Block Ciphers that are Easier to Mask How Far Can we Go ?

Benoît Gérard, Vincent Grosso, María Naya-Plasencia, **François-Xavier Standaert**

DGA & UCL Crypto Group & INRIA

CHES 2013 Santa Barbara, USA

- Trojan horses of modern cryptography
 - Used for encryption, authentication, hashing

- Trojan horses of modern cryptography
 - Used for encryption, authentication, hashing
- Well known standards (DES, AES)

- Trojan horses of modern cryptography
 - Used for encryption, authentication, hashing
- Well known standards (DES, AES)
- Active research in lightweight designs
 - TEA, NOEKEON, SERPENT, ICEBERG, HIGHT, mCrypton, SEA, PRESENT, KATAN, MIBS, LED, Piccolo, Lblock, KLEIN, PRINCE, ...

- Trojan horses of modern cryptography
 - Used for encryption, authentication, hashing
- Well known standards (DES, AES)
- Active research in lightweight designs
 - TEA, NOEKEON, SERPENT, ICEBERG, HIGHT, mCrypton, SEA, PRESENT, KATAN, MIBS, LED, Piccolo, Lblock, KLEIN, PRINCE, ...
 - Optimized for various performance criteria
 - Code size, throughput, gate count, energy, ...

Lessons learned (Atmel AVR case)

Different designs ≈ different tradeoffs

Lessons learned (ASIC case)

- Different designs ≈ different tradeoffs
- Similar design principles (e.g. wide-trail strategy) lead to similar "efficiencies" (security is the limit)

Masking

- aka secret sharing see previous talk
 - Most investigated countermeasure against SCAs
 - Main idea: split the sensitive data in *r* shares

Masking

- aka secret sharing see previous talk
 - Most investigated countermeasure against SCAs
 - Main idea: split the sensitive data in r shares
- If perfect implementation, the data complexity to break masking is proportional to $(\sigma_n^2)^r$
 - Perfect ~ if the smallest-order key-dependent moment in the leakage distribution is r
 - Essentially depends on physical assumptions
 - Difficult in hardware (glitches, ...)
 - Easier in software (time separation)

Masking

- aka secret sharing see previous talk
 - Most investigated countermeasure against SCAs
 - Main idea: split the sensitive data in *r* shares

Lessons learned

- Goals are similar to (but not the same as) MPC
 - Linear operations are easy to perform
 - Masks can be propagated independently

Lessons learned

- Goals are similar to (but not the same as) MPC
 - Linear operations are easy to perform
 - Masks can be propagated independently
 - Non-linear operations are more expensive
 - Need interaction (and randomness)
 - Implementation cost increases with r^2

Lessons learned

- Goals are similar to (but not the same as) MPC
 - Linear operations are easy to perform
 - Masks can be propagated independently
 - Non-linear operations are more expensive
 - Need interaction (and randomness)
 - Implementation cost increases with *r*²
- Given a block cipher (e.g. the AES), it is usually possible to implement masking "quite" efficiently
 - By finding the best representation
 - e.g. [RP10,PR11]: AES S-box \approx 4 multiplications

Research problem

 Does it make sense to "reverse" the question, i.e. design a block cipher that is efficient to mask?

Research problem

• Does it make sense to "reverse" the question, i.e. design a block cipher that is efficient to mask?

- Previous work: PIretCArletROche (ACNS 2011)
 - Mostly focused in the S-box selection
 - Feistel structure + non-bijective S-box

Research problem

• Does it make sense to "reverse" the question, i.e. design a block cipher that is efficient to mask?

- Previous work: PlretCArletROche (ACNS 2011)
 - Mostly focused in the S-box selection
 - Feistel structure + non-bijective S-box
- Interesting approach but...
 - Non-bijective S-boxes are bad choice for SCAresistance (because they allow generic attacks)

- Re-using the AES rounds as much as possible
 - Most investigated cipher for physical attacks

- Re-using the AES rounds as much as possible
 - Most investigated cipher for physical attacks
- Keeping bijective S-boxes
 - That can be represented with less multiplications

- Re-using the AES rounds as much as possible
 - Most investigated cipher for physical attacks
- Keeping bijective S-boxes
 - That can be represented with less multiplications
- Reducing the total number of S-boxes
 - Taking advantage of strong diffusion

- Re-using the AES rounds as much as possible
 - Most investigated cipher for physical attacks
- Keeping bijective S-boxes
 - That can be represented with less multiplications
- Reducing the total number of S-boxes
 - Taking advantage of strong diffusion
- Excluding related keys for now
 - As most lightweight ciphers

- 1. Which S-boxes?
- 2. How many S-boxes?
- 3. Key scheduling
- 4. Putting things together

1. Which S-boxes?

- Goal: reduce the number of multiplications (keeping decent linear/differential/algebraic properties)
 - AES S-box: 4 multiplications, max(WS)=32, max(DS) = 4, algebraic degree = 7

1. Which S-boxes?

- Goal: reduce the number of multiplications (keeping decent linear/differential/algebraic properties)
 - AES S-box: 4 multiplications, max(WS)=32, max(DS) = 4, algebraic degree = 7
- Monomials/binomials in GF(2^8): exhaustive search
- Others S-boxes: "informed search", e.g.

Results

	required randomness (bit) $\#$ sec. mult.			# sec. mult.	additional operations	security properties		
	d = 1	d = 2	d			deg(S)	$\max \Delta_S$	$\max \varOmega_S$
AES [33]	48	128	$16d^2 + 32d$	$4 (GF(2^8))$	7 squ. + 1 Diff. matrix	7	4	32
AES [19]	32	84	$10d^2 + 22d$	$5 (GF(2^4))$	3 squ. + 5 Diff. matrix	7	4	32
PICARO	16	48	$8d^2 + 8d$	$4 (GF(2^4))$	$2 \mathrm{squ.}$	4	4	68
X^{γ}	24	64	$8d^2 + 16d$	$2 (GF(2^8))$	2 squ. + 1 Diff. matrix	3	6	64
X^{29}	32	88	$12d^2 + 20d$	$3 (GF(2^8))$	4 squ. + 1 Diff. matrix	4	10	64
X^{37}	24	64	$8d^2 + 16d$	$2 (GF(2^8))$	5 squ. + 1 Diff. matrix	3	6	64
$8X^{97} + X^{12}$	32	80	$8d^2 + 24d$	$2 (GF(2^8))$	6 squ. + 1 Diff. matrix	3	6	48
$155X^7 + X^{92}$	40	104	$12d^2 + 28d$	$3 (GF(2^8))$	8 squ. + 1 Diff. matrix	4	6	48
Ex. 1	32	80	$8d^2 + 24d$	$4 (GF(2^4))$	4 squ. + 4 Diff. matrix	7	10	64
Ex. 2	48	112	$8d^2 + 40d$	$4 (GF(2^4))$	28 squ. + 4 Diff. matrix	6	8	64
Ex. 3	28	70	$7d^2 + 21d$	$2 (GF(2^7))$	2 squ. + 2 Diff. matrix	4	10	64

Results

	required randomness (bit) $\#$ sec. mult.			# sec. mult.	additional operations	security properties		
	d = 1	d = 2	d			deg(S)	$\max \Delta_S$	$\max \Omega_S$
AES [33]	48	128	$16d^2 + 32d$	$4 (GF(2^8))$	7 squ. + 1 Diff. matrix	7	4	32
AES [19]	32	84	$10d^2 + 22d$	$5 (GF(2^4))$	3 squ. + 5 Diff. matrix	7	4	32
PICARO	16	48	$8d^2 + 8d$	$4 (GF(2^4))$	2 squ.	4	4	68
X^{γ}	24	64	$8d^2 + 16d$	$2 (GF(2^8))$	2 squ. + 1 Diff. matrix	3	6	64
X^{29}	32	88	$12d^2 + 20d$	$3 (GF(2^8))$	4 squ. + 1 Diff. matrix	4	10	64
X^{37}	24	64	$8d^2 + 16d$	$2 (GF(2^8))$	5 squ. + 1 Diff. matrix	3	6	64
$8X^{97} + X^{12}$	32	80	$8d^2 + 24d$	$2 (GF(2^8))$	6 squ. + 1 Diff. matrix	3	6	48
$155X^7 + X^{92}$	40	104	$12d^2 + 28d$	$3 (GF(2^8))$	8 squ + 1 Diff matrix	4	6	48
Ex. 1	32	80	$8d^2 + 24d$	$4 (GF(2^4))$	4 squ. + 4 Diff. matrix	7	10	64
Ex. 2	48	112	$8d^2 + 40d$	$4 (GF(2^4))$	28 squ. + 4 Diff. matrix	6	8	64
Ex. 3	28	70	$7d^2 + 21d$	$2 (GF(2^7))$	2 squ. $+ 2$ Diff. matrix	4	10	64

Our choice: same # of multiplications as PICARO

• AES (very) strong against statistical attacks

- AES (very) strong against statistical attacks
- Can we reduce the total # of S-boxes (taking advantage of strong diffusion properties)?

- AES (very) strong against statistical attacks
- Can we reduce the total # of S-boxes (taking advantage of strong diffusion properties)?
- Answer: mainly depends on the permutation layer
 - e.g. not possible with wire crossings (see paper)

- AES (very) strong against statistical attacks
- Can we reduce the total # of S-boxes (taking advantage of strong diffusion properties)?
- Answer: mainly depends on the permutation layer
 - e.g. not possible with wire crossings (see paper)
- What can we do with MixColumns?

- AES (very) strong against statistical attacks
- Can we reduce the total # of S-boxes (taking advantage of strong diffusion properties)?
- Answer: mainly depends on the permutation layer
 - e.g. not possible with wire crossings (see paper)
- What can we do with MixColumns?
- Informal tests: how many rounds for
 - At least going through one S-box
 - All output bytes having a non-linear term
 - Input diffs. with non-linear effect on output bytes

Testing different configurations

	NrSbox	NrNlin	NrDiff
1 S-box	3	2	4
4 S-boxes, 1 line	2	1	3
8 S-boxes, 2 lines	2	1	3
4 S-boxes, 1 column	3	1	3
4 S-boxes, 1 diagonal	2	2	3
4 S-boxes, 1 per column	2	2	3
4 S-boxes, Square	3	2	4

Testing different configurations

	NrSbox	NrNlin	NrDiff
1 S-box	3	2	4
4 S-boxes, 1 line	2	1	3
8 S-boxes, 2 lines	2	1	3
4 S-boxes, 1 column	3	1	3
4 S-boxes, 1 diagonal	2	2	3
4 S-boxes, 1 per column	2	2	3
4 S-boxes, Square	3	2	4

Our choice: 4 S-boxes on the first state line

3. Key scheduling

- Minimalism (Mutliple Even-Mansour, LED, ...)
- Main question: key addition every ??? rounds

3. Key scheduling

- Minimalism (Mutliple Even-Mansour, LED, ...)
- Main question: key addition every ??? rounds
- Example: every single round => related-key issue

Intuition

- Property so strong that it leads to non-related-key attacks with 2^64 data and 2^64 time
 - (thanks to Dmitry Khovratovich!)

Intuition

- Property so strong that it leads to non-related-key attacks with 2^64 data and 2^64 time
 - (thanks to Dmitry Khovratovich!)

=> Key addition should be performed after a "complex enough" function of the state (we choose 4 rounds)

Intuition

- Property so strong that it leads to non-related-key attacks with 2^64 data and 2^64 time
 - (thanks to Dmitry Khovratovich!)

=> Key addition should be performed after a "complex enough" function of the state (we choose 4 rounds)

... and a sufficient number of times to avoid generic attacks against Even-Mansour schemes (we choose 7)

- cfr. Asiacrypt 2012 and 2013
 - (thanks to Orr Dunkelman!)

4. Putting things together

- Number of rounds: 24 (6 steps of 4 rounds)
 - Roughly divides the total # of multiplications by 4!

• Non trivial (frequently exploiting results from hash function cryptanalysis and SHA3 competition)

- Non trivial (frequently exploiting results from hash function cryptanalysis and SHA3 competition)
- Linear/differential cryptanalysis: bounds on the best characteristics for 16/14 rounds
 - By exploiting degrees of freedom
 - # active S-boxes = 4 Nr 31

- Non trivial (frequently exploiting results from hash function cryptanalysis and SHA3 competition)
- Linear/differential cryptanalysis: bounds on the best characteristics for 16/14 rounds
 - By exploiting degrees of freedom
 - # active S-boxes = 4 Nr 31
- Impossible differential attack for 10 rounds
- Rebound *distinguisher* for 12 rounds

- Non trivial (frequently exploiting results from hash function cryptanalysis and SHA3 competition)
- Linear/differential cryptanalysis: bounds on the best characteristics for 16/14 rounds
 - By exploiting degrees of freedom
 - # active S-boxes = 4 Nr 31
- Impossible differential attack for 10 rounds
- Rebound *distinguisher* for 12 rounds
- (+ truncated differential, cube testers, MITM, ...)

Performance evaluation

• Case study: Atmel AtMega644p

- Significant performance gains compared to AES
 - For Boolean & polynomial masking

- Significant performance gains compared to AES
 For Boolean & polynomial masking
- "Non-regular" design exploiting strong diffusion
 => New analysis techniques for block ciphers
 => Not only S-boxes matter !

- Significant performance gains compared to AES
 For Boolean & polynomial masking
- "Non-regular" design exploiting strong diffusion
 => New analysis techniques for block ciphers
 => Not only S-boxes matter !
- Interesting target for cryptanalysis?

- Significant performance gains compared to AES
 For Boolean & polynomial masking
- "Non-regular" design exploiting strong diffusion
 => New analysis techniques for block ciphers
 => Not only S-boxes matter !
- Interesting target for cryptanalysis?
- Next: moving away from the AES?
 - Stronger diffusion (Khazad-like) or smaller S-boxes (NOEKEON, PRESENT, ...)?

- Significant performance gains compared to AES
 For Boolean & polynomial masking
- "Non-regular" design exploiting strong diffusion
 => New analysis techniques for block ciphers
 => Not only S-boxes matter !
- Interesting target for cryptanalysis?
- Next: moving away from the AES?
 - Stronger diffusion (Khazad-like) or smaller S-boxes (NOEKEON, PRESENT, ...)?
- Or specialize to Boolean masking only (=> bitslice)

THANKS http://perso.uclouvain.be/fstandae/