
Using Bleichenbacher’s Solution to
the Hidden Number Problem to
Attack Nonce Leaks in 384-Bit
ECDSA.

Elke De Mulder, Michael Hutter, Mark E. Marson, Peter Pearson

2 ©2013 Cryptography Research, Inc.

Overview of the talk
• The device and implementation being evaluated
• Previous work attacking nonce leaks
• Details of Bleichenbacher’s attack
• Results
• Further research suggestions

3 ©2013 Cryptography Research, Inc.

The device and implementation being evaluated
• The device

◦ BasicCard Family of Smart Cards: ZeitControl (German)
◦ Card has built in curves from ECC-Brainpool

• The Implementation
◦ ECDSA over a 384-bit prime field curve, BrainpoolP384r1
◦ Values in Montgomery representation for efficient arithmetic
◦ Curve points represented in Jacobian projective coordinates
◦ Scalar multiplications computed on the curve twist

BrainpoolP384t1
◦ Scalar multiplication uses the signed comb method with 7 teeth
◦ 64 pre-computed points in memory for point additions; points

for subtractions computed on the fly

4 ©2013 Cryptography Research, Inc.

The device and implementation being evaluated
• Let E be an elliptic curve defined over Fp and G an element of

order q (q * G = O) in E. Let H denote the hash of the message
m to be signed.

• ECDSA Signature Generation
◦ Generate a random secret nonce K, 0 < K < q, and

computes K * G = (u,v)
◦ Compute r = u mod q
◦ Compute s = K-1 * (H + r*x) mod q
◦ Signature of m is (r, s)

5 ©2013 Cryptography Research, Inc.

The device and implementation being evaluated

6 ©2013 Cryptography Research, Inc.

The device and implementation being evaluated

↑ Before and after filtering ↓

Nonce generation Scalar multiplication Final signing (hash, add, mult, invert, …)

7 ©2013 Cryptography Research, Inc.

Analyzing the modular inversion of the nonce

 We used DPA to identify the
inversion algorithm

 Binary inversion algorithm
 Due to R. Lórencz (CHES 2002)
 Modified M. Penk algorithm

8 ©2013 Cryptography Research, Inc.

Analyzing the modular inversion of the nonce

K = 0x…000

K = 0x…001

K = 0x…002

K = 0x…FFF

• Developed templates based on the low-order bits of the
nonces

• The template attack recovered the low-order 7 bits of
each nonce reliably

9 ©2013 Cryptography Research, Inc.

Previous work attacking nonce leaks
• Most previous nonce leak attacks are based on lattice methods

◦ Boneh and Venkatesan, CRYPTO ’96
◦ Howgrave-Graham and Smart, 2001
◦ Nguyen and Shparlinski, 2002 & 2003
◦ Naccache et al., 2005
◦ Liu and Nguyen, 2013

• Wanted to try a different approach: Bleichenbacher’s method
◦ Introduced in 2000 at an IEEE P1363 Working Group meeting
◦ Used to attack the PRNG in DSA

• Largely undocumented
◦ We had to fill in many of the details of the attack
◦ Many in the crypto community are unaware of the method

10 ©2013 Cryptography Research, Inc.

Mapping nonce leaks to a hidden number
problem
• 𝑠𝑗 = 𝐾𝑗−1 𝐻𝑗 + 𝑟𝑗𝑥 𝑚𝑚𝑚 𝑞 (second half of ECDSA signature)

• Given the low-order 𝑏 bits of each 𝐾𝑗

 𝐾𝑗 = 2𝑏𝐾𝑗,ℎ𝑖 + 𝐾𝑗,𝑙𝑙

• We can rearrange the signature equation above

 𝑘𝑗 = ℎ𝑗 + 𝑐𝑗𝑥 + 𝛼𝑗𝑞

 where

 𝑘𝑗 = 𝐾𝑗,ℎ𝑖 − ⌈𝑞𝑏+1⌋

 ℎ𝑗 = 2𝑏 𝑠𝑗−1𝐻𝑗 − 𝐾𝑗,𝑙𝑙 − ⌈𝑞𝑏+1⌋ 𝑚𝑚𝑚 𝑞

 𝑐𝑗 = 2−𝑏𝑠𝑗−1𝑟𝑗 𝑚𝑚𝑚 𝑞

• Goal of the Hidden Number Problem is to find the secret 𝑥

Hidden Number Problem

Unknown but biased

Known

Known

11 ©2013 Cryptography Research, Inc.

Bleichenbacher’s attack: The bias formula
• For random variable 𝑋 over ℤ/𝑞ℤ, the bias is
defined as

 𝐵𝑞 𝑋 = 𝐸(𝑒(2𝜋𝜋𝜋𝑞))

• For a set of points 𝑉 = 𝑣0, 𝑣1, … ,𝑣𝐿−1 in 0, … , 𝑞 − 1
the sampled bias is defined as

 𝐵𝑞 𝑉 = 1
𝐿
∑ 𝑒

2𝜋𝜋𝑣𝑗
𝑞𝐿−1

𝑗=0

12 ©2013 Cryptography Research, Inc.

Bleichenbacher’s attack: The bias formula
• Let 0 < 𝑇 ≤ 𝑞, and suppose 𝑋 is uniformly distributed over −𝑇−1

2
, … , 𝑇−1

2
.

Then:
◦ 𝐵𝑞 𝑋 + 𝑋′ = 𝐵𝑞 𝑋 𝐵𝑞 𝑋′ for independent 𝑋 and 𝑋′

◦ 𝐵𝑞 𝑋 =
1
𝑇 sin

𝜋𝑇
𝑞

sin(𝜋𝑞)
. Hence 0 ≤ 𝐵𝑞 𝑋 ≤ 1

◦ If 𝑋 is uniformly distributed over [0 … 𝑞 − 1], then 𝐵𝑞 𝑋 = 0

• Example biases for 𝑅 = 𝑇
𝑞

= 2−𝑏, for large 𝑞, are shown below

b 1 2 3 4 5 6 7 8
𝐵𝑞(𝑋) 0.637 0.900 0.974 0.994 0.998 0.9995985 0.9998996 0.9999749

13 ©2013 Cryptography Research, Inc.

Bleichenbacher’s attack: The bias formula
• For each 𝑤 ∈ 0, … , 𝑞 − 1 , define the set of points 𝑉𝑤 =

 ℎ𝑗 + 𝑐𝑗𝑤 mod 𝑞 for 𝑗 = 0, … , 𝐿 − 1

• Then the sampled bias of 𝑉𝑤 is:

 𝐵𝑞 𝑤 = 1
𝐿
∑ 𝑒2𝜋𝑖(ℎ𝑗+𝑐𝑗𝑤)/𝑞𝐿−1
𝑗=0

 = � 1
𝐿
� 𝑒2𝜋𝑖𝑘𝑗/𝑞 {𝑗|𝑐𝑗=𝑡} 𝑒2𝜋𝑖𝑡(𝑤−𝑥)/𝑞

𝑞−1

𝑡=0

k/q

-1/2 1/2

14 ©2013 Cryptography Research, Inc.

𝑤 = 𝑥
𝑡 = 0
𝑡 = 1
𝑡 = 2
𝑡 = 𝑞 − 1

…

Bleichenbacher’s attack: Why does it work?

�
1
𝐿 � 𝑒2𝜋𝑖𝑘𝑗/𝑞

{𝑗|𝑐𝑗=𝑡}

𝑒2𝜋𝑖𝑡(𝑤−𝑥)/𝑞

𝑞−1

𝑡=0

15 ©2013 Cryptography Research, Inc.

𝑤 ≠ 𝑥
𝑡 = 0
𝑡 = 1
𝑡 = 2
𝑡 = 𝑞 − 1
…

�
1
𝐿 � 𝑒2𝜋𝑖𝑘𝑗/𝑞

{𝑗|𝑐𝑗=𝑡}

𝑒2𝜋𝑖𝑡(𝑤−𝑥)/𝑞

𝑞−1

𝑡=0

Bleichenbacher’s attack: Why does it work?

16 ©2013 Cryptography Research, Inc.

Bleichenbacher’s attack: Bounding the 𝑐’s
• The bias gives us a way to score putative solutions 𝑤 to our hidden

number problem
◦ The correct 𝑥 is will have bias close to one
◦ All other 𝑤’s will have bias close to zero

• Problem: 𝑞 has 384 bits
◦ Far too large to exhaust over all the 𝑤’s

• Recall we are computing the sampled biases of 𝑉𝑤 = ℎ𝑗 + 𝑐𝑗𝑤 mod 𝑞

• Bleichenbacher’s insight was that if all the 𝑐’s are bounded and much
smaller than 𝑞, then the 𝑤’s near 𝑥 will also have large biases
◦ This allows us to find to find approximations to 𝑥 by searching over a much

sparser set of 𝑤’s

17 ©2013 Cryptography Research, Inc.

Bleichenbacher’s attack: Bounding the 𝑐’s
𝑤 close to 𝑥

𝑡 = 0
𝑡 = 1
𝑡 = 2

𝑡 = 𝑞 − 1

…
𝑡 = 𝐶
𝑡 = 𝐶 + 1
𝑡 = 𝐶 + 2 …

�
1
𝐿 � 𝑒2𝜋𝑖𝑘𝑗/𝑞

{𝑗|𝑐𝑗=𝑡}

𝑒2𝜋𝑖𝑡(𝑤−𝑥)/𝑞

𝑞−1

𝑡=0

18 ©2013 Cryptography Research, Inc.

Bleichenbacher’s attack: Bounding the 𝑐’s
𝑤 not close to 𝑥

𝑡 = 0
𝑡 = 1
𝑡 = 2

𝑡 = 𝑞 − 1

…
𝑡 = 𝐶
𝑡 = 𝐶 + 1
𝑡 = 𝐶 + 2 …

�
1
𝐿 � 𝑒2𝜋𝑖𝑘𝑗/𝑞

{𝑗|𝑐𝑗=𝑡}

𝑒2𝜋𝑖𝑡(𝑤−𝑥)/𝑞

𝑞−1

𝑡=0

19 ©2013 Cryptography Research, Inc.

Attack algorithm for bounded 𝑐’s
• Let’s find an approximation to 𝑥 by searching over 𝑛 = 2𝑁

equally spaced 𝑤’s in [0, … , 𝑞 − 1].
• Bound the 𝑐’s by 𝐶 = 𝑛/2

◦ 𝐶 = 𝑛𝑞/2𝑢+1 if 𝑢 bits of 𝑥 remain unknown

• Let 𝑤𝑚 = 𝑚𝑞/𝑛 for 𝑚 ∈ 0, … ,𝑛 − 1
◦ 𝑤𝑚 = 2𝑢𝑚/𝑛 if 𝑢 bits of 𝑥 remain unknown

• Placing 𝑤𝑚 in the bias equation gives
 𝐵𝑞 𝑤𝑚 = ∑ 𝑍𝑡𝑒2𝜋𝑖𝑡𝑚/𝑛𝑛−1

𝑡=0 where 𝑍𝑡 = ∑ 𝑒2𝜋𝑖ℎ𝑗/𝑞{𝑗|𝑐𝑗=𝑡}

• This is the inverse FFT of 𝑍 = (𝑍0, … ,𝑍𝑛−1)

20 ©2013 Cryptography Research, Inc.

Attack algorithm for bounded 𝑐’s
Attack is an iterative process with 𝑛 = 2𝑁-point FFT.

1. Zero the vector Z and then loop over all 𝐿 pairs (𝑐𝑗,ℎ𝑗)

i. Add each 𝑒
2𝜋𝜋ℎ𝑗
𝑞 to the appropriate 𝑍𝑡 , namely 𝑡 = 𝑐𝑗.

2. Compute the inverse FFT of 𝑍 and find the 𝑚 for which 𝐵𝑞(𝑤𝑚) is maximal

3. The most significant 𝑁 bits of 𝑥 are 𝑚𝑠𝑏𝑁
(𝑥) = 𝑚𝑠𝑏𝑁(𝑚𝑞

𝑛
)

i. If 𝑢 bits of 𝑥 remain unknown, the next block of bits of 𝑥 recovered is
𝑚𝑠𝑏𝑁(2

𝑢𝑚
𝑛

)

4. Absorb the recovered bits of 𝑥 into the ℎ𝑗’s. Adjust the bound on the 𝑐𝑗’s .
Repeat steps 1-3 to recover the next block of bits of x.

21 ©2013 Cryptography Research, Inc.

Practical Issues: How to reduce the 𝑐’s
• The 𝑐’s will not be nicely bounded as required for the attack
• Need to find linear combinations of the 𝑐’s which are

appropriately bounded
• Take corresponding linear combinations of the ℎ’s as well
• This will broaden the peak of the bias at the cost of

attenuating it
◦ The goal is to broaden the peak so that the required number of
𝑤𝑚 is small enough to exhaust over, without flattening the peak
so much that the bias disappears

22 ©2013 Cryptography Research, Inc.

Practical Issues: How to reduce the 𝑐’s

• Number of 𝑐’s in each
linear combination: 1

• Number of bits in the

reduced 𝑐’s: 16

• Effect on the pdf of the 𝑘𝑗 as
the 𝑐𝑗 (and corresponding ℎ𝑗)
are linearly combined

• Number of 𝑐’s in each
linear combination: 2

• Number of bits in the

reduced 𝑐’s: 14

• Number of 𝑐’s in each
linear combination: 4

• Number of bits in the

reduced 𝑐’s: 12

• Number of 𝑐’s in each
linear combination: 8

• Number of bits in the

reduced 𝑐’s: 10

• Number of 𝑐’s in each
linear combination: 16

• Number of bits in the

reduced 𝑐’s: 8

• Number of 𝑐’s in each
linear combination: 32

• Number of bits in the

reduced 𝑐’s: 6

• Number of 𝑐’s in each
linear combination: 64

• Number of bits in the

reduced 𝑐’s: 4

23 ©2013 Cryptography Research, Inc.

Practical Issues: How to reduce the 𝑐’s
• Effect on the biases of the
𝑉𝑤 = ℎ𝑗 + 𝑐𝑗𝑤 mod 𝑞 as the 𝑐𝑗
(and corresponding ℎ𝑗) are
linearly combined

• Number of 𝑐’s in each

linear combination: 1

• Number of bits in the

reduced 𝑐’s: 16

• Number of 𝑐’s in each
linear combination: 2

• Number of bits in the

reduced 𝑐’s: 14

• Number of 𝑐’s in each
linear combination: 4

• Number of bits in the

reduced 𝑐’s: 12

• Number of 𝑐’s in each
linear combination: 8

• Number of bits in the

reduced 𝑐’s: 10

• Number of 𝑐’s in each
linear combination: 16

• Number of bits in the

reduced 𝑐’s: 8

• Number of 𝑐’s in each
linear combination: 32

• Number of bits in the

reduced 𝑐’s: 6

• Number of 𝑐’s in each
linear combination: 64

• Number of bits in the

reduced 𝑐’s: 4

w

24 ©2013 Cryptography Research, Inc.

Practical Issues: How to reduce the 𝑐’s
• Bleichenbacher originally used millions of signatures and a

clever sort and subtract algorithm to reduce the 𝑐’s
◦ We only had around 4000 signatures available

• We used BKZ to reduce the range of the 𝑐’s
• The 𝐿1and 𝐿∞ norms of the coefficients must be small

enough to avoid attenuating the bias too much
• We had to find a lot of parameters heuristically

◦ max 𝐿1 , max 𝐿∞ norms
◦ Good BKZ parameters for the lattices

25 ©2013 Cryptography Research, Inc.

Practical Issues: Implementation
• The attack is an iterative process

◦ Use BKZ to reduce the 𝑐’s
◦ Compute the inverse FFT of the reduced points to get an

improved approximation to 𝑥

• Discarded a few of the lower order bits of 𝑥 recovered in each
iteration
◦ Results of the inverse FFT can be off by a few bits
◦ Rounded current approximation of 𝑥 for next round

• Kept a short list of top scoring candidates from each iteration

26 ©2013 Cryptography Research, Inc.

Results
• BKZ phase

◦ Used BKZ to compute 3000 reduced 𝑐’s from 4000 original signatures
◦ BKZ dimension = 129, block size of 20, and weight of 225
◦ Bound of 228 for the 𝑐’s during the first iteration
◦ Coefficient bounds: 𝐿1 = 325, 𝐿∞ = 8
◦ Each reduction took 2 minutes and returned on average 2 usable

reduced 𝑐’s

• 228-point inverse FFT phase
◦ One inverse FFT took 30 seconds

• We successfully attacked a 5-bit leak, a 4-bit leak would be possible
using 500,000 reduced 𝑐’s with smaller 𝐿1 and 𝐿∞ norms

• Using SVP and CVP lattice methods we successfully attacked a 4-bit
leak twice in 583 trials over a range of 100-200 points per lattice.

27 ©2013 Cryptography Research, Inc.

Further research suggestions
• Although we performed worse than standard attacks, we

believe there is a lot of room for improvement
• Balance the work between BKZ and FFT phases

◦ Guess some high-order bits of 𝑥 and keep a list of possible
candidates for a few iterations

◦ This makes the first iteration (the hardest one) easier
◦ With enough points the list will prune quickly

• Better range reduction of the 𝑐’s is the key
◦ Improved BKZ implementations such as BKZ 2.0, perhaps using

the 𝐿∞norm as the metric instead of the usual 𝐿2 norm
◦ Other strategies?

28 ©2013 Cryptography Research, Inc.

Questions

	Using Bleichenbacher’s Solution to the Hidden Number Problem to Attack Nonce Leaks in 384-Bit ECDSA.
	Overview of the talk
	The device and implementation being evaluated
	The device and implementation being evaluated
	The device and implementation being evaluated
	The device and implementation being evaluated
	Analyzing the modular inversion of the nonce
	Analyzing the modular inversion of the nonce
	Previous work attacking nonce leaks
	Mapping nonce leaks to a hidden number problem
	Bleichenbacher’s attack: The bias formula
	Bleichenbacher’s attack: The bias formula
	Bleichenbacher’s attack: The bias formula
	Bleichenbacher’s attack: Why does it work?
	Slide Number 15
	Bleichenbacher’s attack: Bounding the 𝑐’s
	Bleichenbacher’s attack: Bounding the 𝑐’s
	Bleichenbacher’s attack: Bounding the 𝑐’s
	Attack algorithm for bounded 𝑐’s
	Attack algorithm for bounded 𝑐’s
	Practical Issues: How to reduce the 𝑐’s
	Practical Issues: How to reduce the 𝑐’s
	Practical Issues: How to reduce the 𝑐’s
	Practical Issues: How to reduce the 𝑐’s
	Practical Issues: Implementation
	Results
	Further research suggestions
	Questions

