On the Implementation of Unified Arithmetic on Binary Huff Curves

Presented by: Benedikt Gierlichs

Santosh Ghosh, Amit Kumar, Amitabh Das, and Ingrid Verbauwhede

Contents

- Introduction
- Power analysis of UBHC
 - Simple power analysis on SASEBO Board
 - Pin-point the vulnerability of UBHC arithmetic
- Countermeasure
 - Side-channel resistant arithmetic
 - Secure implementation
 - Validation with experimental results
- Efficient Architecture and FPGA implementation
 - Architectural Optimizations
 - Implementation Results
- Conclusion

Introduction

Elliptic Curve Against Side-channel Attacks

- Double-and-add always, Montgomery Ladder
- Atomic Operations
- Unified Formula
 - Edwards Curve
 - Huff Curve

- Complete addition formula

Same formula is used to 2P. Same formula is used to 2nd 2P. Compute both P+Q and 2P.

Unified Binary Huff Curve (UBHC)

$$\begin{split} E_{/F_{2^m}} &: aX(Y^2 + fYZ + Z^2) = bY(X^2 + fXZ + Z^2) \\ where \ a, b, f \in \mathbb{F}_{2^m}^* \ and \ a \neq b. \end{split}$$

Let, $P = (X_1, Y_1, Z_1)$ and $Q = (X_2, Y_2, Z_2)$ then P+Q:

 $\begin{cases} X_3 = (Z_1Z_2 + Y_1Y_2) \left((X_1Z_2 + X_2Z_1)(Z_1^2Z_2^2 + X_1X_2Y_1Y_2) + \alpha X_1X_2Z_1Z_2(Z_1Z_2 + Y_1Y_2) \right) \\ Y_3 = (Z_1Z_2 + X_1X_2) \left((Y_1Z_2 + Y_2Z_1)(Z_1^2Z_2^2 + X_1X_2Y_1Y_2) + \beta Y_1Y_2Z_1Z_2(Z_1Z_2 + X_1X_2) \right) \\ Z_3 = (Z_1Z_2 + X_1X_2)(Z_1Z_2 + Y_1Y_2)(Z_1^2Z_2^2 + X_1X_2Y_1Y_2), \end{cases}$ where $\alpha = \frac{a+b}{b}$ and $\beta = \frac{a+b}{a}$.

This is computed as:

$$\begin{split} m_1 &= X_1 X_2, \quad m_2 = Y_1 Y_2, \quad m_3 = Z_1 Z_2, \\ m_4 &= (X_1 + Z_1)(X_2 + Z_2) + m_1 + m_3, \quad m_5 = (Y_1 + Z_1)(Y_2 + Z_2) + m_2 + m_3, \\ m_6 &= m_1 m_3, \quad m_7 = m_2 m_3, \quad m_8 = m_1 m_2 + m_3^2, \quad m_9 = m_6 (m_2 + m_3)^2, \\ m_{10} &= m_7 (m_1 + m_3)^2, \quad m_{11} = m_8 (m_2 + m_3), \quad m_{12} = m_8 (m_1 + m_3), \\ X_3 &= m_4 m_{11} + \alpha m_9, \quad Y_3 = m_5 m_{12} + \beta m_{10}, \quad Z_3 = m_{11} (m_1 + m_3). \end{split}$$

• J. Devigne and M. Joye, "Binary huff curves," CT-RSA 2011, LNCS 6558, pp. 340–355, Springer-Verlag, 2011.

Santa Barbara, California, USA.

CHES 2013,

17-Sep-13

FPGA Implementation of UBHC

- Side-channel Attack Standard Evaluation Board (SASEBO-G)
- Implemented on the xc2vp30-fg676-5 device
- The datapath consists of an n-bit Hybrid Karatsuba multiplier, some binary field adders and squaring circuits.
- There are 17 F_{2ⁿ} multiplications in unified addition formula.

Measure power consumption during UBHC point multiplication.

Pin-point the side-channel source

$$\begin{pmatrix} X_3 = (Z_1Z_2 + Y_1Y_2) & (X_1Z_2 + X_2Z_2)(Z_1^2Z_2^2 + X_1X_2Y_1Y_2) + \\ \alpha X_1X_2Z_1Z_2(Z_1Z_2 + Y_1Y_2)) \\ Y_3 = (Z_1Z_2 + X_1X_2) & (Y_1Z_2 + Y_2Z_1)(Z_1^2Z_2^2 + X_1X_2Y_1Y_2) + \\ \beta Y_1Y_2Z_1Z_2(Z_1Z_2 + X_1X_2)) \\ Z_3 = (Z_1Z_2 + X_1X_2)(Z_1Z_2 + Y_1Y_2)(Z_1^2Z_2^2 + X_1X_2Y_1Y_2), \end{cases}$$

- Point doubling executes 10-th and 16-th multiplications with a zero operand.
- The same multiplications for point additions are with non-zero operands.

Power Analysis of UBHC

Observations:

- 17 peaks for executing both PD and PA
 - 17 multiplication cycles
- 11-th peak is lower than other peaks for both PD and PA
 - Operand "a1" remain unchanged from its previous value
- 10-th peak is lower for some point operations
 - Due to "a2", which is zero for PD
- 16-th and 17-th peaks are also lower with 10-th peak for PD
 - "a2" is zero at 16-th multiplication cycle
 - Transition of datapath from a non-zero (at 15-th) to zero (at 16-th)
 - From a zero (at 16-th) to non-zero (at 17-th)
 - Causes power consumption lower than a non-zero to non-zero transition

SPA results of UBHC point multiplication

- PD followed by PD indicates respective secret scalar bit value zero
- PD followed by PA indicates the same as one

Proposed Countermeasure

Modified UBHC point addition arithmetic:

$$m_{1} = X_{1}X_{2}, \quad m_{2} = Y_{1}Y_{2}, \quad m_{3} = Z_{1}Z_{2}, m_{4} = (X_{1} + Z_{1})(X_{2} + Z_{2}), \quad m_{5} = (Y_{1} + Z_{1})(Y_{2} + Z_{2}), m_{6} = m_{1}m_{3}, \quad m_{7} = m_{2}m_{3}, \quad m_{8} = m_{1}m_{2} + m_{3}^{2}, m_{9} = m_{6}(m_{2} + m_{3})^{2}, \quad m_{10} = m_{7}(m_{1} + m_{3})^{2}, \quad m_{11} = m_{8}(m_{2} + m_{3}) Z_{3} = m_{11}(m_{1} + m_{3}), X_{3} = \alpha m_{9} + m_{4}m_{11} + Z_{3}, Y_{3} = \beta m_{10} + m_{5}m_{8}(m_{1} + m_{3}) + Z_{3}.$$

- No zero valued operand for multiplication
 - Eliminate sources of zeros
 - Distribute $(X_1Z_2 + X_2Z_1)$ (...) and $(Y_1Z_2 + Y_2Z_1)$ (...) computations
 - These additions are performed at the last stage of X_3 and Y_3
 - At X₃: $m_4m_{11} + Z_3 = 0$, and at Y₃: $m_5m_8(m_1+m_3) + Z_3 = 0$ for PD
 - Perform X_3 as: $(\alpha m_9 + m_4 m_{11}) + Z_3$, and Y_3 as: $(\beta m_{10} + m_5 m_8 (m_1 + m_3)) + Z_3$
- Costs: $15M + 2D \approx 17M$
 - Same as with the original one

Countermeasure cont...

Simulation result of an implementation of the countermeasure:

Observations:

- At PD: both "a1" and "a2" remain unchanged at 11-th multiplication.
 - No new multiplication is performed in this cycle
- At PA: only "a1" remain unchanged but "a2" changed.

Countermeasure cont...

Causes:

- 1. It schedules $m_{11}(m_1+m_3)$ and m_4m_{11} at 10-th and 11-th cycles.
- 2. It chooses m_{11} as operand *a* for both multiplications.
- 3. It chooses $m_1 + m_3$ and m_4 as operand *b*.

Analysis:

- In case of PD: $m_4 = m_1 + m_3$ as $(X_1 + Z_1)(X_2 + Z_2) = X_1X_2 + Z_1Z_2$
 - Perform the same multiplication twice
- But in case of PA they are different.

Countermeasure cont...

Suggested execution technique of the proposed arithmetic:

	PA/PD	Operations	RTL description
	Cycles		
 PA/PD independent data scheduling Operand value changes for every multiplications 	1	$m_1 = x_1 \times x_2$	$temp[0] \leftarrow x_1 \times x_2$
	2	$m_2 = y_1 \times y_2$	$temp[1] \leftarrow y_1 \times y_2$
	3	$m_3 = z_1 \times z_2$	$temp[2] \leftarrow z_1 \times z_2$
	4	$m_1 imes m_2$	$temp[3] \leftarrow temp[0] \times temp[1]$
	5	$m_4 = (x_1 + z_1)(x_2 + z_2)$	$temp[4] \leftarrow (x_1 \oplus z_1) \times (x_2 \oplus z_2)$
		$m_6 = m_1 \times m_3$	$temp[5] \leftarrow temp[0] \times temp[2]$
		7 $m_{11} = m_8 \times (m_2 + m_3)$ $temp[6] \leftarrow (temp[3] \oplus te$	$temp[6] \leftarrow (temp[3] \oplus temp[2]^2) \times (temp[1] \oplus temp[2])$
	8	$m_9 = m_6 \times (m_2 + m_3)^2$	$temp[5] \leftarrow temp[5] \times (temp[1] \oplus temp[2])^2$
	9	$m_{11} imes m_4$	$temp[4] \leftarrow temp[6] \times temp[4]$
	10	$\alpha imes m_9$	$temp[5] \leftarrow \alpha \times temp[5]$
	11	$Z_3 = m_{11} \times (m_1 + m_3)$	$temp[6] \leftarrow temp[6] \times (temp[0] \oplus temp[2])$
	12	$m_7 = m_2 \times m_3$	$temp[5] \leftarrow temp[1] \times temp[2]$
	13	$m_5 = (y_1 + z_1)(y_2 + z_2)$	$temp[4] \leftarrow (y_1 \oplus z_1) \times (y_2 \oplus z_2)$
	14	$m_{10} = m_7 \times (m_1 + m_3)^2$	$temp[5] \leftarrow temp[5] \times (temp[0] \oplus temp[2])^2$
	15	$m_5 imes m_8$	$temp[4] \leftarrow temp[4] \times (temp[3] \oplus temp[2]^2)$
	16	$\beta imes m_{10}$	$temp[5] \leftarrow \beta \times temp[5]$
	17	$(m_5m_8)\times(m_1+m_3)$	$temp[4] \leftarrow temp[4] \times (m_1 \oplus m_3)$
	I	Final outputs are:	$X_3 \leftarrow temp[4] \oplus temp[5] \oplus temp[6]$ at clock cycle 12,
			$Z_3 \leftarrow temp[6]$ at clock cycle 15,
			$Y_3 \leftarrow temp[4] \oplus temp[5] \oplus temp[6]$ at clock cycle 19.

Validation of proposed technique

Observations:

• At PD and PA: values both "a1" and "a2" change at every cycles

No observable difference between PD and PA power consumption graphs

SPA results of UBHC point multiplication

- PD and PA cannot be identified by observing these power profiles
- Secret scalar bit cannot be guessed

Architectural description

- Consists of four n-bit registers
 - x, y, z coordinates and integer d
- 32-bit input and output data interface
- Total 5-bit control signals
 - "act" to enable/disable the whole elliptic curve processor block
 - Four bit cntrl signal to select different modes
 - Input mode
 - Selection of input
 - Ready for output
- Two status signals
 - To keep track of every point addition
 - Can be discarded before package
 - End of a point multiplication

Datapath of Point Multiplication

- Executes left-to-right binary algorithm
- "flag1" and "flag2" indicates PD and PA
- Point Addition Block
 - One Hybrid Karatsuba multiplier [17]
 - Only one clock for an n-bit multiplication
 - 20 clock cycles per point addition
 - 17 multiplication clock cycles
 - 3 for data ready and restore
 - Seven temporary registers

- Intermediate and final results are stored at Q_i registers
 - Optimum number of registers
 - Total 14 registers
 - 4 input: d, P_1 , P_2 , P_3
 - \mathbf{Y} 3 output: \mathbf{Q}_1 , \mathbf{Q}_2 , \mathbf{Q}_3
 - 7 temporary: temp[i], $0 \le i \le 6$

[17]. Rebeiro, C., Mukhopadhyay, D.: High speed compact elliptic curve cryptoprocessor for FPGA platforms. INDOCRYPT 2008.

Analysis and Results

- Optimization of temporary registers
 - Life time analysis

- Changes of a line style in a lifeline indicates the register is reassigned.
- A lifeline with same line style from clock i to j indicates:
 - The register is assigned with a value at i-th clock
 - The value is used finally at (j-1)-th clock cycle
 - The register is reassigned with new value at j-th clock

Results Cont...

	$128-\mathbf{bit}$			${\color{red}\textbf{233}}-{\color{blue}\textbf{bit}}$			${\bf 256-bit}$		
Device	Slice	Clock	\mathbf{Time}	Slice	Clock	\mathbf{Time}	Slice	Clock	Time
		$[\mathbf{MHz}]$	$[\mu {f s}]$		$[\mathbf{MHz}]$	$[\mu {f s}]$		$[\mathbf{MHz}]$	$[\mu \mathbf{s}]$
Virtex-2Pro	8,345	110	37	19,043	110	67	21,423	98	82
Virtex-4	8,713	138	29	19,352	134	55	21,325	103	78
Virtex-6	3,924	182	22	7,150	172	43	11,083	146	15 15
Virtex-7	3,432	195	$\overline{21}$	6,032	183	40	9,115	162	$\overline{49}$

• Area and timing results of scalar multiplication on FPGA

• Performance comparison with existing designs

Work	Platform	Field	Slices	Clock	Latency	$Area \times Latency$
		$[\mathbf{m}]$	Count	$[\mathbf{MHz}]$	$[\mu {f s}]$	$ imes [{f 10^5}]$
Ours	XC4V140	233	19,352	134	55	10.6
Unified Edwards [6]	XC4V140	233	21,816	50	170	37.1
Unified Huff [7]	XC4V140	233	20,437	81	73	14.9

Reduced area – Improved efficiency –

[6]. Chatterjee, A., Sengupta, I.: FPGA implementation of Binary Edwards curve using ternary representation. In: GLSVLSI 2011.[7]. Chatterjee, A., Sengupta, I.: High-speed unified elliptic curve cryptosystem on FPGAs using binary Huff curves. VDAT 2012.

Performance Analysis

- Unified binary Huff curve (UBHC) formula is faster than the unified formula on Edwards curve [2].
 - Costs of Edwards: 18M+7D (or 21M+4D)
 - Costs of Huff: 15M + 2D
- An n-bit point multiplication on proposed UBHC arithmetic
 - Costs: 25.5n M
 - Not a cheap solution against side-channel attacks
 - Costly than double-and-add always with Lopez-Dahab
 - Costs: 19n M
 - Much costly than Montgomery ladder, based on Lopez-Dahab fast point multiplication [16] trick
 - Costs: 6n M.
- Side-channel security is not the main goal of a Huff curve
- Complete addition formula for all subgroups
 - Even in a subgroup that does not contain the **points at infinity**
 - Secure against exceptional procedure attacks and batch computing

Huff Curve with proposed arithmetic is the current winner!!!

[2]. Bernstein, D.J., Lange, T., Rezaeian Farashahi, R.: Binary Edwards Curves. CHES 2008..
[16]. L'opez, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2^m) without precomputation. CHES 1999.

Corrections!!

- Page 356, In paragraph before Architectural Description:

"There are 18 peaks for computing 18 multiplications." would be "There are 17 peaks for computing 17 multiplications."

- Page 361, just before Conclusion:

"In this respect, the Huff curve is one step ahead compared to its competitors Edwards [2] and Generalized Hessian curves [9] – on both of which the point addition is complete only on some specific subgroups."

It is a misrepresentation which would be:

- Edwards [2]
 - Complete addition formula same as Huff curve
 - Unified formula with 15M+2D Vs. 21M + 4D costs (without any assumptions)
 - Cost may be reduced with assumptions [*].
- Generalized Hessian curves [9]
 - Complete addition formula [**] with suitably chosen parameters.
 - If **c** is not a cube in **F**, where $X^3 + Y^3 + cZ^3 = dXYZ$ with $c,d \in F$, $c \neq 0$, $d^3 \neq 27c$
 - Unified formula, 12M in Projective coordinates.
 - [2]. Bernstein, D.J., Lange, T., Rezaeian Farashahi, R.: Binary Edwards Curves. CHES 2008..
 - [9]. Farashahi, R.R., Joye, M.: Efficient Arithmetic on Hessian Curves. PKC 2010.
 - [*]. http://hyperelliptic.org/EFD/g12o/index.html
 - [**]. http://cr.yp.to/talks/2009.07.17/slides.pdf

Questions? santosh.ghosh@intel.com