Using Bleichenbacher's Solution to the Hidden Number Problem to Attack Nonce Leaks in 384-Bit ECDSA.

Elke De Mulder, Michael Hutter, Mark/E./Marson/Peter Pearson

Overview of the talk

- The device and implementation being evaluated
- Previous work attacking nonce leaks
- Details of Bleichenbacher's attack
- Results
- Further research suggestions

The device and implementation being evaluated

• The device

- BasicCard Family of Smart Cards: ZeitControl (German)
- Card has built in curves from ECC-Brainpool
- The Implementation
 - ECDSA over a 384-bit prime field curve, BrainpoolP384r1
 - Values in Montgomery representation for efficient arithmetic
 - Curve points represented in Jacobian projective coordinates
 - Scalar multiplications computed on the curve twist BrainpoolP384t1
 - Scalar multiplication uses the signed comb method with 7 teeth
 - 64 pre-computed points in memory for point additions; points for subtractions computed on the fly

The device and implementation being evaluated

- Let E be an elliptic curve defined over F_p and G an element of order q (q * G = **O**) in E. Let H denote the hash of the message m to be signed.
- ECDSA Signature Generation
 - Generate a random secret nonce K, 0 < K < q, and computes K * G = (u,v)
 - Compute r = u mod q
 - Compute $s = K^{-1} * (H + r^*x) \mod q$
 - Signature of m is (r, s)

The device and implementation being evaluated

Analyzing the modular inversion of the nonce

- We used DPA to identify the inversion algorithm
- Binary inversion algorithm
 - Due to R. Lórencz (CHES 2002)
 - Modified M. Penk algorithm

```
Input: a \in [1, p-1] and p
Output: r \in [1, p-1] and k, where r = a^{-1} \mod p
         and n \le k \le 2n
1. u := p, v := a, r := 0, s := 1
  k := 0
2.
3.
   while (v > 0)
       if (u \text{ is even}) then
4.
            if (r \text{ is even}) then
5.
6.
                  u := u/2, r := r/2, k := k + 1
7.
             else
8.
                  u := u/2, r := (r+p)/2, k := k+1
9.
       else if (v \text{ is even}) then
10.
             if (s is even) then
11.
                  v := v/2, s := s/2, k := k + 1
12.
             else
13.
                  v := v/2, s := (s+p)/2, k := k+1
14.
       else x := (u - v)
15.
            if (x > 0) then
16.
                  u := x, r := r - s
17.
                  if (r < 0) then
18.
                      r := r + p
19.
             else
20.
                  v := -x, s := s - r
21.
                  if (s < 0) then
22.
                      s := s + p
23. if (r > p) then
       r := r - p
24.
25. if (r < 0) then
       r := r + p
26.
27. return r and k.
```

Analyzing the modular inversion of the nonce

- Developed templates based on the low-order bits of the nonces
- The template attack recovered the low-order 7 bits of each nonce reliably

Previous work attacking nonce leaks

- Most previous nonce leak attacks are based on lattice methods
 - Boneh and Venkatesan, CRYPTO '96
 - Howgrave-Graham and Smart, 2001
 - Nguyen and Shparlinski, 2002 & 2003
 - Naccache et al., 2005
 - Liu and Nguyen, 2013
- Wanted to try a different approach: Bleichenbacher's method
 - Introduced in 2000 at an IEEE P1363 Working Group meeting
 - Used to attack the PRNG in DSA
- Largely undocumented
 - We had to fill in many of the details of the attack
 - Many in the crypto community are unaware of the method

Mapping nonce leaks to a hidden number problem

- $s_j = K_j^{-1}(H_j + r_j x) \mod q$ (second half of ECDSA signature)
- Given the low-order b bits of each K_j

 $K_j = 2^b K_{j,hi} + K_{j,lo}$

• We can rearrange the signature equation above

• Goal of the Hidden Number Problem is to find the secret x

Bleichenbacher's attack: The bias formula

• For random variable X over $\mathbb{Z}/q\mathbb{Z}$, the bias is defined as

$$B_q(X) = E(e^{(\frac{2\pi i X}{q})})$$

• For a set of points $V = [v_0, v_1, ..., v_{L-1}]$ in [0, ..., q - 1]the sampled bias is defined as

$$B_q(V) = \frac{1}{L} \sum_{j=0}^{L-1} e^{\left(\frac{2\pi i v_j}{q}\right)}$$

Bleichenbacher's attack: The bias formula

- Let $0 < T \le q$, and suppose X is uniformly distributed over $\left[-\frac{T-1}{2}, \dots, \frac{T-1}{2}\right]$. Then:
 - $B_q(X + X') = B_q(X)B_q(X')$ for independent X and X'

•
$$B_q(X) = \frac{\frac{1}{T}\sin\left(\frac{\pi T}{q}\right)}{\sin\left(\frac{\pi}{q}\right)}$$
. Hence $0 \le B_q(X) \le 1$

- If X is uniformly distributed over $[0 \dots q 1]$, then $B_q(X) = 0$
- Example biases for $R = \frac{T}{q} = 2^{-b}$, for large q, are shown below

b	1	2	3	4	5	6	7	8
$B_q(X)$	0.637	0.900	0.974	0.994	0.998	0.9995985	0.9998996	0.9999749

Bleichenbacher's attack: The bias formula

• For each $w \in [0, ..., q - 1]$, define the set of points $V_w = \{h_j + c_j w \mod q\}$ for j = [0, ..., L - 1]

• Then the sampled bias of V_w is:

Bleichenbacher's attack: Why does it work?

Bleichenbacher's attack: Why does it work?

 $w \neq x$ t = 0 t = 1 t = 2 \cdots t = q - 1

 $\{j|c_i=t\}$

 $e^{2\pi i k_j/q}$

Bleichenbacher's attack: Bounding the c's

- The bias gives us a way to score putative solutions *w* to our hidden number problem
 - The correct x is will have bias close to one
 - All other w's will have bias close to zero
- Problem: q has 384 bits
 - Far too large to exhaust over all the w's
- Recall we are computing the sampled biases of $V_w = \{h_j + c_j w \mod q\}$
- Bleichenbacher's insight was that if all the c's are bounded and much smaller than q, then the w's near x will also have large biases
 - This allows us to find to find approximations to *x* by searching over a much sparser set of *w*'s

Bleichenbacher's attack: Bounding the c's

Bleichenbacher's attack: Bounding the c's

w not close to x

t = 0 t = 1 t = 2 t = C t = C + 1 t = C + 2 \cdots t = q - 1

Attack algorithm for bounded c's

- Let's find an approximation to x by searching over $n = 2^N$ equally spaced w's in [0, ..., q 1].
- Bound the c's by C = n/2

• $C = nq/2^{u+1}$ if u bits of x remain unknown

• Let
$$w_m = mq/n$$
 for $m \in [0, ..., n-1]$
• $w_m = 2^u m/n$ if u bits of x remain unknown

• Placing w_m in the bias equation gives

$$B_q(w_m) = \sum_{t=0}^{n-1} Z_t e^{2\pi i t m/n}$$
 where $Z_t = \sum_{\{j | c_j = t\}} e^{2\pi i h_j/q}$

• This is the inverse FFT of $Z = (Z_0, ..., Z_{n-1})$

Attack algorithm for bounded c's

Attack is an iterative process with $n = 2^N$ -point FFT.

- 1. Zero the vector Z and then loop over all L pairs (c_i, h_j)
 - i. Add each $e^{\left(\frac{2\pi i h_j}{q}\right)}$ to the appropriate Z_t , namely $t = c_j$.
- 2. Compute the inverse FFT of Z and find the m for which $B_q(w_m)$ is maximal
- 3. The most significant N bits of x are $msb_N(x) = msb_N(\frac{mq}{n})$
 - i. If *u* bits of *x* remain unknown, the next block of bits of *x* recovered is $msb_N(\frac{2^um}{n})$
- 4. Absorb the recovered bits of x into the h_j 's. Adjust the bound on the c_j 's. Repeat steps 1-3 to recover the next block of bits of x.

- The *c*'s will not be nicely bounded as required for the attack
- Need to find linear combinations of the *c*'s which are appropriately bounded
- Take corresponding linear combinations of the h's as well
- This will broaden the peak of the bias at the cost of attenuating it
 - The goal is to broaden the peak so that the required number of w_m is small enough to exhaust over, without flattening the peak so much that the bias disappears

• Effect on the biases of the $V_w = \{h_j + c_j w \mod q\}$ as the c_j (and corresponding h_j) are linearly combined

- Number of *c*'s in each linear combination: 64
- Number of bits in the reduced *c*'s: 4

Â

- Bleichenbacher originally used millions of signatures and a clever sort and subtract algorithm to reduce the c's
 We only had around 4000 signatures available
- We used BKZ to reduce the range of the c's
- The L_1 and L_{∞} norms of the coefficients must be small enough to avoid attenuating the bias too much
- We had to find a lot of parameters heuristically
 - $\max(L_1), \max(L_\infty)$ norms
 - Good BKZ parameters for the lattices

Practical Issues: Implementation

- The attack is an iterative process
 - Use BKZ to reduce the c's
 - Compute the inverse FFT of the reduced points to get an improved approximation to x
- Discarded a few of the lower order bits of *x* recovered in each iteration
 - Results of the inverse FFT can be off by a few bits
 - Rounded current approximation of *x* for next round
- Kept a short list of top scoring candidates from each iteration

Results

• BKZ phase

- Used BKZ to compute 3000 reduced c's from 4000 original signatures
- BKZ dimension = 129, block size of 20, and weight of 2^{25}
- Bound of 2^{28} for the *c*'s during the first iteration
- Coefficient bounds: $L_1 = 325$, $L_{\infty} = 8$
- Each reduction took 2 minutes and returned on average 2 usable reduced c's
- 2²⁸-point inverse FFT phase
 - One inverse FFT took 30 seconds
- We successfully attacked a 5-bit leak, a 4-bit leak would be possible using 500,000 reduced c's with smaller L_1 and L_∞ norms
- Using SVP and CVP lattice methods we successfully attacked a 4-bit leak twice in 583 trials over a range of 100-200 points per lattice.

Further research suggestions

- Although we performed worse than standard attacks, we believe there is a lot of room for improvement
- Balance the work between BKZ and FFT phases
 - Guess some high-order bits of x and keep a list of possible candidates for a few iterations
 - This makes the first iteration (the hardest one) easier
 - With enough points the list will prune quickly
- Better range reduction of the *c*'s is the key
 - Improved BKZ implementations such as BKZ 2.0, perhaps using the L_{∞} norm as the metric instead of the usual L_2 norm
 - Other strategies?

