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$$

• Number q of leakage samples to test $((L_i)_i | \mathbf{x} = \mathbf{0}) \stackrel{!}{=} ((L_i)_i | \mathbf{x} = \mathbf{1})$:

$$q \ge O(1)\sigma^d$$

- Until now, two options exist to prove the security:
 - the probing Adversary model
 - the Information Bounded model.

Probing Adversary Model

- A *d*th-order probing adversary is allowed to observe **at most** *d* intermediate results during the overall algorithm processing.
 - Hardware interpretation: *d* is the maximum of wires observed in the circuit.
 - Software interpretation: *d* is the maximum of different timings during the processing.
- dth-order probing adversary = dth-order SCA as introduced in Messerges99.
- Countermeasures proved to be secure against a *d*th-order probing adv.:
 - *d* = 1: KocherJaffeJune99, BlömerGuajardoKrummel04, ProuffRivain07.
 - d = 2: RivainDottaxProuff08.
 - *d* ≥ 1: IshaiSahaiWagner03, ProuffRoche11, GenelleProuffQuisquater11, CarletGoubinProuffQuisquaterRivain12.

Probing Adversary Model IshaiSahaiWagner, CRYPTO 2003

- A *d*th-order probing adversary is allowed to observe **at most** *d* intermediate results during the overall algorithm processing.
 - Hardware interpretation: *d* is the maximum of wires observed in the circuit.
 - Software interpretation: *d* is the maximum of different timings during the processing.
- dth-order probing adversary = dth-order SCA as introduced in Messerges99.
- Countermeasures proved to be secure against a *d*th-order probing adv.:
 - *d* = 1: KocherJaffeJune99, BlömerGuajardoKrummel04, ProuffRivain07.
 - d = 2: RivainDottaxProuff08.
 - *d* ≥ 1: IshaiSahaiWagner03, ProuffRoche11, GenelleProuffQuisquater11, CarletGoubinProuffQuisquaterRivain12.

Probing Adversary Model IshaiSahaiWagner, CRYPTO 2003

- A *d*th-order probing adversary is allowed to observe **at most** *d* intermediate results during the overall algorithm processing.
 - Hardware interpretation: *d* is the maximum of wires observed in the circuit.
 - Software interpretation: *d* is the maximum of different timings during the processing.
- dth-order probing adversary = dth-order SCA as introduced in Messerges99.
- Countermeasures proved to be secure against a *d*th-order probing adv.:
 - *d* = 1: KocherJaffeJune99, BlömerGuajardoKrummel04, ProuffRivain07.
 - d = 2: RivainDottaxProuff08.
 - *d* ≥ 1: IshaiSahaiWagner03, ProuffRoche11, GenelleProuffQuisquater11, CarletGoubinProuffQuisquaterRivain12.

Probing Adversary Model IshaiSahaiWagner, CRYPTO 2003

- A *d*th-order probing adversary is allowed to observe **at most** *d* intermediate results during the overall algorithm processing.
 - Hardware interpretation: *d* is the maximum of wires observed in the circuit.
 - Software interpretation: *d* is the maximum of different timings during the processing.
- dth-order probing adversary = dth-order SCA as introduced in Messerges99.
- Countermeasures proved to be secure against a *d*th-order probing adv.:
 - *d* = 1: KocherJaffeJune99, BlömerGuajardoKrummel04, ProuffRivain07.
 - d = 2: RivainDottaxProuff08.
 - *d* ≥ 1: IshaiSahaiWagner03, ProuffRoche11, GenelleProuffQuisquater11, CarletGoubinProuffQuisquaterRivain12.

- for d = 1, 2: list all the intermediate variables and check that none of them is sensitive.
- for $d \ge 3$: the method above starts is too costly!
- Issue: how to prove that a scheme can be made *d*th-order secure for any given *d*?
- Ishai-Sahai-Wagner's approach:
 - Two players: the **Adversary** who can observe any *d*-tuple of intermediate results and an **Oracle** with no access to the implementation
 - The game: for any *d*-tuple, prove that the oracle can simulate the adversary's view of the implementation execution.
- Method works well for simple schemes (*e.g. the implementation of a multiplication*), it is difficult to apply otherwise!

- for *d* = 1, 2: list all the intermediate variables and check that none of them is sensitive.
- for $d \ge 3$: the method above starts is too costly!
- Issue: how to prove that a scheme can be made dth-order secure for any given d?
- Ishai-Sahai-Wagner's approach:
 - Two players: the **Adversary** who can observe any *d*-tuple of intermediate results and an **Oracle** with no access to the implementation
 - The game: for any *d*-tuple, prove that the oracle can simulate the adversary's view of the implementation execution.
- Method works well for simple schemes (*e.g. the implementation of a multiplication*), it is difficult to apply otherwise!

- for *d* = 1, 2: list all the intermediate variables and check that none of them is sensitive.
- for $d \ge 3$: the method above starts is too costly!
- Issue: how to prove that a scheme can be made dth-order secure for any given d?
- Ishai-Sahai-Wagner's approach:
 - Two players: the **Adversary** who can observe any *d*-tuple of intermediate results and an **Oracle** with no access to the implementation
 - The game: for any *d*-tuple, prove that the oracle can simulate the adversary's view of the implementation execution.
- Method works well for simple schemes (*e.g. the implementation of a multiplication*), it is difficult to apply otherwise!

- for *d* = 1, 2: list all the intermediate variables and check that none of them is sensitive.
- for $d \ge 3$: the method above starts is too costly!
- Issue: how to prove that a scheme can be made *d*th-order secure for any given *d*?
- Ishai-Sahai-Wagner's approach:
 - Two players: the **Adversary** who can observe any *d*-tuple of intermediate results and an **Oracle** with no access to the implementation
 - The game: for any *d*-tuple, prove that the oracle can simulate the adversary's view of the implementation execution.
- Method works well for simple schemes (*e.g. the implementation of a multiplication*), it is difficult to apply otherwise!

- for *d* = 1, 2: list all the intermediate variables and check that none of them is sensitive.
- for $d \ge 3$: the method above starts is too costly!
- Issue: how to prove that a scheme can be made *d*th-order secure for any given *d*?
- Ishai-Sahai-Wagner's approach:
 - Two players: the **Adversary** who can observe any *d*-tuple of intermediate results and an **Oracle** with no access to the implementation
 - The game: for any *d*-tuple, prove that the oracle can simulate the adversary's view of the implementation execution.
- Method works well for simple schemes (*e.g. the implementation of a multiplication*), it is difficult to apply otherwise!

- for *d* = 1, 2: list all the intermediate variables and check that none of them is sensitive.
- for $d \ge 3$: the method above starts is too costly!
- Issue: how to prove that a scheme can be made d^{th} -order secure for any given d?
- Ishai-Sahai-Wagner's approach:
 - Two players: the **Adversary** who can observe any *d*-tuple of intermediate results and an **Oracle** with no access to the implementation
 - The game: for any *d*-tuple, prove that the oracle can simulate the adversary's view of the implementation execution.
- Method works well for simple schemes (*e.g. the implementation of a multiplication*), it is difficult to apply otherwise!

- for *d* = 1, 2: list all the intermediate variables and check that none of them is sensitive.
- for $d \ge 3$: the method above starts is too costly!
- Issue: how to prove that a scheme can be made *d*th-order secure for any given *d*?
- Ishai-Sahai-Wagner's approach:
 - Two players: the **Adversary** who can observe any *d*-tuple of intermediate results and an **Oracle** with no access to the implementation
 - The game: for any *d*-tuple, prove that the oracle can simulate the adversary's view of the implementation execution.
- Method works well for simple schemes (*e.g. the implementation of a multiplication*), it is difficult to apply otherwise!

- for d = 1, 2: list all the intermediate variables and check that none of them is sensitive.
- for $d \ge 3$: the method above starts is too costly!
- Issue: how to prove that a scheme can be made *d*th-order secure for any given *d*?
- Ishai-Sahai-Wagner's approach:
 - Two players: the **Adversary** who can observe any *d*-tuple of intermediate results and an **Oracle** with no access to the implementation
 - The game: for any *d*-tuple, prove that the oracle can simulate the adversary's view of the implementation execution.
- Method works well for simple schemes (*e.g. the implementation of a multiplication*), it is difficult to apply otherwise!

Chari et al, CRYPTO 1999 and Prouff and Rivain, Eurocrypt 2013

• Implementation Model. Micali-Reyzin, TCC 2004

Implementation = $seq. of elem. computations producing a list of interm. results <math>(Z_i)_i$.

• Leakage Model. The leakage on each Z_i is modelled by a probabilistic function f_i s.t.

 $\mathsf{MI}(Z_i; f_i(Z_i) \leq O(1/\psi) \; ,$

where ψ is a security parameter which only depends on the stochastic noise.

• Security Proof goal: find a deterministic function *P* s.t. the following bound is as tight as possible:

 $\mathsf{MI}((X,k);(f_i(Z_i)))_i \leq P(1/\psi)$

- Example of scheme benefiting from such a security bound:
 - → Ishai-Sahai-Wagner dth-order Boolean Masking of AES and its extensions Ishai,Sahai and Wagner, CRYPTO 2004 and Rivain-Prouff, CHES 2010.

Chari et al, CRYPTO 1999 and Prouff and Rivain, Eurocrypt 2013

• Implementation Model. Micali-Reyzin, TCC 2004

Implementation = seq. of elem. computations producing a list of interm. results $(Z_i)_i$.

• Leakage Model. The leakage on each Z_i is modelled by a probabilistic function f_i s.t.

 $\mathsf{MI}(Z_i; f_i(Z_i) \leq O(1/\psi) \; ,$

where ψ is a security parameter which only depends on the stochastic noise.

• Security Proof goal: find a deterministic function *P* s.t. the following bound is as tight as possible:

 $\mathsf{MI}((X,k);(f_i(Z_i)))_i \leq P(1/\psi)$

- Example of scheme benefiting from such a security bound:
 - → Ishai-Sahai-Wagner dth-order Boolean Masking of AES and its extensions Ishai,Sahai and Wagner, CRYPTO 2004 and Rivain-Prouff, CHES 2010.

Chari et al, CRYPTO 1999 and Prouff and Rivain, Eurocrypt 2013

• Implementation Model. Micali-Reyzin, TCC 2004

Implementation = $\begin{array}{l} \text{seq. of elem. computations producing} \\ \text{a list of interm. results } (Z_i)_i. \end{array}$

• Leakage Model. The leakage on each Z_i is modelled by a probabilistic function f_i s.t.

 $\mathsf{MI}(Z_i; f_i(Z_i) \leq O(1/\psi)$,

where ψ is a security parameter which only depends on the stochastic noise.

• Security Proof goal: find a deterministic function *P* s.t. the following bound is as tight as possible:

 $\mathsf{MI}((X,k);(f_i(Z_i)))_i \leq P(1/\psi)$

- Example of scheme benefiting from such a security bound:
 - → Ishai-Sahai-Wagner dth-order Boolean Masking of AES and its extensions Ishai,Sahai and Wagner, CRYPTO 2004 and Rivain-Prouff, CHES 2010.

Chari et al, CRYPTO 1999 and Prouff and Rivain, Eurocrypt 2013

• Implementation Model. Micali-Reyzin, TCC 2004

Implementation = $\begin{array}{l} \text{seq. of elem. computations producing} \\ \text{a list of interm. results } (Z_i)_i. \end{array}$

• Leakage Model. The leakage on each Z_i is modelled by a probabilistic function f_i s.t.

 $\mathsf{MI}(Z_i; f_i(Z_i) \leq O(1/\psi)$,

where ψ is a security parameter which only depends on the stochastic noise.

• Security Proof goal: find a deterministic function *P* s.t. the following bound is as tight as possible:

 $\mathsf{MI}((X,k);(f_i(Z_i)))_i \leq P(1/\psi)$

where X is the plaintext and k is the key.

• Example of scheme benefiting from such a security bound:

 → Ishai-Sahai-Wagner dth-order Boolean Masking of AES and its extensions Ishai,Sahai and Wagner, CRYPTO 2004 and Rivain-Prouff, CHES 2010.

Chari et al, CRYPTO 1999 and Prouff and Rivain, Eurocrypt 2013

• Implementation Model. Micali-Reyzin, TCC 2004

Implementation = $\begin{array}{l} \text{seq. of elem. computations producing} \\ \text{a list of interm. results } (Z_i)_i. \end{array}$

• Leakage Model. The leakage on each Z_i is modelled by a probabilistic function f_i s.t.

 $\mathsf{MI}(Z_i; f_i(Z_i) \leq O(1/\psi)$,

where ψ is a security parameter which only depends on the stochastic noise.

• Security Proof goal: find a deterministic function *P* s.t. the following bound is as tight as possible:

 $\mathsf{MI}((X,k);(f_i(Z_i)))_i \leq P(1/\psi)$

- Example of scheme benefiting from such a security bound:
 - → Ishai-Sahai-Wagner dth-order Boolean Masking of AES and its extensions Ishai,Sahai and Wagner, CRYPTO 2004 and Rivain-Prouff, CHES 2010.

Towards Proven Security

Masking Schemes with Proven/Quantified Security

- Introduction
- Extension of ISW
 - Case of Power Functions
 - Case of Random S-Boxes
- Combining Additive and Multiplicative Maskings
- Other alternatives

Definition

A *dth-order masking scheme* for an encryption algorithm $c \leftarrow \mathcal{E}(m, k)$ is an algorithm

 $(c_0, c_1, \ldots, c_d) \leftarrow \mathcal{E}'((m_0, m_1, \ldots, m_d), (k_0, k_1, \ldots, k_d))$

• Completeness: there exists *R* s.t.:

 $R(c_0,\cdots,c_d)=\mathcal{E}(m,k)$

• Security: $\forall \{iv_1, iv_2, \dots, iv_d\} \subseteq \{\text{intermediate var. of } \mathcal{E}'\}$:

$$\Pr(k \mid iv_1, iv_2, \dots, iv_d) = \Pr(k)$$

Definition

A *dth-order masking scheme* for an encryption algorithm $c \leftarrow \mathcal{E}(m, k)$ is an algorithm

 $(c_0, c_1, \ldots, c_d) \leftarrow \mathcal{E}'((m_0, m_1, \ldots, m_d), (k_0, k_1, \ldots, k_d))$

• Completeness: there exists *R* s.t.:

 $R(c_0,\cdots,c_d)=\mathcal{E}(m,k)$

• Security: $\forall \{iv_1, iv_2, \dots, iv_d\} \subseteq \{\text{intermediate var. of } \mathcal{E}'\}$:

$$\Pr(k \mid iv_1, iv_2, \dots, iv_d) = \Pr(k)$$

Definition

A *dth-order masking scheme* for an encryption algorithm $c \leftarrow \mathcal{E}(m, k)$ is an algorithm

 $(c_0, c_1, \ldots, c_d) \leftarrow \mathcal{E}'((m_0, m_1, \ldots, m_d), (k_0, k_1, \ldots, k_d))$

• Completeness: there exists *R* s.t.:

 $R(c_0,\cdots,c_d)=\mathcal{E}(m,k)$

• Security: $\forall \{iv_1, iv_2, \dots, iv_d\} \subseteq \{\text{intermediate var. of } \mathcal{E}'\}$:

$$\Pr(k \mid iv_1, iv_2, \dots, iv_d) = \Pr(k)$$

Definition

A *dth-order masking scheme* for an encryption algorithm $c \leftarrow \mathcal{E}(m, k)$ is an algorithm

$$(c_0, c_1, \ldots, c_d) \leftarrow \mathcal{E}'((m_0, m_1, \ldots, m_d), (k_0, k_1, \ldots, k_d))$$

• Completeness: there exists *R* s.t.:

 $R(c_0,\cdots,c_d)=\mathcal{E}(m,k)$

• Security: $\forall \{iv_1, iv_2, \dots, iv_d\} \subseteq \{\text{intermediate var. of } \mathcal{E}'\}$:

$$\Pr(k \mid iv_1, iv_2, \dots, iv_d) = \Pr(k)$$

Main idea: split the S-box computation into elementary fields operations and protect each of them individually.

- Original idea limited to GF(2), then extended to any field in RivainProuff2010 and FaustRabinReyzinTromerVaikuntanathan2011.
- Data are split by bitwise addition: $x \longrightarrow x_0, \dots, x_d$ s.t. $x_i \leftarrow$ \$, i > 0, and $x_0 = \bigoplus_i x_i$.
- NOT gate masking (a.k.a. encoding):

Main idea: split the S-box computation into elementary fields operations and protect each of them individually.

- Original idea limited to GF(2), then extended to any field in RivainProuff2010 and FaustRabinReyzinTromerVaikuntanathan2011.
- Data are split by bitwise addition: $x \longrightarrow x_0, \dots, x_d$ s.t. $x_i \leftarrow$ \$, i > 0, and $x_0 = \bigoplus_i x_i$.
- NOT gate masking (*a.k.a. encoding*):

Main idea: split the S-box computation into elementary fields operations and protect each of them individually.

- Original idea limited to GF(2), then extended to any field in RivainProuff2010 and FaustRabinReyzinTromerVaikuntanathan2011.
- Data are split by bitwise addition: $x \longrightarrow x_0, \dots, x_d$ s.t. $x_i \leftarrow$ \$, i > 0, and $x_0 = \bigoplus_i x_i$.
- NOT gate masking (*a.k.a. encoding*):

Main idea: split the S-box computation into elementary fields operations and protect each of them individually.

- Original idea limited to GF(2), then extended to any field in RivainProuff2010 and FaustRabinReyzinTromerVaikuntanathan2011.
- Data are split by bitwise addition: $x \longrightarrow x_0, \dots, x_d$ s.t. $x_i \leftarrow$ \$, i > 0, and $x_0 = \bigoplus_i x_i$.
- NOT gate masking (*a.k.a. encoding*):

Main idea: split the S-box computation into elementary fields operations and protect each of them individually.

- Original idea limited to GF(2), then extended to any field in RivainProuff2010 and FaustRabinReyzinTromerVaikuntanathan2011.
- Data are split by bitwise addition: $x \longrightarrow x_0, \dots, x_d$ s.t. $x_i \leftarrow$ \$, i > 0, and $x_0 = \bigoplus_i x_i$.
- NOT gate masking (a.k.a. encoding):

Main idea: split the S-box computation into elementary fields operations and protect each of them individually.

- Original idea limited to GF(2), then extended to any field in RivainProuff2010 and FaustRabinReyzinTromerVaikuntanathan2011.
- Data are split by bitwise addition: $x \longrightarrow x_0, \dots, x_d$ s.t. $x_i \leftarrow$ \$, i > 0, and $x_0 = \bigoplus_i x_i$.
- NOT gate masking (a.k.a. encoding):
Masking a S-box Original work of Ishai, Sahai and Wagner

Main idea: split the S-box computation into elementary fields operations and protect each of them individually.

- Original idea limited to GF(2), then extended to any field in RivainProuff2010 and FaustRabinReyzinTromerVaikuntanathan2011.
- Data are split by bitwise addition: $x \longrightarrow x_0, \dots, x_d$ s.t. $x_i \leftarrow$ \$, i > 0, and $x_0 = \bigoplus_i x_i$.
- NOT gate masking (a.k.a. encoding):

• AND gate masking: issue since the operations cannot be done on each shares separately.

Ishai-Sahai-Wagner (ISW) Scheme

Masking an AND gate

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

• Illustration of ISW scheme for d = 2:

• Ishai *et al.* prove (d/2)th-order security

Ishai-Sahai-Wagner (ISW) Scheme

Masking an AND gate

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

• Illustration of ISW scheme for d = 2:

• Ishai *et al.* prove (d/2)th-order security

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

(a_0b_0)	a_0b_1	a_0b_2
a_1b_0	a_1b_1	a_1b_2
$\langle a_2 b_0 \rangle$	a_2b_1	a2b2/

- Ishai *et al.* prove (d/2)th-order security
 - Extended to get dth-order security in RivainProuff10

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

$$\begin{pmatrix} a_0b_0 & a_0b_1 & a_0b_2 \\ 0 & a_1b_1 & a_1b_2 \\ 0 & 0 & a_2b_2 \end{pmatrix} \oplus \begin{pmatrix} 0 & 0 & 0 \\ a_1b_0 & 0 & 0 \\ a_2b_0 & a_2b_1 & 0 \end{pmatrix}$$

- Ishai *et al.* prove (d/2)th-order security
 - Extended to get dth-order security in RivainProuff10

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

$$\begin{pmatrix} a_0b_0 & a_0b_1 & a_0b_2 \\ 0 & a_1b_1 & a_1b_2 \\ 0 & 0 & a_2b_2 \end{pmatrix} \oplus \begin{pmatrix} 0 & a_1b_0 & a_2b_0 \\ 0 & 0 & a_2b_1 \\ 0 & 0 & 0 \end{pmatrix}$$

- Ishai *et al.* prove (d/2)th-order security
 - Extended to get dth-order security in RivainProuff10

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

$$\begin{pmatrix} a_0 b_0 & a_0 b_1 \oplus a_1 b_0 & a_0 b_2 \oplus a_2 b_0 \\ 0 & a_1 b_1 & a_1 b_2 \oplus a_2 b_1 \\ 0 & 0 & a_2 b_2 \end{pmatrix}$$

- Ishai *et al.* prove (d/2)th-order security
 - Extended to get dth-order security in RivainProuff10

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

$$\begin{pmatrix} a_0 b_0 & a_0 b_1 \oplus a_1 b_0 & a_0 b_2 \oplus a_2 b_0 \\ 0 & a_1 b_1 & a_1 b_2 \oplus a_2 b_1 \\ 0 & 0 & a_2 b_2 \end{pmatrix}$$

- Ishai *et al.* prove (d/2)th-order security
 - Extended to get dth-order security in RivainProuff10

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

• Illustration of ISW scheme for d = 2:

$$\begin{pmatrix} a_0b_0 & a_0b_1 \oplus a_1b_0 & a_0b_2 \oplus a_2b_0 \\ 0 & a_1b_1 & a_1b_2 \oplus a_2b_1 \\ 0 & 0 & a_2b_2 \end{pmatrix} \oplus \begin{pmatrix} 0 & r_{1,2} & r_{1,3} \\ 0 & 0 & r_{2,3} \\ 0 & 0 & 0 \end{pmatrix}$$

• Ishai *et al.* prove (d/2)th-order security

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

(a_0b_0)	$a_0b_1\oplus a_1b_0$	$a_0b_2\oplus a_2b_0$		(0	<i>r</i> _{1,2}	$r_{1,3}$
0	a_1b_1	$a_1b_2\oplus a_2b_1$	\oplus	<i>r</i> _{1,2}	0	r _{2,3}
0	0	a2b2 /		$(r_{1,3})$	<i>r</i> _{2,3}	0/

- Ishai *et al.* prove (d/2)th-order security
 - Extended to get dth-order security in RivainProuff10

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

• Illustration of ISW scheme for d = 2:

 $\begin{pmatrix} a_0b_0 & (a_0b_1 \oplus r_{1,2}) \oplus a_1b_0 & (a_0b_2 \oplus r_{1,3}) \oplus a_2b_0 \\ r_{1,2} & a_1b_1 & (a_1b_2 \oplus r_{2,3}) \oplus a_2b_1 \\ r_{1,3} & r_{2,3} & a_2b_2 \end{pmatrix}$

• Ishai *et al.* prove (d/2)th-order security

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

• Illustration of ISW scheme for d = 2:

 $\begin{pmatrix} a_0b_0 & (a_0b_1 \oplus r_{1,2}) \oplus a_1b_0 & (a_0b_2 \oplus r_{1,3}) \oplus a_2b_0 \\ r_{1,2} & a_1b_1 & (a_1b_2 \oplus r_{2,3}) \oplus a_2b_1 \\ r_{1,3} & r_{2,3} & a_2b_2 \end{pmatrix}$

• Ishai *et al.* prove (d/2)th-order security

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

• Illustration of ISW scheme for d = 2:

 $\begin{pmatrix} a_0b_0 & (a_0b_1 \oplus r_{1,2}) \oplus a_1b_0 & (a_0b_2 \oplus r_{1,3}) \oplus a_2b_0 \\ r_{1,2} & a_1b_1 & (a_1b_2 \oplus r_{2,3}) \oplus a_2b_1 \\ r_{1,3} & r_{2,3} & a_2b_2 \end{pmatrix}$

• Ishai *et al.* prove (d/2)th-order security

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

• Illustration of ISW scheme for d = 2:

 $\begin{pmatrix} a_0b_0 & (a_0b_1 \oplus r_{1,2}) \oplus a_1b_0 & (a_0b_2 \oplus r_{1,3}) \oplus a_2b_0 \\ r_{1,2} & a_1b_1 & (a_1b_2 \oplus r_{2,3}) \oplus a_2b_1 \\ r_{1,3} & r_{2,3} & a_2b_2 \end{pmatrix}$

• Ishai *et al.* prove (d/2)th-order security

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

• Illustration of ISW scheme for d = 2:

 $\begin{pmatrix} a_0b_0 & (a_0b_1 \oplus r_{1,2}) \oplus a_1b_0 & (a_0b_2 \oplus r_{1,3}) \oplus a_2b_0 \\ r_{1,2} & a_1b_1 & (a_1b_2 \oplus r_{2,3}) \oplus a_2b_1 \\ r_{1,3} & r_{2,3} & a_2b_2 \\ c_1 & c_2 & c_3 \end{pmatrix}$

• Ishai *et al.* prove (d/2)th-order security

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

• Illustration of ISW scheme for d = 2:

 $\begin{pmatrix} a_0b_0 & (a_0b_1 \oplus r_{1,2}) \oplus a_1b_0 & (a_0b_2 \oplus r_{1,3}) \oplus a_2b_0 \\ r_{1,2} & a_1b_1 & (a_1b_2 \oplus r_{2,3}) \oplus a_2b_1 \\ r_{1,3} & r_{2,3} & a_2b_2 \end{pmatrix} \\ c_1 & c_2 & c_3 \end{pmatrix}$

• Ishai *et al.* prove (d/2)th-order security

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

• Illustration of ISW scheme for d = 2:

 $\begin{pmatrix} a_0b_0 & (a_0b_1 \oplus r_{1,2}) \oplus a_1b_0 & (a_0b_2 \oplus r_{1,3}) \oplus a_2b_0 \\ r_{1,2} & a_1b_1 & (a_1b_2 \oplus r_{2,3}) \oplus a_2b_1 \\ r_{1,3} & r_{2,3} & a_2b_2 \end{pmatrix} \\ c_1 & c_2 & c_3 \end{pmatrix}$

- Ishai *et al.* prove (d/2)th-order security
 - Extended to get dth-order security in RivainProuff10

- AND gates encoding:
 - Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
 - Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

• Illustration of ISW scheme for d = 2:

 $\begin{pmatrix} a_0b_0 & (a_0b_1 \oplus r_{1,2}) \oplus a_1b_0 & (a_0b_2 \oplus r_{1,3}) \oplus a_2b_0 \\ r_{1,2} & a_1b_1 & (a_1b_2 \oplus r_{2,3}) \oplus a_2b_1 \\ r_{1,3} & r_{2,3} & a_2b_2 \end{pmatrix} \\ c_1 & c_2 & c_3 \end{pmatrix}$

- Ishai *et al.* prove (d/2)th-order security
 - Extended to get *d*th-order security in RivainProuff10

Ishai-Sahai-Wagner (ISW) Scheme Example: AND gate for d = 2

• Important area overhead for the masked circuit

- A wire is encoded by d + 1 wires
- One AND gate encoded by
 - $(d+1)^2$ ANDs + 2d(d+1) XORs + d(d+1)/2 \$
- Example: AES S-box circuit

	ISW			
No masking	d = 1	<i>d</i> = 2	<i>d</i> = 3	
200 gates	500 gates	1.1 Kgates	2 Kgates	

- Not suitable for software implementations
- Idea: apply ISW in larger fields

ProuffRivain10, FaustRabinReyzinTromerVaikuntanathan2011.

Important area overhead for the masked circuit

- A wire is encoded by d + 1 wires
- One AND gate encoded by
 - $(d+1)^2$ ANDs + 2d(d+1) XORs + d(d+1)/2 \$
- Example: AES S-box circuit

	ISW		
No masking	d = 1	<i>d</i> = 2	<i>d</i> = 3
200 gates	500 gates	1.1 Kgates	2 Kgates

- Not suitable for software implementations
- Idea: apply ISW in larger fields

ProuffRivain10, FaustRabinReyzinTromerVaikuntanathan2011.

Important area overhead for the masked circuit

- A wire is encoded by d + 1 wires
- One AND gate encoded by
 - $(d+1)^2$ ANDs + 2d(d+1) XORs + d(d+1)/2 \$
- Example: AES S-box circuit

	ISW		
No masking	d = 1	<i>d</i> = 2	<i>d</i> = 3
200 gates	500 gates	1.1 Kgates	2 Kgates

- Not suitable for software implementations
- Idea: apply ISW in larger fields

ProuffRivain10, FaustRabinReyzinTromerVaikuntanathan2011.

• Important area overhead for the masked circuit

- A wire is encoded by d + 1 wires
- One AND gate encoded by
 - $(d+1)^2$ ANDs + 2d(d+1) XORs + d(d+1)/2 \$
- Example: AES S-box circuit

	ISW		
No masking	d = 1	<i>d</i> = 2	<i>d</i> = 3
200 gates	500 gates	1.1 Kgates	2 Kgates

- Not suitable for software implementations
- Idea: apply ISW in larger fields

ProuffRivain 10, FaustRabinReyzinTromerVaikuntanathan 2011.

- AES S-box: $S = Af \circ Exp$:
 - Af: affine transformation over $GF(2)^8$
 - Exp: $x \mapsto x^{254}$ over $GF(2^8)$
- Masking Af is efficient:

- Masking Exp:
 - masked square: easy since $x^2 = x_0^2 \oplus x_1^2 \oplus \cdots \oplus x_d^2$
 - masked multiplications : apply ISW on GF(2⁸
 - To minimize the number of multiplications: find a small **addition chain** for 254
 - done in RivainProuff10: only 4 multiplications (and 7 squares).

- AES S-box: $S = Af \circ Exp$:
 - Af: affine transformation over $GF(2)^8$
 - Exp: $x \mapsto x^{254}$ over $GF(2^8)$
- Masking Af is efficient:

- Masking Exp:
 - masked square: easy since $x^2 = x_0^2 \oplus x_1^2 \oplus \cdots \oplus x_d^2$
 - masked multiplications : apply ISW on GF(2⁸
 - To minimize the number of multiplications: find a small **addition chain** for 254
 - done in RivainProuff10: only 4 multiplications (and 7 squares).

- AES S-box: $S = Af \circ Exp$:
 - Af: affine transformation over $GF(2)^8$
 - Exp: $x \mapsto x^{254}$ over $GF(2^8)$
- Masking Af is efficient:

- Masking Exp:
 - masked square: easy since $x^2 = x_0^2 \oplus x_1^2 \oplus \cdots \oplus x_d^2$
 - masked multiplications : apply ISW on GF(2⁸)
 - To minimize the number of multiplications: find a small **addition chain** for 254
 - done in RivainProuff10: only 4 multiplications (and 7 squares).

- AES S-box: $S = Af \circ Exp$:
 - Af: affine transformation over $GF(2)^8$
 - Exp: $x \mapsto x^{254}$ over $GF(2^8)$
- Masking Af is efficient:

- Masking Exp:
 - masked square: easy since $x^2 = x_0^2 \oplus x_1^2 \oplus \cdots \oplus x_d^2$
 - masked multiplications : apply ISW on GF(2⁸)
 - To minimize the number of multiplications: find a small **addition chain** for 254
 - done in RivainProuff10: only 4 multiplications (and 7 squares).

- AES S-box: $S = Af \circ Exp$:
 - Af: affine transformation over $GF(2)^8$
 - Exp: $x \mapsto x^{254}$ over $GF(2^8)$
- Masking Af is efficient:

- Masking Exp:
 - masked square: easy since $x^2 = x_0^2 \oplus x_1^2 \oplus \cdots \oplus x_d^2$
 - masked multiplications : apply ISW on GF(2⁸)
 - To minimize the number of multiplications: find a small **addition chain** for 254
 - done in RivainProuff10: only 4 multiplications (and 7 squares).

Extension to Any S-Box

CarletGoubinProuffQuisquaterRivain12

• Write the s-box $S : \{0,1\}^n \to \{0,1\}^m$ as a polynomial function over $\mathsf{GF}(2^n)$:

$$S(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{2^n - 1} x^{2^n - 1}$$

• Securely evaluate this polynomial on the shared input $(x_i)_i$

Extension to Any S-Box

CarletGoubinProuffQuisquaterRivain12

• Write the s-box $S : \{0,1\}^n \to \{0,1\}^m$ as a polynomial function over $\mathsf{GF}(2^n)$:

$$S(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{2^n - 1} x^{2^n - 1}$$

• Securely evaluate this polynomial on the shared input $(x_i)_i$

- Four kinds of operations over $GF(2^n)$:
 - additions
 - Scalar multiplications (*i.e.* by constants)
 - 6 squares
 - ④ regular multiplications ⇒ nonlinear multiplications
- Masking is efficient for the 3 first kinds
 - $(x + y) = (x_0 + y_0) + (x_1 + y_1) + \dots + (x_d + y_d)$
 - $a \cdot x = a \cdot x_0 + a \cdot x_1 + \dots + a \cdot x_d$
- nonlinear multiplication masked with ISW scheme

- Four kinds of operations over $GF(2^n)$:
 - additions
 - e scalar multiplications (*i.e.* by constants)
 - 6 squares
 - ④ regular multiplications ⇒ nonlinear multiplications
- Masking is efficient for the 3 first kinds

•
$$(x + y) = (x_0 + y_0) + (x_1 + y_1) + \dots + (x_d + y_d)$$

• $x^2 = x_0^2 + x_1^2 + \dots + x_d^2$

- $a \cdot x = a \cdot x_0 + a \cdot x_1 + \cdots + a \cdot x_d$
- nonlinear multiplication masked with ISW scheme

- Four kinds of operations over $GF(2^n)$:
 - additions
 - 2 scalar multiplications (*i.e.* by constants)
 - 6 squares
 - ④ regular multiplications ⇒ nonlinear multiplications
- Masking is efficient for the 3 first kinds

•
$$(x + y) = (x_0 + y_0) + (x_1 + y_1) + \dots + (x_d + y_d)$$

• $x^2 = x_0^2 + x_1^2 + \dots + x_d^2$

- $a \cdot x = a \cdot x_0 + a \cdot x_1 + \dots + a \cdot x_d$
- nonlinear multiplication masked with ISW scheme

- Four kinds of operations over $GF(2^n)$:
 - additions
 - 2 scalar multiplications (*i.e.* by constants)
 - 6 squares
 - ④ regular multiplications ⇒ nonlinear multiplications
- Masking is efficient for the 3 first kinds

•
$$(x + y) = (x_0 + y_0) + (x_1 + y_1) + \dots + (x_d + y_d)$$

• $x^2 = x_0^2 + x_1^2 + \dots + x_d^2$

•
$$a \cdot x = a \cdot x_0 + a \cdot x_1 + \dots + a \cdot x_n$$

nonlinear multiplication masked with ISW scheme

- Four kinds of operations over $GF(2^n)$:
 - additions
 - 2 scalar multiplications (*i.e.* by constants)
 - 6 squares
 - ④ regular multiplications ⇒ nonlinear multiplications
- Masking is efficient for the 3 first kinds

•
$$(x + y) = (x_0 + y_0) + (x_1 + y_1) + \dots + (x_d + y_d)$$

•
$$a \cdot x = a \cdot x_0 + a \cdot x_1 + \cdots + a \cdot x_d$$

• $a \cdot x = a \cdot x_0 + a \cdot x_1 + \cdots + a \cdot x_d$

- nonlinear multiplication masked with ISW scheme

- Four kinds of operations over $GF(2^n)$:
 - additions
 - 2 scalar multiplications (*i.e.* by constants)
 - 6 squares
 - \bigcirc regular multiplications \Rightarrow nonlinear multiplications
- Masking is efficient for the 3 first kinds

•
$$(x + y) = (x_0 + y_0) + (x_1 + y_1) + \dots + (x_d + y_d)$$

•
$$a \cdot x = a \cdot x_0 + a \cdot x_1 + \dots + a \cdot x_d$$

• $a \cdot x = a \cdot x_0 + a \cdot x_1 + \dots + a \cdot x_d$

• nonlinear multiplication masked with ISW scheme
General Method

- Four kinds of operations over GF(2ⁿ):
 - additions
 - 2 scalar multiplications (*i.e.* by constants)
 - 6 squares
 - ④ regular multiplications ⇒ nonlinear multiplications
- Masking is efficient for the 3 first kinds

•
$$(x + y) = (x_0 + y_0) + (x_1 + y_1) + \dots + (x_d + y_d)$$

•
$$a \cdot x = a \cdot x_0 + a \cdot x_1 + \cdots + a \cdot x_d$$

• $a \cdot x = a \cdot x_0 + a \cdot x_1 + \cdots + a \cdot x_d$

• nonlinear multiplication masked with ISW scheme

Masking Complexity

- Masking an operation \in {addition, square, scalar mult.}
 - \Rightarrow d + 1 operations
- Masking a nonlinear multiplication
 - \Rightarrow $(d+1)^2$ mult. + 2d(d+1) add. + nd(d+1)/2 random bits

Definition

The masking complexity of a (n, m) s-box is the minimal number of nonlinear multiplications required to evaluate its polynomial representation over $GF(2^n)$.

Masking Complexity

- Masking an operation \in {addition, square, scalar mult.}
 - \Rightarrow d + 1 operations
- Masking a nonlinear multiplication
 - \Rightarrow $(d+1)^2$ mult. + 2d(d+1) add. + nd(d+1)/2 random bits

Definition

The masking complexity of a (n, m) s-box is the minimal number of nonlinear multiplications required to evaluate its polynomial representation over $GF(2^n)$.

- Goal: evaluate $S(x) = a_0 + a_1x + a_2x^2 + \dots + a_{2^n-1}x^{2^n-1}$
- first solution :
 - compute $S(x) = a_0 + x(a_1 + x(a_2 + x(\cdots)))$
 - $\Rightarrow 2^n 2$ nonlinear multiplications
- second solution :
 - first compute x^2 , x^3 , x^4 , then evaluate S(x)
 - $x^j \leftarrow (x^{j/2})^2$ when j even, $x^j \leftarrow x \cdot x^{j-1}$ when j odd
 - $\Rightarrow 2^{n-1} 1$ nonlinear multiplications
- But we can do much better Carlet, Goubin, Prouff, Quisquater, Prouff, FSE 2013 and Roy and Vivek, CHES 2013!
 - Optimal methods for power functions.
 - Efficient heuristic for the general case: around $2^{n-r-1} + 2^r 2$ multiplications where 2^r is the degree of the polynomial.

- Goal: evaluate $S(x) = a_0 + a_1x + a_2x^2 + \dots + a_{2^n-1}x^{2^n-1}$
- first solution :
 - compute $S(x) = a_0 + x(a_1 + x(a_2 + x(\cdots)))$
 - $\Rightarrow 2^n 2$ nonlinear multiplications
- second solution :
 - first compute x^2 , x^3 , x^4 , then evaluate S(x)
 - $x^j \leftarrow (x^{j/2})^2$ when j even, $x^j \leftarrow x \cdot x^{j-1}$ when j odd
 - $\Rightarrow 2^{n-1} 1$ nonlinear multiplications
- But we can do much better Carlet, Goubin, Prouff, Quisquater, Prouff, FSE 2013 and Roy and Vivek, CHES 2013!
 - Optimal methods for power functions.
 - Efficient heuristic for the general case: around $2^{n-r-1} + 2^r 2$ multiplications where 2^r is the degree of the polynomial.

- Goal: evaluate $S(x) = a_0 + a_1x + a_2x^2 + \dots + a_{2^n-1}x^{2^n-1}$
- first solution :
 - compute $S(x) = a_0 + x(a_1 + x(a_2 + x(\cdots)))$
 - $\Rightarrow 2^n 2$ nonlinear multiplications
- second solution :
 - first compute x^2 , x^3 , x^4 , then evaluate S(x)
 - $x^j \leftarrow (x^{j/2})^2$ when j even, $x^j \leftarrow x \cdot x^{j-1}$ when j odd
 - $\Rightarrow 2^{n-1} 1$ nonlinear multiplications
- But we can do much better Carlet, Goubin, Prouff, Quisquater, Prouff, FSE 2013 and Roy and Vivek, CHES 2013!
 - Optimal methods for power functions.
 - Efficient heuristic for the general case: around $2^{n-r-1} + 2^r 2$ multiplications where 2^r is the degree of the polynomial.

- Goal: evaluate $S(x) = a_0 + a_1x + a_2x^2 + \dots + a_{2^n-1}x^{2^n-1}$
- first solution :
 - compute $S(x) = a_0 + x(a_1 + x(a_2 + x(\cdots)))$
 - $\Rightarrow 2^n 2$ nonlinear multiplications
- second solution :
 - first compute x^2 , x^3 , x^4 , then evaluate S(x)
 - $x^j \leftarrow (x^{j/2})^2$ when j even, $x^j \leftarrow x \cdot x^{j-1}$ when j odd
 - $\Rightarrow 2^{n-1} 1$ nonlinear multiplications
- But we can do much better Carlet, Goubin, Prouff, Quisquater, Prouff, FSE 2013 and Roy and Vivek, CHES 2013!
 - Optimal methods for power functions.
 - Efficient heuristic for the general case: around $2^{n-r-1} + 2^r 2$ multiplications where 2^r is the degree of the polynomial.

- Goal: evaluate $S(x) = a_0 + a_1x + a_2x^2 + \dots + a_{2^n-1}x^{2^n-1}$
- first solution :
 - compute $S(x) = a_0 + x(a_1 + x(a_2 + x(\cdots)))$
 - $\Rightarrow 2^n 2$ nonlinear multiplications
- second solution :
 - first compute x^2 , x^3 , x^4 , then evaluate S(x)
 - $x^j \leftarrow (x^{j/2})^2$ when j even, $x^j \leftarrow x \cdot x^{j-1}$ when j odd
 - $\Rightarrow 2^{n-1} 1$ nonlinear multiplications
- But we can do much better Carlet, Goubin, Prouff, Quisquater, Prouff, FSE 2013 and Roy and Vivek, CHES 2013!
 - Optimal methods for power functions.
 - Efficient heuristic for the general case: around $2^{n-r-1} + 2^r 2$ multiplications where 2^r is the degree of the polynomial.

Problem

For a given $\alpha \in [1; 2^n - 1]$ compute x^{α} with the least number of nonlinear multiplications.

Problem

Find the shortest 2-addition chain for lpha (modulo $2^n-1)$

Problem

For a given $\alpha \in [1; 2^n - 1]$ compute x^{α} with the least number of nonlinear multiplications.

 \Leftrightarrow

Problem

Find the shortest 2-addition chain for α (modulo $2^n - 1$).

- Cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} 1); j \leq n\}$
- If $\beta \in C_{\alpha} \iff C_{\beta} = C_{\alpha}$)
 - x^{α} can be computed from x^{β} with 0 nonlinear multiplication
 - x^{lpha} and x^{eta} have the same masking complexity
- Exhaustive search for best 2-addition chains
 - $x \rightarrow x^2, x^4, x^8, ...$ (0 nonlinear multiplications)
 - with 1 nonlinear multiplication

•
$$x^3 = x \cdot x^2 \to x^6, x^{12}, x^{24}, ...$$

• $x^5 = x \cdot x^4 \to x^{10}, x^{20}, x^{40}$

• etc.

•
$$x_{11}^7 = x_2^3 \cdot x_4^4 \to x_1^{14}, x_2^{28}, .$$

- $x^{11} = x^3 \cdot x^6 \to x^{22}, x^{46}, ...$
- etc.

- Cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} 1); j \leq n\}$
- If $\beta \in C_{\alpha} \iff C_{\beta} = C_{\alpha}$)
 - x^{α} can be computed from x^{β} with 0 nonlinear multiplication
 - x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
 - $x \rightarrow x^2, x^4, x^8, ...$ (0 nonlinear multiplications)
 - with 1 nonlinear multiplication

•
$$x^3 = x \cdot x^2 \to x^6, x^{12}, x^{24}, ...$$

• $x^5 = x \cdot x^4 \to x^{10}, x^{20}, x^{40}$

• etc.

•
$$x_{11}^7 = x_2^3 \cdot x_4^4 \to x_1^{14}, x_2^{28}, .$$

- $x^{11} = x^3 \cdot x^6 \to x^{22}, x^{46}, ...$
- etc.

- Cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} 1); j \leq n\}$
- If $\beta \in C_{\alpha} \iff C_{\beta} = C_{\alpha}$)
 - x^{α} can be computed from x^{β} with 0 nonlinear multiplication
 - x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
 - $x \to x^2, x^4, x^8, ...$ (0 nonlinear multiplications)
 - with 1 nonlinear multiplication

•
$$x^3 = x \cdot x^2 \to x^6, x^{12}, x^{24}, ...$$

• $x^5 = x \cdot x^4 \to x^{10}, x^{20}, x^{40}$

• etc.

•
$$x_{11}^7 = x_2^3 \cdot x_4^4 \to x_1^{14}, x_2^{28}, .$$

- $x^{11} = x^3 \cdot x^8 \to x^{22}, x^{48}, ...$
- etc.

- Cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} 1); j \leq n\}$
- If $\beta \in C_{\alpha} \iff C_{\beta} = C_{\alpha}$)
 - x^{α} can be computed from x^{β} with 0 nonlinear multiplication
 - x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
 - $x \rightarrow x^2, x^4, x^8, ...$ (0 nonlinear multiplications)
 - with 1 nonlinear multiplication

•
$$x^3 = x \cdot x^2 \to x^6, x^{12}, x^{24}, ...$$

• $x^5 = x \cdot x^4 \to x^{10}, x^{20}, x^{40}$

• etc.

•
$$x^7 = x^3 \cdot x^4 \to x^{14}, x^{28}, .$$

- $x^{11} = x^3 \cdot x^6 \to x^{22}, x^{46}, ...$
- etc.

- Cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^j \mod (2^n 1); j \leq n\}$
- If $\beta \in C_{\alpha} \iff C_{\beta} = C_{\alpha}$)
 - x^{α} can be computed from x^{β} with 0 nonlinear multiplication
 - x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
 - $x \to x^2, x^4, x^8, ...$ (0 nonlinear multiplications)
 - with 1 nonlinear multiplication

•
$$x^3 = x \cdot x^2 \to x^6, x^{12}, x^{24}, ...$$

• $x^5 = x \cdot x^4 \to x^{10}, x^{20}, x^{40}...$

• etc.

•
$$x_{11}^7 = x_2^3 \cdot x_4^4 \to x_{14}^{14}, x_{28}^{28}, .$$

- $x^{11} = x^3 \cdot x^8 \to x^{22}, x^{44}, ...$
- etc.

- Cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^j \mod (2^n 1); j \leq n\}$
- If $\beta \in C_{\alpha} \iff C_{\beta} = C_{\alpha}$)
 - x^{α} can be computed from x^{β} with 0 nonlinear multiplication
 - x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
 - $x \rightarrow x^2, x^4, x^8, ...$ (0 nonlinear multiplications)
 - with 1 nonlinear multiplication

•
$$x^3 = x \cdot x^2 \to x^6, x^{12}, x^{24}, ...$$

• $x^5 = x \cdot x^4 \to x^{10}, x^{20}, x^{40}...$

• etc.

•
$$x_{11}^7 = x_2^3 \cdot x_4^4 \to x_{14}^{14}, x_{28}^{28}, \dots$$

- $x^{11} = x^3 \cdot x^8 \to x^{22}, x^{44}, ...$
- etc.

- Cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^j \mod (2^n 1); j \leq n\}$
- If $\beta \in C_{\alpha} \iff C_{\beta} = C_{\alpha}$)
 - x^{α} can be computed from x^{β} with 0 nonlinear multiplication
 - x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
 - $x \rightarrow x^2, x^4, x^8, ...$ (0 nonlinear multiplications)
 - with 1 nonlinear multiplication

•
$$x^3 = x \cdot x^2 \to x^6, x^{12}, x^{24}, ...$$

• $x^5 = x \cdot x^4 \to x^{10}, x^{20}, x^{40}$

- etc.
- with 2 nonlinear multiplications

•
$$x_{11}^7 = x_3^3 \cdot x_4^4 \to x_{14}^{14}, x_{28}^{28}, \dots$$

- $x^{\perp} = x^{\circ} \cdot x^{\circ} \rightarrow x^{\perp}, x^{++}, \dots$
- etc.

- Cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} 1); j \leq n\}$
- If $\beta \in C_{\alpha} \iff C_{\beta} = C_{\alpha}$)
 - x^{α} can be computed from x^{β} with 0 nonlinear multiplication
 - x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
 - $x \rightarrow x^2, x^4, x^8, ...$ (0 nonlinear multiplications)
 - with 1 nonlinear multiplication

•
$$x^3 = x \cdot x^2 \to x^6, x^{12}, x^{24}, ...$$

• $x^5 = x \cdot x^4 \to x^{10}, x^{20}, x^{40}, ...$

- etc.
- with 2 nonlinear multiplications

•
$$x_{11}^7 = x_3^3 \cdot x_4^4 \to x_{14}^{14}, x_{28}^{28}, \dots$$

- $x^{11} = x^3 \cdot x^\circ \to x^{22}, x^{44}, ...$
- etc.

- Cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^j \mod (2^n 1); j \leq n\}$
- If $\beta \in C_{\alpha} \iff C_{\beta} = C_{\alpha}$)
 - x^{α} can be computed from x^{β} with 0 nonlinear multiplication
 - x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
 - $x \rightarrow x^2, x^4, x^8, ...$ (0 nonlinear multiplications)
 - with 1 nonlinear multiplication

•
$$x^3 = x \cdot x^2 \to x^6, x^{12}, x^{24}, ...$$

• $x^5 = x \cdot x^4 \to x^{10}, x^{20}, x^{40}, ...$

- etc.
- with 2 nonlinear multiplications
 - $x^7 = x^3 \cdot x^4 \to x^{14}, x^{28}, \dots$
 - $X^{11} = X^3 \cdot X^6 \rightarrow X^{22}, X^{23}, \dots$
 - etc.

- Cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^j \mod (2^n 1); j \leq n\}$
- If $\beta \in C_{\alpha} \iff C_{\beta} = C_{\alpha}$)
 - x^{α} can be computed from x^{β} with 0 nonlinear multiplication
 - x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
 - $x \rightarrow x^2, x^4, x^8, ...$ (0 nonlinear multiplications)
 - with 1 nonlinear multiplication

•
$$x^3 = x \cdot x^2 \to x^6, x^{12}, x^{24}, \dots$$

• $x^5 = x \cdot x^4 \to x^{10}, x^{20}, x^{40}, \dots$

- etc.
- with 2 nonlinear multiplications

•
$$x^7 = x^3 \cdot x^4 \to x^{14}, x^{28}, ...$$

- $x^{11} = x^3 \cdot x^6 \rightarrow x^{22}, x^{23}, \dots$
- etc.

- Cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} 1); j \leq n\}$
- If $\beta \in C_{\alpha} \iff C_{\beta} = C_{\alpha}$)
 - x^{α} can be computed from x^{β} with 0 nonlinear multiplication
 - x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
 - $x \rightarrow x^2, x^4, x^8, ...$ (0 nonlinear multiplications)
 - with 1 nonlinear multiplication

•
$$x^3 = x \cdot x^2 \to x^6, x^{12}, x^{24}, \dots$$

• $x^5 = x \cdot x^4 \to x^{10}, x^{20}, x^{40}, \dots$

- etc.
- with 2 nonlinear multiplications

•
$$x^7 = x^3 \cdot x^4 \to x^{14}, x^{28}, ...$$

- $x^{\text{res}} = x^{\text{s}} \cdot x^{\text{s}} \to x^{\text{res}}, x^{\text{res}}$
- etc.

- Cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^j \mod (2^n 1); j \leq n\}$
- If $\beta \in C_{\alpha} \iff C_{\beta} = C_{\alpha}$)
 - x^{α} can be computed from x^{β} with 0 nonlinear multiplication
 - x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
 - $x \to x^2, x^4, x^8, ...$ (0 nonlinear multiplications)
 - with 1 nonlinear multiplication

•
$$x^3 = x \cdot x^2 \to x^6, x^{12}, x^{24}, \dots$$

• $x^5 = x \cdot x^4 \to x^{10}, x^{20}, x^{40}, \dots$

- etc.
- with 2 nonlinear multiplications
 - $x^7 = x^3 \cdot x^4 \to x^{14}, x^{28}, ...$ • $x^{11} = x^3 \cdot x^8 \to x^{22}, x^{44}$
 - etc.

- Cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^j \mod (2^n 1); j \leq n\}$
- If $\beta \in C_{\alpha} \iff C_{\beta} = C_{\alpha}$)
 - x^{α} can be computed from x^{β} with 0 nonlinear multiplication
 - x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
 - $x \to x^2, x^4, x^8, ...$ (0 nonlinear multiplications)
 - with 1 nonlinear multiplication

•
$$x^3 = x \cdot x^2 \to x^6, x^{12}, x^{24}, \dots$$

• $x^5 = x \cdot x^4 \to x^{10}, x^{20}, x^{40}, \dots$

- etc.
- with 2 nonlinear multiplications
 - $x_{11}^7 = x_3^3 \cdot x_8^4 \to x_{14}^{14}, x_{28}^{28}, \dots$
 - $x^{11} = x^3 \cdot x^8 \to x^{22}, x^{44}, \dots$
 - etc.

- Cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^j \mod (2^n 1); j \leq n\}$
- If $\beta \in C_{\alpha} \iff C_{\beta} = C_{\alpha}$)
 - x^{α} can be computed from x^{β} with 0 nonlinear multiplication
 - x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
 - $x \to x^2, x^4, x^8, ...$ (0 nonlinear multiplications)
 - with 1 nonlinear multiplication

•
$$x^3 = x \cdot x^2 \to x^6, x^{12}, x^{24}, \dots$$

• $x^5 = x \cdot x^4 \to x^{10}, x^{20}, x^{40}, \dots$

- *c*tc.
- with 2 nonlinear multiplications

•
$$x_{11}^7 = x_3^3 \cdot x_4^4 \to x_{22}^{14}, x_{44}^{28}, ...$$

- $x^{11} = x^3 \cdot x^8 \to x^{22}, x^{44}, ...$
- etc.

- Cyclotomic class of α : $C_{\alpha} = \{\alpha \cdot 2^j \mod (2^n 1); j \leq n\}$
- If $\beta \in C_{\alpha} \iff C_{\beta} = C_{\alpha}$)
 - x^{α} can be computed from x^{β} with 0 nonlinear multiplication
 - x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
 - $x \to x^2, x^4, x^8, ...$ (0 nonlinear multiplications)
 - with 1 nonlinear multiplication

•
$$x^3 = x \cdot x^2 \to x^6, x^{12}, x^{24}, \dots$$

• $x^5 = x \cdot x^4 \to x^{10} \cdot x^{20} \cdot x^{40}$

- $x^{5} = x \cdot x^{4} \to x^{10}, x^{20}, x^{40}, \dots$
- etc.
- with 2 nonlinear multiplications

•
$$x_{11}^7 = x_3^3 \cdot x_4^4 \rightarrow x_{22}^{14}, x_{44}^{28}, ...$$

- $x^{11} = x^3 \cdot x^8 \to x^{22}, x^{44}, \dots$
- etc.

k	Cyclotomic classes in \mathcal{M}_k^n							
<i>n</i> = 4								
0	$C_0 = \{0\}, C_1 = \{1, 2, 4, 8\}$							
1	$C_3 = \{3, 6, 12, 9\}, C_5 = \{5, 10\}$							
2	$C_7 = \{7, 14, 13, 11\}$							
	<i>n</i> = 6							
0	$C_0 = \{0\}, C_1 = \{1, 2, 4, 8, 16, 32\}$							
1	$C_3 = \{3, 6, 12, 24, 48, 33\}, C_5 = \{5, 10, 20, 40, 17, 34\}, C_9 = \{9, 18, 36\}$							
2	$C_7 = \{7, 14, 28, 56, 49, 35\}, C_{11} = \{11, 22, 44, 25, 50, 37\}, C_{13} = \{13, 26, 52, 41, 19, 38\},$							
	$C_{15} = \{15, 30, 29, 27, 23\}, C_{21} = \{21, 42\}, C_{27} = \{27, 54, 45\}$							
3	$C_{23} = \{23, 46, 29, 58, 53, 43\}, C_{31} = \{31, 62, 61, 59, 55, 47\}$							
	<i>n</i> = 8							
0	$C_0 = \{0\}, C_1 = \{1, 2, 4, 8, 16, 32, 64, 128\}$							
1	$C_3 = \{3, 6, 12, 24, 48, 96, 192, 129\}, C_5 = \{5, 10, 20, 40, 80, 160, 65, 130\},$							
	$C_9 = \{9, 18, 36, 72, 144, 33, 66, 132\}, C_{17} = \{17, 34, 68, 136\}$							
2	$C_7 = \{7, 14, 28, 56, 112, 224, 193, 131\}, C_{11} = \{11, 22, 44, 88, 176, 97, 194, 133\},$							
	$C_{13} = \{13, 26, 52, 104, 208, 161, 67, 134\}, C_{15} = \{15, 30, 60, 120, 240, 225, 195, 135\},\$							
	$C_{19} = \{19, 38, 76, 152, 49, 98, 196, 137\}, C_{21} = \{21, 42, 84, 168, 81, 162, 69, 138\},$							
	$C_{25} = \{25, 50, 100, 200, 145, 35, 70, 140\}, C_{27} = \{27, 54, 108, 216, 177, 99, 198, 141\},\$							
	$C_{37} = \{37, 74, 148, 41, 82, 164, 73, 146\}, C_{45} = \{45, 90, 180, 105, 210, 165, 75, 150\},$							
	$C_{51} = \{51, 102, 204, 153\}, C_{85} = \{85, 170\}$							
3	$C_{23} = \{23, 46, 92, 184, 113, 226, 197, 139\}, C_{29} = \{29, 58, 116, 232, 209, 163, 71, 142\},$							
	$C_{31} = \{31, 62, 124, 248, 241, 227, 199, 143\}, C_{39} = \{39, 78, 156, 57, 114, 228, 201, 147\},$							
	$C_{43} = \{43, 80, 172, 89, 178, 101, 202, 149\}, C_{47} = \{47, 94, 188, 121, 242, 229, 203, 151\},$							
	$C_{53} = \{53, 100, 212, 109, 83, 100, 77, 134\}, C_{55} = \{55, 110, 220, 185, 115, 230, 205, 155\},$							
	$C_{59} = \{53, 126, 250, 211, 113, 103, 200, 131\}, C_{61} = \{01, 122, 244, 233, 211, 101, 79, 130\}, C_{62} = \{63, 126, 252, 240, 243, 231, 207, 150\}, C_{63} = \{87, 174, 03, 186, 117, 234, 213, 171\}$							
	$C_{03} = \{01, 120, 202, 243, 243, 251, 201, 105\}, 087 = \{01, 174, 95, 100, 117, 254, 215, 171\}, 0.1 = \{01, 182, 100, 218, 181, 107, 214, 173\}, 0.1 = \{01, 174, 95, 100, 117, 254, 215, 175\}$							
	$C_{111} = \{111, 222, 189, 123, 246, 237, 219, 183\}, C_{110} = \{119, 238, 221, 187\}$							
4	$C_{127} = \{127, 254, 253, 251, 247, 239, 223, 191\}$							

$$\begin{split} \mathrm{S}(x) &= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 \\ &+ a_8 x^8 + a_9 x^9 + a_{10} x^{10} + a_{11} x^{11} + a_{12} x^{12} + \dots \\ &= a_0 + a_1 x + a_2 x^2 + a_4 x^4 + a_8 x^8 + \dots \\ &+ a_3 x^3 + a_6 x^6 + a_{12} x^{12} + a_{24} x^{24} + \dots \\ &+ a_5 x^5 + a_{10} x^{10} + a_{20} x^{20} + a_{40} x^{40} + \dots \\ &+ \dots \\ &= a_0 + \mathcal{L}_1(x) + \mathcal{L}_3(x^3) + \mathcal{L}_5(x^5) + \dots \end{split}$$
where

•
$$L_1(X) = a_1 X + a_2 X^2 + a_4 X^4 + a_8 X^8 + \dots$$

• $L_3(X) = a_3X + a_6X^2 + a_{12}X^4 + a_{24}X^8 + \dots$

•
$$L_5(X) = a_5 X + a_{10} X^2 + a_{20} X^4 + a_{40} X^8 + \dots$$

• ...

$$S(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7 + a_8x^8 + a_9x^9 + a_{10}x^{10} + a_{11}x^{11} + a_{12}x^{12} + \dots$$

$$= a_0 + a_1x + a_2x^2 + a_4x^4 + a_8x^8 + \dots + a_3x^3 + a_6x^6 + a_{12}x^{12} + a_{24}x^{24} + \dots + a_5x^5 + a_{10}x^{10} + a_{20}x^{20} + a_{40}x^{40} + \dots + \dots$$

$$= a_0 + L_1(x) + L_3(x^3) + L_5(x^5) + \dots$$

where
• $L_1(X) = a_1X + a_2X^2 + a_4X^4 + a_8X^8 + \dots$
• $L_3(X) = a_3X + a_5X^2 + a_{12}X^4 + a_{24}X^8 + \dots$

•
$$L_5(X) = a_5 X + a_{10} X^2 + a_{20} X^4 + a_{40} X^8 + \dots$$

$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + a_8 x^8 + a_9 x^9 + a_{10} x^{10} + a_{11} x^{11} + a_{12} x^{12} + \dots$$

$$= a_0 + a_1 x + a_2 x^2 + a_4 x^4 + a_8 x^8 + \dots + a_3 x^3 + a_6 x^6 + a_{12} x^{12} + a_{24} x^{24} + \dots + a_5 x^5 + a_{10} x^{10} + a_{20} x^{20} + a_{40} x^{40} + \dots + \dots$$

$$= a_0 + L_1(x) + L_3(x^3) + L_5(x^5) + \dots$$

where
• $L_1(X) = a_1 X + a_2 X^2 + a_4 X^4 + a_8 X^8 + \dots$

•
$$L_3(X) = a_3 X + a_6 X + a_{12} X + a_{24} X + \dots$$

• $L_5(X) = a_5 X + a_{10} X^2 + a_{20} X^4 + a_{40} X^8 + \dots$

$$\begin{split} \mathrm{S}(x) &= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 \\ &+ a_8 x^8 + a_9 x^9 + a_{10} x^{10} + a_{11} x^{11} + a_{12} x^{12} + \dots \\ &= a_0 + a_1 x + a_2 x^2 + a_4 x^4 + a_8 x^8 + \dots \\ &+ a_3 x^3 + a_6 x^6 + a_{12} x^{12} + a_{24} x^{24} + \dots \\ &+ a_5 x^5 + a_{10} x^{10} + a_{20} x^{20} + a_{40} x^{40} + \dots \\ &+ \dots \\ &= a_0 + \mathcal{L}_1(x) + \mathcal{L}_3(x^3) + \mathcal{L}_5(x^5) + \dots \end{split}$$
where

- $L_1(X) = a_1 X + a_2 X^2 + a_4 X^4 + a_8 X^8 + \dots$
- $L_3(X) = a_3X + a_6X^2 + a_{12}X^4 + a_{24}X^8 + \dots$
- $L_5(X) = a_5 X + a_{10} X^2 + a_{20} X^4 + a_{40} X^8 + \dots$
- ...

$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + a_8 x^8 + a_9 x^9 + a_{10} x^{10} + a_{11} x^{11} + a_{12} x^{12} + \dots = a_0 + a_1 x + a_2 x^2 + a_4 x^4 + a_8 x^8 + \dots + a_3 x^3 + a_6 x^6 + a_{12} x^{12} + a_{24} x^{24} + \dots + a_5 x^5 + a_{10} x^{10} + a_{20} x^{20} + a_{40} x^{40} + \dots + \dots = a_0 + L_1(x) + L_3(x^3) + L_5(x^5) + \dots$$

where

- $L_1(X) = a_1 X + a_2 X^2 + a_4 X^4 + a_8 X^8 + \dots$
- $L_3(X) = a_3X + a_6X^2 + a_{12}X^4 + a_{24}X^8 + \dots$
- $L_5(X) = a_5 X + a_{10} X^2 + a_{20} X^4 + a_{40} X^8 + \dots$

• ...

$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + a_8 x^8 + a_9 x^9 + a_{10} x^{10} + a_{11} x^{11} + a_{12} x^{12} + \dots = a_0 + a_1 x + a_2 x^2 + a_4 x^4 + a_8 x^8 + \dots + a_3 x^3 + a_6 (x^3)^2 + a_{12} (x^3)^4 + a_{24} (x^3)^8 + \dots + a_5 x^5 + a_{10} (x^5)^2 + a_{20} (x^5)^4 + a_{40} (x^5)^8 + \dots + \dots = a_0 + L_1 (x) + L_3 (x^3) + L_5 (x^5) + \dots$$

where

- $L_1(X) = a_1 X + a_2 X^2 + a_4 X^4 + a_8 X^8 + \dots$
- $L_3(X) = a_3X + a_6X^2 + a_{12}X^4 + a_{24}X^8 + \dots$
- $L_5(X) = a_5 X + a_{10} X^2 + a_{20} X^4 + a_{40} X^8 + \dots$
- ...

$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + a_8 x^8 + a_9 x^9 + a_{10} x^{10} + a_{11} x^{11} + a_{12} x^{12} + \dots = a_0 + a_1 x + a_2 x^2 + a_4 x^4 + a_8 x^8 + \dots + a_3 x^3 + a_6 (x^3)^2 + a_{12} (x^3)^4 + a_{24} (x^3)^8 + \dots + a_5 x^5 + a_{10} (x^5)^2 + a_{20} (x^5)^4 + a_{40} (x^5)^8 + \dots + \dots = a_0 + L_1 (x) + L_3 (x^3) + L_5 (x^5) + \dots$$

where

- $L_1(X) = a_1 X + a_2 X^2 + a_4 X^4 + a_8 X^8 + \dots$
- $L_3(X) = a_3X + a_6X^2 + a_{12}X^4 + a_{24}X^8 + \dots$
- $L_5(X) = a_5 X + a_{10} X^2 + a_{20} X^4 + a_{40} X^8 + \dots$
- ...

- **()** Compute one power per cyclotomic class x, x^3 , x^5 , x^7 , ...
- Evaluate the corresponding linearized polynomials L₁(x), L₃(x³), L₅(x⁵), L₇(x⁷), ...
- 3 Compute the sum $S(x) = a_0 + L_1(x) + L_3(x^3) + L_5(x^5) + L_7(x^7) + \dots$

Number of nonlinear multiplication

 $\#\{$ cyclotomic classes $\} \setminus (C_0 \cup C_1)$

n	3	4	5	6	7	8	9	10
# nlm	1	3	5	11	17	33	53	105

- **()** Compute one power per cyclotomic class x, x^3 , x^5 , x^7 , ...
- Evaluate the corresponding linearized polynomials L₁(x), L₃(x³), L₅(x⁵), L₇(x⁷), ...
- 3 Compute the sum $S(x) = a_0 + L_1(x) + L_3(x^3) + L_5(x^5) + L_7(x^7) + \dots$

Number of nonlinear multiplication

 $\#\{$ cyclotomic classes $\} \setminus (C_0 \cup C_1)$

n	3	4	5	6	7	8	9	10
# nlm	1	3	5	11	17	33	53	105

- **()** Compute one power per cyclotomic class x, x^3 , x^5 , x^7 , ...
- Evaluate the corresponding linearized polynomials L₁(x), L₃(x³), L₅(x⁵), L₇(x⁷), ...
- Occupie the sum $S(x) = a_0 + L_1(x) + L_3(x^3) + L_5(x^5) + L_7(x^7) + \dots$

Number of nonlinear multiplication

 $\#\{$ cyclotomic classes $\} \setminus (C_0 \cup C_1)$

n	3	4	5	6	7	8	9	10
# nlm	1	3	5	11	17	33	53	105
Cyclotomic Method

- **()** Compute one power per cyclotomic class x, x^3 , x^5 , x^7 , ...
- Evaluate the corresponding linearized polynomials L₁(x), L₃(x³), L₅(x⁵), L₇(x⁷), ...
- Occupie the sum $S(x) = a_0 + L_1(x) + L_3(x^3) + L_5(x^5) + L_7(x^7) + \dots$

Number of nonlinear multiplication

 $\#\{\text{cyclotomic classes}\}\setminus(C_0\cup C_1)$

n	3	4	5	6	7	8	9	10
∦ nlm	1	3	5	11	17	33	53	105

Cyclotomic Method

- **()** Compute one power per cyclotomic class x, x^3 , x^5 , x^7 , ...
- Evaluate the corresponding linearized polynomials L₁(x), L₃(x³), L₅(x⁵), L₇(x⁷), ...
- Compute the sum $S(x) = a_0 + L_1(x) + L_3(x^3) + L_5(x^5) + L_7(x^7) + \dots$

Number of nonlinear multiplication

 $\#\{\text{cyclotomic classes}\}\setminus(C_0\cup C_1)$

n	3	4	5	6	7	8	9	10
∦ nlm	1	3	5	11	17	33	53	105

$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + a_8 x^8 + a_9 x^9 + a_{10} x^{10} + a_{11} x^{11} + a_{12} x^{12} + \dots$$

where $X = x^2$

- Nonlinear mult. : 1
- and the evaluation of 2^{r+1} polynomials in $X = x^{2^r}$
 - we derive X^j for $j < 2^{n-r}$
 - $2^{n-r-1} 1$ nonlinear mult.

$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + a_8 x^8 + a_9 x^9 + a_{10} x^{10} + a_{11} x^{11} + a_{12} x^{12} + \dots$$

where $X = x^2$

- Nonlinear mult. : 1
- and the evaluation of 2^{r+1} polynomials in $X = x^{2^r}$
 - we derive X^j for $j < 2^{n-r}$
 - $2^{n-r-1} 1$ nonlinear mult.

$$S(x) = a_0 + a_2 x^2 + a_4 x^4 + a_6 x^6 + a_8 x^8 + \dots a_1 x + a_3 x^3 + a_5 x^5 + a_7 x^7 + a_9 x^9 + \dots$$

where $X = x^2$

- Nonlinear mult. : 1
- and the evaluation of 2^{r+1} polynomials in $X = x^{2^r}$
 - we derive X^j for $j < 2^{n-r}$
 - $2^{n-r-1} 1$ nonlinear mult.

$$S(x) = a_0 + a_2 x^2 + a_4 x^4 + a_6 x^6 + a_8 x^8 + \dots (a_1 + a_3 x^2 + a_5 x^4 + a_7 x^6 + a_9 x^8 + \dots) \cdot x$$

where $X = x^2$

- Nonlinear mult. : 1
- and the evaluation of 2^{r+1} polynomials in $X = x^{2^r}$
 - we derive X^j for $j < 2^{n-r}$
 - $2^{n-r-1} 1$ nonlinear mult.

$$S(x) = a_0 + a_2 x^2 + a_4 x^4 + a_6 x^6 + a_8 x^8 + \dots (a_1 + a_3 x^2 + a_5 x^4 + a_7 x^6 + a_9 x^8 + \dots) \cdot x$$

where $X = x^2$

- Nonlinear mult. : 1
- and the evaluation of 2^{r+1} polynomials in $X = x^{2^r}$
 - we derive X^j for $j < 2^{n-r}$
 - $2^{n-r-1} 1$ nonlinear mult.

$$S(x) = a_0 + a_2 X + a_4 X^2 + a_6 X^3 + a_8 X^4 + \dots (a_1 + a_3 X + a_5 X^2 + a_7 X^3 + a_9 X^4 + \dots) \cdot x$$

where $X = x^2$

- Nonlinear mult. : 1
- and the evaluation of 2^{r+1} polynomials in $X = x^{2^r}$
 - we derive X^j for $j < 2^{n-r}$
 - $2^{n-r-1} 1$ nonlinear mult.

$$S(x) = a_0 + a_2 X + a_4 X^2 + a_6 X^3 + a_8 X^4 + \dots (a_1 + a_3 X + a_5 X^2 + a_7 X^3 + a_9 X^4 + \dots) \cdot x$$

where $X = x^2$

- Nonlinear mult. : 1
- and the evaluation of 2^{r+1} polynomials in $X = x^{2^r}$
 - we derive X^j for $j < 2^{n-r}$
 - $2^{n-r-1} 1$ nonlinear mult.

$$S(x) = a_0 + a_4 X^2 + a_8 X^4 + \ldots + a_2 X + a_6 X^3 + \ldots (a_1 + a_5 X^2 + a_9 X^4 + \ldots + a_3 x^2 + a_7 X^3 + \ldots) \cdot x$$

where $X = x^2$

- Nonlinear mult. : 1
- and the evaluation of 2^{r+1} polynomials in $X = x^{2^r}$
 - we derive X^j for $j < 2^{n-r}$
 - $2^{n-r-1} 1$ nonlinear mult.

$$S(x) = a_0 + a_4 X^2 + a_8 X^4 + \dots + (a_2 + a_6 X^2 + \dots) \cdot X + (a_1 + a_5 X^2 + a_9 X^4 + \dots + (a_3 + a_7 X^2 + \dots) \cdot X) \cdot x$$

where $X = x^2$

- Nonlinear mult. : 1+2
- and the evaluation of 2^{r+1} polynomials in $X = x^{2^r}$
 - we derive X^j for $j < 2^{n-r}$
 - $2^{n-r-1} 1$ nonlinear mult.

$$S(x) = a_0 + a_4 x^4 + a_8 x^8 + \dots + (a_2 + a_6 x^4 + \dots) \cdot x^2 + (a_1 + a_5 x^4 + a_9 x^8 + \dots + (a_3 + a_7 x^4 + \dots) \cdot x^2) \cdot x$$

where $X = x^4$

- Nonlinear mult. : 1+2
- and the evaluation of 2^{r+1} polynomials in $X = x^{2^r}$
 - we derive X^j for $j < 2^{n-r}$
 - $2^{n-r-1} 1$ nonlinear mult.

$$S(x) = a_0 + a_4 X + a_8 X^2 + \ldots + (a_2 + a_6 X + \ldots) \cdot x^2 + (a_1 + a_5 X + a_9 X^2 + \ldots + (a_3 + a_7 X + \ldots) \cdot x^2) \cdot x$$

where $X = x^4$

- Nonlinear mult. : 1+2
- and the evaluation of 2^{r+1} polynomials in $X = x^{2^r}$
 - we derive X^j for $j < 2^{n-r}$
 - $2^{n-r-1} 1$ nonlinear mult.

$$S(x) = a_0 + a_4 X + a_8 X^2 + \dots + (a_2 + a_6 X + \dots) \cdot x^2 + (a_1 + a_5 X + a_9 X^2 + \dots + (a_3 + a_7 X + \dots) \cdot x^2) \cdot x$$

where $X = x^4$

- Nonlinear mult. : $1+2+\cdots+2^{r-1}=2^r-1$
- and the evaluation of 2^{r+1} polynomials in $X = x^{2^r}$
 - we derive X^j for $j < 2^{n-r}$
 - $2^{n-r-1} 1$ nonlinear mult.

$$S(x) = a_0 + a_4 X + a_8 X^2 + \dots + (a_2 + a_6 X + \dots) \cdot x^2 + (a_1 + a_5 X + a_9 X^2 + \dots + (a_3 + a_7 X + \dots) \cdot x^2) \cdot x$$

where $X = x^4$

- Nonlinear mult. : $1+2+\cdots+2^{r-1}=2^r-1$
- and the evaluation of 2^{r+1} polynomials in $X = x^{2^r}$
 - we derive X^j for $j < 2^{n-r}$
 - $2^{n-r-1} 1$ nonlinear mult.

$$S(x) = a_0 + a_4 X + a_8 X^2 + \dots + (a_2 + a_6 X + \dots) \cdot x^2 + (a_1 + a_5 X + a_9 X^2 + \dots + (a_3 + a_7 X + \dots) \cdot x^2) \cdot x$$

where $X = x^4$

- Nonlinear mult. : $1+2+\cdots+2^{r-1}=2^r-1$
- and the evaluation of 2^{r+1} polynomials in $X = x^{2^r}$
 - we derive X^j for $j < 2^{n-r}$
 - $2^{n-r-1} 1$ nonlinear mult.

$$\Rightarrow 2^{n-r-1} + 2^r - 2$$
 nonlinear mult.

$$S(x) = a_0 + a_4 X + a_8 X^2 + \ldots + (a_2 + a_6 X + \ldots) \cdot x^2 + (a_1 + a_5 X + a_9 X^2 + \ldots + (a_3 + a_7 X + \ldots) \cdot x^2) \cdot x$$

where $X = x^4$

- Nonlinear mult. : $1+2+\cdots+2^{r-1}=2^r-1$
- and the evaluation of 2^{r+1} polynomials in $X = x^{2^r}$
 - we derive X^j for $j < 2^{n-r}$
 - $2^{n-r-1} 1$ nonlinear mult.

$$S(x) = a_0 + a_4 X + a_8 X^2 + \dots + (a_2 + a_6 X + \dots) \cdot x^2 + (a_1 + a_5 X + a_9 X^2 + \dots + (a_3 + a_7 X + \dots) \cdot x^2) \cdot x$$

where $X = x^4$

• Nonlinear mult. : $1+2+\cdots+2^{r-1}=2^r-1$

- and the evaluation of 2^{r+1} polynomials in $X = x^{2^r}$
 - we derive X^j for $j < 2^{n-r}$
 - $2^{n-r-1} 1$ nonlinear mult.

Number of nonlinear multiplications w.r.t. the evaluation method

Method \ n	3	4	5	6	7	8	9	10
Cyclotomic	1	3	5	11	17	33	53	105
Parity-Split	2	4	6	10	14	22	30	46

For PRESENT (n = 4), we shall prefer the cyclotomic method
For DES (n = 6), we shall prefer the parity-split method

Number of nonlinear multiplications w.r.t. the evaluation method

Method \ n	3	4	5	6	7	8	9	10
Cyclotomic	1	3	5	11	17	33	53	105
Parity-Split	2	4	6	10	14	22	30	46

For PRESENT (n = 4), we shall prefer the cyclotomic method
For DES (n = 6), we shall prefer the parity-split method

... for algorithms combining only affine and power functions

- Idea: Mix additive with multiplicative masking defined on the same field.
- Recall (Additive masking): $x \in GF(2^n) \mapsto (x_0, \cdots x_d) \in GF(2^n)^{d+1}$ s.t.

$$\sum_i x_i = x \; .$$

• Recall (Multiplicative masking): $x \in GF(2^n)^* \mapsto (x_0, \cdots x_d) \in GF(2^n)^{*d+1}$ s.t.

$$\prod_i x_i = x \; .$$

... for algorithms combining only affine and power functions

- Idea: Mix additive with multiplicative masking defined on the same field.
- Recall (Additive masking): $x \in GF(2^n) \mapsto (x_0, \cdots x_d) \in GF(2^n)^{d+1}$ s.t.

$$\sum_i x_i = x$$

• Recall (Multiplicative masking): $x \in GF(2^n)^* \mapsto (x_0, \cdots x_d) \in GF(2^n)^{*d+1}$ s.t.

$$\prod_i x_i = x \; .$$

... for algorithms combining only affine and power functions

- Idea: Mix additive with multiplicative masking defined on the same field.
- Recall (Additive masking): $x \in GF(2^n) \mapsto (x_0, \cdots x_d) \in GF(2^n)^{d+1}$ s.t.

$$\sum_i x_i = x \; .$$

• Recall (Multiplicative masking): $x \in GF(2^n)^* \mapsto (x_0, \cdots x_d) \in GF(2^n)^{*d+1}$ s.t.

$$\prod_i x_i = x \; .$$

... for algorithms combining only affine and power functions

- Idea: Mix additive with multiplicative masking defined on the same field.
- Recall (Additive masking): $x \in GF(2^n) \mapsto (x_0, \cdots x_d) \in GF(2^n)^{d+1}$ s.t.

$$\sum_i x_i = x \; .$$

• Recall (Multiplicative masking): $x \in GF(2^n)^* \mapsto (x_0, \cdots x_d) \in GF(2^n)^{*d+1}$ s.t.

$$\prod_i x_i = x \; .$$

... for algorithms combining only affine and power functions

- Idea: Mix additive with multiplicative masking defined on the same field.
- Recall (Additive masking): $x \in GF(2^n) \mapsto (x_0, \cdots x_d) \in GF(2^n)^{d+1}$ s.t.

$$\sum_i x_i = x \; .$$

• Recall (Multiplicative masking): $x \in GF(2^n)^* \mapsto (x_0, \cdots x_d) \in GF(2^n)^{*d+1}$ s.t.

$$\prod_i x_i = x \; .$$

... for algorithms combining only affine and power functions

- Issue 1: convert additive masking into multiplicative masking without leaking information in the *d*th-order probing model?
 - Solution: conversions algorithms proposed in GenelleProuffQuisquater11 (complexity: d^2 additions and d(3 + d)/2 multiplications).
- Issue 2: multiplicative is only sound in the multiplicative group! How to deal with the 0 value problem?
 - Solution: map the sharing of 0 into the sharing of 1 and keep trace of this modification for further correction.
 - Amounts to secure the processing of the function

 $x\mapsto x\oplus \delta_0(x)$ with $\delta_0(x)=x_0$ AND x_1 AND \dots AND x_n .

• Soundness: for any power *e*, we have

... for algorithms combining only affine and power functions

- Issue 1: convert additive masking into multiplicative masking without leaking information in the *d*th-order probing model?
 - Solution: conversions algorithms proposed in GenelleProuffQuisquater11 (complexity: d^2 additions and d(3 + d)/2 multiplications).
- Issue 2: multiplicative is only sound in the multiplicative group! How to deal with the 0 value problem?
 - Solution: map the sharing of 0 into the sharing of 1 and keep trace of this modification for further correction.
 - Amounts to secure the processing of the function

 $x\mapsto x\oplus \delta_0(x)$ with $\delta_0(x)=x_0$ AND x_1 AND \dots AND x_n .

• Soundness: for any power *e*, we have

... for algorithms combining only affine and power functions

- Issue 1: convert additive masking into multiplicative masking without leaking information in the *d*th-order probing model?
 - Solution: conversions algorithms proposed in GenelleProuffQuisquater11 (complexity: d^2 additions and d(3 + d)/2 multiplications).
- Issue 2: multiplicative is only sound in the multiplicative group! How to deal with the 0 value problem?
 - Solution: map the sharing of 0 into the sharing of 1 and keep trace of this modification for further correction.
 - Amounts to secure the processing of the function

 $x\mapsto x\oplus \delta_0(x)$ with $\delta_0(x)=x_0$ AND x_1 AND \dots AND x_n .

• Soundness: for any power *e*, we have

... for algorithms combining only affine and power functions

- Issue 1: convert additive masking into multiplicative masking without leaking information in the *d*th-order probing model?
 - Solution: conversions algorithms proposed in GenelleProuffQuisquater11 (complexity: d^2 additions and d(3 + d)/2 multiplications).
- Issue 2: multiplicative is only sound in the multiplicative group! How to deal with the 0 value problem?
 - Solution: map the sharing of 0 into the sharing of 1 and keep trace of this modification for further correction.

• Amounts to secure the processing of the function

 $x\mapsto x\oplus \delta_0(x)$ with $\delta_0(x)=x_0$ AND x_1 AND \dots AND x_n .

• Soundness: for any power *e*, we have

... for algorithms combining only affine and power functions

- Issue 1: convert additive masking into multiplicative masking without leaking information in the *d*th-order probing model?
 - Solution: conversions algorithms proposed in GenelleProuffQuisquater11 (complexity: d^2 additions and d(3 + d)/2 multiplications).
- Issue 2: multiplicative is only sound in the multiplicative group! How to deal with the 0 value problem?
 - Solution: map the sharing of 0 into the sharing of 1 and keep trace of this modification for further correction.
 - Amounts to secure the processing of the function

 $x\mapsto x\oplus \delta_0(x)$ with $\delta_0(x)=x_0$ AND x_1 AND \dots AND x_n .

• Soundness: for any power *e*, we have

... for algorithms combining only affine and power functions

- Issue 1: convert additive masking into multiplicative masking without leaking information in the *d*th-order probing model?
 - Solution: conversions algorithms proposed in GenelleProuffQuisquater11 (complexity: d^2 additions and d(3 + d)/2 multiplications).
- Issue 2: multiplicative is only sound in the multiplicative group! How to deal with the 0 value problem?
 - Solution: map the sharing of 0 into the sharing of 1 and keep trace of this modification for further correction.
 - Amounts to secure the processing of the function

 $x\mapsto x\oplus \delta_0(x)$ with $\delta_0(x)=x_0$ AND x_1 AND \dots AND x_n .

• Soundness: for any power *e*, we have

... for algorithms combining only affine and power functions

Performances

Table : Comparison of secure AES implementations

	Method	cycles (10 ³)	RAM (bytes)						
Unprotected Implementation									
1.	No Masking	2	32						
First Order Masking									
2.	Re-computation	10	256						
3.	Tower Field in GF(2 ²)	77	42						
4.	Multiplicative Masking	22	256						
5.	Secure exponentiation for $d = 1$	73	24						
6.	Additive and Multiplicative Masking for $d = 1$	25	50						
Second Order Masking									
7.	Double Re-computations	594	512 + 28						
8.	Single Re-computation	672	256 + 22						
9.	Secure exponentiation for $d = 2$	189	48						
10.	Additive and Multiplicative Masking f for $d = 2$	69	86						
Third Order Masking									
11.	Secure exponentiation for $d = 3$	326	72						
12.	Additive and Multiplicative Masking f for $d = 3$	180	128						

Masking Schemes for Block Ciphers Still other alternatives...

- Apply Tower Field Approach: $GF(2^8) \sim GF(2^4)[X]/p(X) \sim GF(2^2)[X]/p'(X) \sim GF(2)[X]/p''(X)$.
 - see e.g. OswaldMangardPramstallerRijmen05.
 - sometimes lead to efficiency improvement as some operations can be tabulated.
- Split exponentiation in more complex sequences than simply squarings and multiplications.
 - e.g. also consider bilinear operations as x → x × L(x) where L is linear ProuffRivainRoche13.
- Develop masking schemes for security in presence of glitches.
 - current propositions based on MPC techniques NikovaRijmenSchläffer11,ProuffRoche11.
- Find alternatives to reduce the consumption of random values.

Conclusion

- Security of current implementations is usually only evaluated w.r.t. first-order (a.k.a. univariate) SCA.
 - Against those attacks efficient and effective solutions exist: shuffling + first-order masking + noise addition.
- Higher-order SCA start to be also considered by security evaluators.
 - Effective countermeasures exist but their efficiency is low (see the masking schemes presented here).
 - Best alternative for software AES: shuffling + additive/multiplicative masking + noise.
 - For other block ciphers: only ISW extensions may be applied but they are costly. **This topic needs more studies.**
- Security of today implementations must be formally proved
 - Give upper bound on the information leakage, obtained with sound models. This topic needs more studies.
 - Prove the security against some classes of adversaries.
 - Find protocols which ensure that no SCA can be performed.
 - Develop automatic provers.

Conclusion

- Security of current implementations is usually only evaluated w.r.t. first-order (a.k.a. univariate) SCA.
 - Against those attacks efficient and effective solutions exist: shuffling + first-order masking + noise addition.
- Higher-order SCA start to be also considered by security evaluators.
 - Effective countermeasures exist but their efficiency is low (see the masking schemes presented here).
 - Best alternative for software AES: shuffling + additive/multiplicative masking + noise.
 - For other block ciphers: only ISW extensions may be applied but they are costly. **This topic needs more studies.**
- Security of today implementations must be formally proved
 - Give upper bound on the information leakage, obtained with sound models. This topic needs more studies.
 - Prove the security against some classes of adversaries.
 - Find protocols which ensure that no SCA can be performed.
 - Develop automatic provers.
Conclusion

- Security of current implementations is usually only evaluated w.r.t. first-order (a.k.a. univariate) SCA.
 - Against those attacks efficient and effective solutions exist: shuffling + first-order masking + noise addition.
- Higher-order SCA start to be also considered by security evaluators.
 - Effective countermeasures exist but their efficiency is low (see the masking schemes presented here).
 - Best alternative for software AES: shuffling + additive/multiplicative masking + noise.
 - For other block ciphers: only ISW extensions may be applied but they are costly. **This topic needs more studies.**
- Security of today implementations must be formally proved
 - Give upper bound on the information leakage, obtained with sound models. This topic needs more studies.
 - Prove the security against some classes of adversaries.
 - Find protocols which ensure that no SCA can be performed.
 - Develop automatic provers.

Conclusion

- Security of current implementations is usually only evaluated w.r.t. first-order (a.k.a. univariate) SCA.
 - Against those attacks efficient and effective solutions exist: shuffling + first-order masking + noise addition.
- Higher-order SCA start to be also considered by security evaluators.
 - Effective countermeasures exist but their efficiency is low (see the masking schemes presented here).
 - Best alternative for software AES: shuffling + additive/multiplicative masking + noise.
 - For other block ciphers: only ISW extensions may be applied but they are costly. **This topic needs more studies.**
- Security of today implementations must be formally proved
 - Give upper bound on the information leakage, obtained with sound models. This topic needs more studies.
 - Prove the security against some classes of adversaries.
 - Find protocols which ensure that no SCA can be performed.
 - Develop automatic provers.

Thank you for your attention!

Acknowledgement: some slides of the countermeasures' section have been directly inspired by presentations done by Karim Khalfallah, Matthieu Rivain and Thomas Roche. I thank them very much for their help.