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Teaser

We will see:

How to recover 1536 bits of the secret with one fault!

The full secret (3072 bits) recovery in 3 faults.

How to revert a surjection by �nding the unique preimage used in the

computation.
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Context & Motivations Pairing Based Cryptography

Pairing Based Cryptography

Pairing :

Bilinear maps for cryptography

Why?

Allow new cryptographic schemes.

Ex: Identity Based Encryption.

Lashermes, Fournier, Goubin Pairing August 23rd 2013 4 / 25



Context & Motivations Pairing Based Cryptography

Elliptic curves

Curve E

A point (X ,Y ) on the curve satis�es:

E : Y 2 + a1XY + a3Y = X 3 + a2X
2 + a4X + a6

Fields for X and Y

p a big prime.

Fp a �nite �eld.

r a prime divisor of card(E (Fp)).

k the smallest integer such that r |pk − 1 (k is the embedding degree).

Fpk an extension �eld.

µr the group formed by the r th roots of unity in Fpk (µr ⊂ Fpk ).
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Context & Motivations Pairing Based Cryptography

Tate pairing

De�nition

Reduced Tate pairing:{
eT : E (Fp)[r ]× E (Fpk )/rE (Fpk ) → µr

(P,Q) → fr ,P(Q)
pk−1

r

Computed with two main steps:

Miller Algorithm

fr ,P(Q)

Final Exponentiation

.
pk−1

r
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Context & Motivations Fault attacks

Fault attacks

Fault attack = circuit perturbation to alter the cryptographic

algorithm.

Figure : EM and laser benches

Fault model: instruction skip.
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Context & Motivations Why inverting the �nal exponentiation matters?

Introduction to the �nal exponentiation

De�nition

Let f be in Fpk , FE (f ) = f
pk−1

r .

Properties

It is a surjective application. To invert the �nal exponentiation is to �nd

the correct, unique, preimage of a surjection.
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Context & Motivations Why inverting the �nal exponentiation matters?

Are pairings resistant wrt fault attacks?

Fault attacks on the Miller algorithm (big prime characteristic)

There are several attacks possible on the Miller algorithm. But they all

require that the attacker know the result of the Miller algorithm prior to

the �nal exponentiation.

Impossible?

The reason why pairings are considered resistant wrt fault attacks: the

attacker cannot access to fr ,P(Q), the result of the Miller algorithm.

(e.g. with k = 12 and log2(r) ≈ 256, each element of µr has ≈ 22816

preimages!)
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Our fault attack

Implementation

f
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From "On the �nal exponentiation for calculating pairings on ordinary elliptic curves" by Scott et al. in Pairing 2009
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Our fault attack

Computation of the �nal exponentiation

Decomposition

k = 2 · d
pk − 1

r
= (pd − 1) · p

d + 1

r

Notations

f1 = f p
d−1

f3 = f
pd+1

r
1 = f

pk−1
r
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Our fault attack

Figure : Final exponentiation groups, security level 128 bits

Roots of unity

f p
k−1 = 1

f p
d+1

1 = 1

f r3 = 1

f ∈ µpk−1, f1 ∈ µpd+1, f3 ∈ µr .
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Our fault attack

Figure : Final exponentiation, element representation (representation size 6= entropy!)

Extension construction

Fpk = Fpd [w ]/(w2 − v)

So f = g + h · w et w2 = v , g , h ∈ Fpd .

Redundancy relations

f p
d+1 = g2 − v · h2 ∈ Fpd

f p
d+1

1 = g2
1 − v · h21 = 1
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Our fault attack Recovering f1

Figure : First fault location

e1 value known to the attacker.

Notations

f ∗1 = f1 + e1 6∈ µpd+1

f ∗1 = (g1 + e1) + h1 · w
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Our fault attack Recovering f1

Figure : Fault e�ect

Result

(f ∗1 )p
d+1 = (f ∗3 )r 6= 1

= (g1 + e1)2 − v · h21
= g2

1 − v · h21 + 2 · e1 · g1 + e21

= 1 + 2 · e1 · g1 + e21
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Our fault attack Recovering f1

We have found f1

g1

g1 =
(f ∗1 )p

d+1 − 1− e21
2 · e1

h1

Two possible values

h+1 =

√
g2
1 − 1

v
; h−1 = −

√
g2
1 − 1

v

easy to check.
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Our fault attack Recovering f1

Guessing e1

If you do not know e1...

... then you have to guess it.

A guess on e1 gives two f1 candidates. The attacker then compare f
pd+1

r
1

against f3 and (f1 + e1)
pd+1

r against f ∗3 .
In this case, there is a low false positive rate: 1/r2.
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Our fault attack Recovering f

Figure : Second fault location e2 ∈ Fpd

e2 value known to the attacker.

New redundancy relation & fault

f1 = f p
d−1 = f̄ · f −1

g1 − 1

v · h1
= −h

g
= K

f ∗1 = f̄ · (f −1 + e2)

Proofs in paper
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Our fault attack Recovering f

Figure : Second fault e�ect

Fault propagation

f ∗1 = f 1 + ∆f1

∆f1 = f̄ · e2
∆f1 = e2 · g − e2 · h · w
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Our fault attack Recovering f

We have found f

Quadratic equation{
(f ∗1 )p

d+1 = (g1 + e2 · g)2 − v · (h1 − e2 · h)2

h = −g · K

Which gives

g2 · e22 · (1− v · K 2) + g · 2 · e2 · (g1 − v · K · h1) + 1− (f ∗1 )p
d+1 = 0
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Our fault attack Recovering f

Guessing e2

Problem

Each supposition about e2 gives a f which is valid wrt all our observations.

⇒ We have to repeat the second step with at least another fault (6= e2).

Sets of candidates

e2 ∈ {1, 2, . . . , 10} → f ∈ {fc1, fc2, . . . , fc10}
e ′2 ∈ {1, 2, . . . , 10} → f ∈ {fc ′1, fc ′2, . . . , fc ′10}

f is in the intersection of the two sets of candidates.

For e2, e
′
2 ∈ [[1,m]],

#intersection =

⌊
m · gcd(e2, e

′
2)

max(e2, e ′2)

⌋
There is a trick to accelerate the computation of the intersection (in paper).
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Our fault attack Recovering f

Summary of the attack

How to invert the �nal exponentiation?

1 Correct execution.

2 Fault injection, f1 is recovered.

3 Fault injection, f candidates are recovered.

4 Repeat step 3 until f is recovered.

f can be found with only 3 faults!

The attack has been validated using simulations.
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Conclusion

Perspectives - what next?

Practical attack on the �nal exponentiation.

Achieve a complete fault attack on a pairing.

Lashermes, Fournier, Goubin Pairing August 23rd 2013 24 / 25



Conclusion

Thank you! Questions?

"La montagne Sainte Victoire vue de Gardanne" by Cezanne
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