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Overview of the talk 
• The device and implementation being evaluated 
• Previous work attacking nonce leaks 
• Details of Bleichenbacher’s attack 
• Results 
• Further research suggestions 



3 ©2013 Cryptography Research, Inc. 

The device and implementation being evaluated 
• The device 

◦ BasicCard Family of Smart Cards: ZeitControl (German) 
◦ Card has built in curves from ECC-Brainpool 

 

• The Implementation 
◦ ECDSA over a 384-bit prime field curve, BrainpoolP384r1 
◦ Values in Montgomery representation for efficient arithmetic 
◦ Curve points represented in Jacobian projective coordinates 
◦ Scalar multiplications computed on the curve twist 

BrainpoolP384t1 
◦ Scalar multiplication uses the signed comb method with 7 teeth 
◦ 64 pre-computed points in memory for point additions; points 

for subtractions computed on the fly 
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The device and implementation being evaluated 
• Let E be an elliptic curve defined over Fp and G an element of 

order q (q * G = O) in E.  Let H denote the hash of the message 
m to be signed. 

 

• ECDSA Signature Generation 
◦ Generate a random secret nonce K, 0 < K < q, and 

computes K * G = (u,v) 
◦ Compute r = u mod q 
◦ Compute s = K-1 * (H + r*x) mod q 
◦ Signature of m is (r, s) 
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The device and implementation being evaluated 
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The device and implementation being evaluated 
 
 

 

↑     Before and after filtering   ↓ 

Nonce generation Scalar multiplication Final signing (hash, add, mult, invert, …) 
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Analyzing the modular inversion of the nonce 

 We used DPA to identify the 
inversion algorithm 

 Binary inversion algorithm 
 Due to R. Lórencz (CHES 2002) 
 Modified M. Penk algorithm 
 

 



8 ©2013 Cryptography Research, Inc. 

Analyzing the modular inversion of the nonce 

K = 0x…000 

K = 0x…001 

K = 0x…002 

K = 0x…FFF 

• Developed templates based on the low-order bits of the 
nonces 

• The template attack recovered the low-order 7 bits of 
each nonce reliably 
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Previous work attacking nonce leaks 
• Most previous nonce leak attacks are based on lattice methods 

◦ Boneh and Venkatesan, CRYPTO ’96 
◦ Howgrave-Graham and Smart, 2001 
◦ Nguyen and Shparlinski, 2002 & 2003 
◦ Naccache et al., 2005 
◦ Liu and Nguyen, 2013 

• Wanted to try a different approach: Bleichenbacher’s method 
◦ Introduced in 2000 at an IEEE P1363 Working Group meeting 
◦ Used to attack the PRNG in DSA 

• Largely undocumented 
◦ We had to fill in many of the details of the attack 
◦ Many in the crypto community are unaware of the method 
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Mapping nonce leaks to a hidden number 
problem 
• 𝑠𝑗 = 𝐾𝑗−1 𝐻𝑗 + 𝑟𝑗𝑥  𝑚𝑚𝑚 𝑞    (second half of ECDSA signature) 

• Given the low-order 𝑏 bits of each 𝐾𝑗    

 𝐾𝑗 = 2𝑏𝐾𝑗,ℎ𝑖 + 𝐾𝑗,𝑙𝑙 

• We can rearrange the signature equation above 

 𝑘𝑗 = ℎ𝑗 + 𝑐𝑗𝑥 + 𝛼𝑗𝑞 

  where 

 𝑘𝑗 = 𝐾𝑗,ℎ𝑖 − ⌈𝑞𝑏+1⌋ 

 ℎ𝑗 = 2𝑏 𝑠𝑗−1𝐻𝑗 − 𝐾𝑗,𝑙𝑙 − ⌈𝑞𝑏+1⌋ 𝑚𝑚𝑚 𝑞  

 𝑐𝑗  = 2−𝑏𝑠𝑗−1𝑟𝑗 𝑚𝑚𝑚 𝑞 

• Goal of the Hidden Number Problem is to find the secret 𝑥 

Hidden Number Problem 

Unknown but biased 

Known 

Known 
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Bleichenbacher’s attack: The bias formula 
• For random variable 𝑋 over ℤ/𝑞ℤ, the bias is 
defined as  

 𝐵𝑞 𝑋 = 𝐸(𝑒(2𝜋𝜋𝜋𝑞 )) 

 
• For a set of points 𝑉 = 𝑣0, 𝑣1, … ,𝑣𝐿−1  in 0, … , 𝑞 − 1  
the sampled bias is defined as 

 𝐵𝑞 𝑉 = 1
𝐿
∑ 𝑒

2𝜋𝜋𝑣𝑗
𝑞𝐿−1

𝑗=0  
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Bleichenbacher’s attack: The bias formula 
• Let 0 < 𝑇 ≤ 𝑞, and suppose 𝑋 is uniformly distributed over −𝑇−1

2
, … , 𝑇−1

2
. 

Then: 
◦ 𝐵𝑞 𝑋 + 𝑋′ = 𝐵𝑞 𝑋 𝐵𝑞 𝑋′  for independent 𝑋 and 𝑋′ 

◦ 𝐵𝑞 𝑋 =
1
𝑇 sin

𝜋𝑇
𝑞

sin(𝜋𝑞)
. Hence 0 ≤ 𝐵𝑞 𝑋 ≤ 1 

◦ If 𝑋 is uniformly distributed over [0 … 𝑞 − 1], then 𝐵𝑞 𝑋 = 0 

• Example biases for 𝑅 = 𝑇
𝑞

= 2−𝑏, for large 𝑞, are shown below 

 
 

 

b 1 2 3 4 5 6 7 8 
𝐵𝑞(𝑋) 0.637 0.900 0.974 0.994 0.998 0.9995985 0.9998996 0.9999749 
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Bleichenbacher’s attack: The bias formula 
• For each 𝑤 ∈ 0, … , 𝑞 − 1 , define the set of points 𝑉𝑤 =

 ℎ𝑗 + 𝑐𝑗𝑤 mod 𝑞  for 𝑗 = 0, … , 𝐿 − 1  

 
• Then the sampled bias of 𝑉𝑤 is: 

 𝐵𝑞 𝑤 = 1
𝐿
∑ 𝑒2𝜋𝑖(ℎ𝑗+𝑐𝑗𝑤)/𝑞𝐿−1
𝑗=0  

            =  � 1
𝐿
� 𝑒2𝜋𝑖𝑘𝑗/𝑞 {𝑗|𝑐𝑗=𝑡} 𝑒2𝜋𝑖𝑡(𝑤−𝑥)/𝑞

𝑞−1

𝑡=0
 

k/q 

-1/2 1/2 
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𝑤 = 𝑥   
𝑡 = 0 
𝑡 = 1 
𝑡 = 2 
𝑡 = 𝑞 − 1 

… 

Bleichenbacher’s attack: Why does it work? 

�
1
𝐿 � 𝑒2𝜋𝑖𝑘𝑗/𝑞 

{𝑗|𝑐𝑗=𝑡}

𝑒2𝜋𝑖𝑡(𝑤−𝑥)/𝑞

𝑞−1

𝑡=0
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𝑤 ≠ 𝑥   
𝑡 = 0 
𝑡 = 1 
𝑡 = 2 
𝑡 = 𝑞 − 1 
… 

�
1
𝐿 � 𝑒2𝜋𝑖𝑘𝑗/𝑞 

{𝑗|𝑐𝑗=𝑡}

𝑒2𝜋𝑖𝑡(𝑤−𝑥)/𝑞

𝑞−1

𝑡=0

 

Bleichenbacher’s attack: Why does it work? 
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Bleichenbacher’s attack: Bounding the 𝑐’s 
• The bias gives us a way to score putative solutions 𝑤 to our hidden 

number problem 
◦ The correct 𝑥 is will have bias close to one 
◦ All other 𝑤’s will have bias close to zero 

• Problem: 𝑞 has 384 bits 
◦ Far too large to exhaust over all the 𝑤’s 

• Recall we are computing the sampled biases of 𝑉𝑤 =  ℎ𝑗 + 𝑐𝑗𝑤 mod 𝑞  

• Bleichenbacher’s insight was that if all the 𝑐’s are bounded and much 
smaller than 𝑞, then the 𝑤’s near 𝑥 will also have large biases 
◦ This allows us to find to find approximations to 𝑥 by searching over a much 

sparser set of 𝑤’s 
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Bleichenbacher’s attack: Bounding the 𝑐’s 
𝑤 close to 𝑥   

𝑡 = 0 
𝑡 = 1 
𝑡 = 2 

𝑡 = 𝑞 − 1 

… 
𝑡 = 𝐶 
𝑡 = 𝐶 + 1 
𝑡 = 𝐶 + 2 … 

�
1
𝐿 � 𝑒2𝜋𝑖𝑘𝑗/𝑞 

{𝑗|𝑐𝑗=𝑡}

𝑒2𝜋𝑖𝑡(𝑤−𝑥)/𝑞

𝑞−1

𝑡=0
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Bleichenbacher’s attack: Bounding the 𝑐’s 
𝑤 not close to 𝑥   

𝑡 = 0 
𝑡 = 1 
𝑡 = 2 

𝑡 = 𝑞 − 1 

… 
𝑡 = 𝐶 
𝑡 = 𝐶 + 1 
𝑡 = 𝐶 + 2 … 

�
1
𝐿 � 𝑒2𝜋𝑖𝑘𝑗/𝑞 

{𝑗|𝑐𝑗=𝑡}

𝑒2𝜋𝑖𝑡(𝑤−𝑥)/𝑞

𝑞−1

𝑡=0
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Attack algorithm for bounded 𝑐’s 
• Let’s find an approximation to 𝑥 by searching over 𝑛 =  2𝑁 

equally spaced 𝑤’s in [0, … , 𝑞 − 1]. 
• Bound the 𝑐’s by 𝐶 = 𝑛/2 

◦ 𝐶 = 𝑛𝑞/2𝑢+1 if 𝑢 bits of 𝑥 remain unknown 

• Let 𝑤𝑚 = 𝑚𝑞/𝑛 for 𝑚 ∈ 0, … ,𝑛 − 1  
◦ 𝑤𝑚 = 2𝑢𝑚/𝑛 if 𝑢 bits of 𝑥 remain unknown 

• Placing 𝑤𝑚 in the bias equation gives 
 𝐵𝑞 𝑤𝑚 =  ∑ 𝑍𝑡𝑒2𝜋𝑖𝑡𝑚/𝑛𝑛−1

𝑡=0      where     𝑍𝑡 =  ∑ 𝑒2𝜋𝑖ℎ𝑗/𝑞{𝑗|𝑐𝑗=𝑡}  

• This is the inverse FFT of 𝑍 = (𝑍0, … ,𝑍𝑛−1) 
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Attack algorithm for bounded 𝑐’s 
Attack is an iterative process with 𝑛 =  2𝑁-point FFT. 

1. Zero the vector Z and then loop over all 𝐿 pairs (𝑐𝑗,ℎ𝑗) 

i. Add each 𝑒
2𝜋𝜋ℎ𝑗
𝑞  to the appropriate 𝑍𝑡 , namely 𝑡 = 𝑐𝑗.   

2. Compute the inverse FFT of 𝑍 and find the 𝑚 for which 𝐵𝑞(𝑤𝑚) is maximal 

3. The most significant 𝑁 bits of 𝑥 are 𝑚𝑠𝑏𝑁 
(𝑥) = 𝑚𝑠𝑏𝑁(𝑚𝑞

𝑛
) 

i. If 𝑢 bits of 𝑥 remain unknown, the next block of bits of 𝑥 recovered is 
𝑚𝑠𝑏𝑁(2

𝑢𝑚
𝑛

) 

4. Absorb the recovered bits of 𝑥 into the ℎ𝑗’s. Adjust the bound on the 𝑐𝑗’s . 
Repeat steps 1-3 to recover the next block of bits of x. 
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Practical Issues: How to reduce the 𝑐’s 
• The 𝑐’s will not be nicely bounded as required for the attack 
• Need to find linear combinations of the 𝑐’s which are 

appropriately bounded 
• Take corresponding linear combinations of the ℎ’s as well 
• This will broaden the peak of the bias at the cost of 

attenuating it 
◦ The goal is to broaden the peak so that the required number of 
𝑤𝑚 is small enough to exhaust over, without flattening the peak 
so much that the bias disappears 
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Practical Issues: How to reduce the 𝑐’s 

• Number of 𝑐’s in each 
linear combination: 1 

 
• Number of bits in the 

reduced 𝑐’s: 16  

• Effect on the pdf of the 𝑘𝑗 as 
the 𝑐𝑗 (and corresponding ℎ𝑗) 
are linearly combined 

• Number of 𝑐’s in each 
linear combination: 2 

 
• Number of bits in the 

reduced 𝑐’s: 14  

• Number of 𝑐’s in each 
linear combination: 4 

 
• Number of bits in the 

reduced 𝑐’s: 12  

• Number of 𝑐’s in each 
linear combination: 8 

 
• Number of bits in the 

reduced 𝑐’s: 10  

• Number of 𝑐’s in each 
linear combination: 16 

 
• Number of bits in the 

reduced 𝑐’s: 8  

• Number of 𝑐’s in each 
linear combination: 32 

 
• Number of bits in the 

reduced 𝑐’s: 6  

• Number of 𝑐’s in each 
linear combination: 64 

 
• Number of bits in the 

reduced 𝑐’s: 4  
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Practical Issues: How to reduce the 𝑐’s 
• Effect on the biases of the 
𝑉𝑤 = ℎ𝑗 + 𝑐𝑗𝑤 mod 𝑞  as the 𝑐𝑗 
(and corresponding ℎ𝑗) are 
linearly combined 

 
• Number of 𝑐’s in each 

linear combination: 1 
 
• Number of bits in the 

reduced 𝑐’s: 16  

• Number of 𝑐’s in each 
linear combination: 2 

 
• Number of bits in the 

reduced 𝑐’s: 14  

• Number of 𝑐’s in each 
linear combination: 4 

 
• Number of bits in the 

reduced 𝑐’s: 12  

• Number of 𝑐’s in each 
linear combination: 8 

 
• Number of bits in the 

reduced 𝑐’s: 10  

• Number of 𝑐’s in each 
linear combination: 16 

 
• Number of bits in the 

reduced 𝑐’s: 8  

• Number of 𝑐’s in each 
linear combination: 32 

 
• Number of bits in the 

reduced 𝑐’s: 6  

• Number of 𝑐’s in each 
linear combination: 64 

 
• Number of bits in the 

reduced 𝑐’s: 4  

w 
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Practical Issues: How to reduce the 𝑐’s 
• Bleichenbacher originally used millions of signatures and a 

clever sort and subtract algorithm to reduce the 𝑐’s 
◦ We only had around 4000 signatures available 

• We used BKZ to reduce the range of the 𝑐’s 
• The 𝐿1and 𝐿∞ norms of the coefficients must be small 

enough to avoid attenuating the bias too much 
• We had to find a lot of parameters heuristically 

◦ max 𝐿1 , max 𝐿∞  norms 
◦ Good BKZ parameters for the lattices 
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Practical Issues: Implementation 
• The attack is an iterative process 

◦ Use  BKZ to reduce the 𝑐’s 
◦ Compute the inverse FFT of the reduced points to get an 

improved approximation to 𝑥 

• Discarded a few of the lower order bits of 𝑥 recovered in each 
iteration 
◦ Results of the inverse FFT can be off by a few bits 
◦ Rounded current approximation of 𝑥 for next round 

• Kept a short list of top scoring candidates from each iteration 
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Results 
• BKZ phase  

◦ Used BKZ to compute 3000 reduced 𝑐’s from 4000 original signatures 
◦ BKZ dimension = 129,  block size of 20, and weight of 225  
◦ Bound of 228 for the 𝑐’s during the first iteration 
◦ Coefficient bounds: 𝐿1 = 325, 𝐿∞ = 8 
◦ Each reduction took 2 minutes and returned on average 2 usable 

reduced 𝑐’s 

• 228-point inverse FFT phase 
◦ One inverse FFT took 30 seconds 

• We successfully attacked a 5-bit leak, a 4-bit leak would be possible 
using 500,000 reduced 𝑐’s with smaller 𝐿1 and 𝐿∞ norms 

• Using SVP and CVP lattice methods we successfully attacked a 4-bit 
leak twice in 583 trials over a range of 100-200 points per lattice. 
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Further research suggestions 
• Although we performed worse than standard attacks, we 

believe there is a lot of room for improvement 
• Balance the work between BKZ and FFT phases 

◦ Guess some high-order bits of 𝑥 and keep a list of possible 
candidates for a few iterations 

◦ This makes the first iteration (the hardest one) easier 
◦ With enough points the list will prune quickly 

• Better range reduction of the 𝑐’s is the key 
◦ Improved BKZ implementations such as BKZ 2.0, perhaps using 

the 𝐿∞norm as the metric instead of the usual 𝐿2 norm 
◦ Other strategies? 
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Questions 
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