

Indian Statistical Institute

A Differential Fault Attack on MICKEY 2.0 Subhadeep Banik and Subhamoy Maitra

Presented by Meltem Sönmez Turan

CHES 2013 UCSB, Santa Barbara

- Description of the stream cipher Mickey 2.0
- Recovering internal state given partial inputs
- Differential fault attack with chosen-location faults
- Differential fault attack with random-location faults

- Proposed by Steve Babbage and Matthew Dodd in 2004
- Part of eSTREAM's hardware portfolio
- Bit-oriented, Synchronous stream cipher
- ▶ The first version (1.0) of the cipher was cryptanalyzed
 - 1. A TMD-Tradeoff Attack by Hong et al. (INDOCRYPT 2005)
 - 2. Uses low Sampling Resistance of the cipher.
- Response \Rightarrow Increase State size from 160 to 200.

Generic Structure

- The registers R, S are 100 bits long.
- Each exercises Mutual Control over the other.

Initialization of Cipher

- Supports an 80 bit Key and a *v*-bit IV ($0 \le v \le 80$)
- The regs R, S are both initialized with all 0's.

1	IV Loading	for $i = 0$ to $v - 1$	
		$CLOCK_KG(R, S, 1, iv_i)$	
2	Key Loading	for <i>i</i> = 0 to 79	
		$CLOCK_KG(R, S, 1, k_i)$	
3	Pre Clock	for <i>i</i> = 0 to 99	
		CLOCK_KG ($R, S, 1, 0$)	
4	PRGA	while required	
		$z = r_0 + s_0$	
		CLOCK_KG (<i>R</i> , <i>S</i> , 0, 0)	

A Few Observations

▶ Let $a_0, a_1, a_2, a_3 \in GF(2)$. Let a_0 be defined as follows

$$a_0 = \begin{cases} a_2, & \text{if } a_1 = 0 \\ a_3, & \text{if } a_1 = 1. \end{cases}$$

- ► Then it is straightforward to see that a₀ can be expressed as a multivariate polynomial over GF(2), i.e., a₀ = (1 + a₁) · a₂ + a₁ · a₃.
- ► MICKEY uses a lot of If-Else constructs in its State Update. → So the state update may be equivalently expressed as a series of multi-variate polynomials over GF(2).

Notation

- ▶ $R_t, S_t \rightarrow$ States of the R, S registers at time t.
- ▶ r_i^t , $s_i^t \rightarrow i^{th}$ bit of R, S at time t.

•
$$r_i^{t+1} = \rho_i(R_t, S_t)$$
 and $s_i^{t+1} = \beta_i(R_t, S_t)$.

- ▶ $R_{t,\Delta r_{\phi}}(t_0), S_{t,\Delta r_{\phi}}(t_0) \rightarrow \text{States of the } R, S \text{ at time } t, \text{ with fault in location } \phi \text{ of } R \text{ at time } t_0.$
- ► $z_{i,\Delta r_{\phi}}(t_0) \rightarrow i$ th key-stream bit, with fault in location ϕ of R at time t_0 .

•
$$CR_t = r_{67}^t + s_{34}^t$$
 and $CS_t = r_{33}^t + s_{67}^t$.

Lemma 1 : Recovering R

The bits we require to deduce internal state

 $r_{99}^{t}, \ CR_{t}, \ s_{99}^{t}, \ CS_{t}, \ \forall t \in [0, 99]$

The key-stream bits z_t, z_{t+1}, \ldots can be expressed as polynomial functions over R_t, S_t .

TABLE: The functions $z_i = \theta_i(R, S)$

i	$z_i = heta_i(\cdot)$
0	$r_0 + s_0$
1	$r_0 \cdot r_{67} + r_0 \cdot s_{34} + r_{99} + s_{99}$
2	$r_0 \cdot r_{66} \cdot r_{67} + r_0 \cdot r_{66} \cdot s_{34} + r_0 \cdot r_{67} \cdot r_{99} + r_0 \cdot r_{67} \cdot s_{33} + r_0 \cdot r_{67} \cdot s_{34} \cdot s_{35} +$
	$r_0 \cdot r_{67} \cdot s_{34} + r_0 \cdot r_{67} + r_0 \cdot r_{99} \cdot s_{34} + r_0 \cdot s_{33} \cdot s_{34} + r_0 \cdot s_{34} \cdot s_{35} + r_{33} \cdot s_{99} +$
	$r_{66} \cdot r_{99} + r_{67} \cdot r_{99} \cdot s_{34} + r_{98} + r_{99} \cdot s_{33} + r_{99} \cdot s_{34} \cdot s_{35} + r_{99} \cdot s_{34} + r_{99} +$
	$s_{67} \cdot s_{99} + s_{98}$

Differentials properties of θ_i

(1)
$$\theta_1(\ldots, r_{67}, \ldots) + \theta_1(\ldots, 1 + r_{67}, \ldots) = r_0$$

(2) $\theta_1(r_0, \ldots) + \theta_1(1 + r_0, \ldots) = s_{34} + r_{67}$
(3) $\theta_2(\ldots, s_{99}) + \theta_2(\ldots, 1 + s_{99}) = s_{67} + r_{33}$

These differential properties have the following immediate implications.

$$z_{t+1} + z_{t+1,\Delta r_{67}}(t) = \theta_1(R_t, S_t) + \theta_1(R_{t,\Delta r_{67}}(t), S_{t,\Delta r_{67}}(t)) = r_0^t$$

$$z_{t+1} + z_{t+1,\Delta r_0}(t) = \theta_1(R_t, S_t) + \theta_1(R_{t,\Delta r_0}(t), S_{t,\Delta r_0}(t)) = s_{34}^t + r_{67}^t = CR_t$$

$$z_{t+2} + z_{t+2,\Delta s_{99}}(t) = \theta_2(R_t, S_t) + \theta_2(R_{t,\Delta s_{99}}(t), S_{t,\Delta s_{99}}(t)) = s_{67}^t + r_{33}^t = CS_t$$

From previous slide it is clear that if the attacker can reset the cipher each time and

A. Fault locations 0, 67 of R and 99 of S $\forall t \in [0, 99]$ B. He is able to deduce r_0^t , CR_t , $CS_t \forall t \in [0, 99]$

- ▶ He needs r_{99}^t , s_{99}^t $\forall t \in [0, 99]$ to complete the attack.
- A is a very strong assumption, and will be only used to explain a few details of the attack.

Determining the rest of the state

$$\triangleright \ s_0^t = z_t + r_0^t \ \forall t.$$

• Note that
$$\beta_0(\cdot) = s_{99} \Rightarrow s_0^t = s_{99}^{t-1}$$
.

▶ Thus s_0^t for $t \in [1, 100]$ gives us the values for s_{99}^t for $t \in [0, 99]$

$$z_{t+1} = \theta_1(R_t, S_t) = CR_t \cdot r_0^t + r_{99}^t + s_{99}^t$$

$$\Rightarrow r_{99}^t = z_{t+1} + CR_t \cdot r_0^t + s_{99}^t.$$

Now we have all bits required to complete the attack. Essentially implies that to complete the attack we need

 r_0^t , CR_t , CS_t , $\forall t \in [0, 99]$

► Adversary being able to fault specific locations of *R*, *S* is an impractical assumption.

- ► Adversary being able to fault specific locations of *R*, *S* is an impractical assumption.
- In general, the attacker does not have control over the location of a random fault.

- ► Adversary being able to fault specific locations of *R*, *S* is an impractical assumption.
- In general, the attacker does not have control over the location of a random fault.
- ► If a randomly applied fault toggles location φ of R, S, the attacker may try to guess φ by comparing the faulty and fault-free keystream sequences.

Signature vectors : [BMS 12]

In [BMS 12], the differential keystream was compared with the first and second Signature vectors, to identify fault location for the Grain family.

$$\Psi^{1}_{r_{\phi}}[i] = \begin{cases} 1, & \text{if } z_{t+i} = z_{t+i,\Delta r_{\phi}}(t) \text{ for all choices of } R_{t}, S_{t}, \\ 0, & \text{otherwise.} \end{cases}$$

$$\Psi^2_{r_\phi}[i] = \left\{egin{array}{c} 1, & ext{if } z_{t+i}
eq z_{t+i, \Delta r_\phi}(t) ext{ for all choices of } R_t, S_t, \ 0, & ext{otherwise.} \end{array}
ight.$$

• Let
$$\eta_{t,r_{\phi}}[i] = z_{t+i} + z_{t+i,\Delta r_{\phi}}(t)$$

The same idea fails for MICKEY, as multiple fault locations share the same signature vectors.

Theorem

The following statements hold

$$\begin{array}{l} \textbf{A.} \ \ \Psi^{1}_{r_{\phi}}[0] = 1, \forall \phi \in [1,99] \ and \ \Psi^{2}_{r_{0}}[0] = 1. \\ \textbf{B.} \ \ \Psi^{1}_{r_{\phi}}[0] = \Psi^{1}_{r_{\phi}}[1] = 1, \forall \phi \in [1,99] \setminus \{67,99\}. \\ \textbf{C.} \ \ \Psi^{2}_{r_{99}}[1] = 1, \ and \ \Psi^{2}_{r_{67}}[1] = 0. \\ \textbf{D.} \ \ \Psi^{1}_{s_{\phi}}[0] = 1, \forall \phi \in [1,99] \ and \ \Psi^{2}_{s_{0}}[0] = 1. \\ \textbf{E.} \ \ \Psi^{1}_{s_{\phi}}[0] = \Psi^{1}_{s_{\phi}}[1] = 1, \forall \phi \in [1,99] \setminus \{34,99\}. \\ \textbf{F.} \ \ \ \Psi^{2}_{s_{99}}[1] = 1, \ and \ \Psi^{2}_{s_{34}}[1] = 0. \end{array}$$

Proof

May be found in the Eprint version of the paper 2013/029.

Attack Scenario

- Adversary re-keys the device, injects a single fault at a random location of *R* at any PRGA round *t* ∈ [0, 100].
- ▶ Repeat till 100 different faulty key-streams $\eta_{t,r_{\phi}}$ for 100 locations of *R* are obtained.
- By Coupon collector's Problem, this requires ~ 100 ln 100 faults for each t ∈ [0, 100].
- Total of $101 \cdot 100 \ln 100 = 2^{15.7}$ faults.
- Now for each t, attacker has 100 distinct differential keystreams. However he does not know which stream corresponds to which fault location.

Implication of A.

A :
$$\Psi^1_{r_\phi}[0] = 1, orall \phi \in [1,99]$$
 an $\Psi^2_{r_0}[0] = 1$

▶ $\Psi_{r_0}^2[0] = 1 \Rightarrow \exists$ at least one stream s.t. $\eta_{t,r_{\phi}}[0] = 1$.

- ▶ $\Psi^1_{r_\phi}[0] = 1$ for all $\phi \neq 0 \Rightarrow \exists$ at most one stream s.t. $\eta_{t,r_\phi}[0] = 1$.
- ▶ So for any t the # of streams with $\eta_{t,r_{\phi}}[0] = 1$ is exactly 1.
- ► This stream must have been produced due to fault on r_0 . Recall that $z_{t+1} + z_{t+1,\Delta r_0}(t) = \theta_1(R_t, S_t) + \theta_1(R_{t,\Delta r_0}(t), S_{t,\Delta r_0}(t)) = s_{34}^t + r_{67}^t = CR_t$
- ▶ Repeating the above logic for all t, we obtain all values of CR_t .

Implication of B, C

$$\begin{array}{l} \mathsf{B} : \! \Psi^{1}_{r_{\phi}}[0] = \Psi^{1}_{r_{\phi}}[1] = 1, \forall \phi \in [1, 99] \setminus \{67, 99\} \\ \mathsf{C} : \! \Psi^{2}_{r_{99}}[1] = 1, \text{ and } \Psi^{2}_{r_{67}}[1] = 0 \end{array}$$

 \blacktriangleright B \Rightarrow of the remaining 99 streams, atleast 97 satisfy

(P1)
$$\eta_{t,r_{\phi}}[0] = \eta_{t,r_{\phi}}[1] = 0.$$

• $C \Rightarrow$ at least 1 and at most 2 satisfy

(P2)
$$\eta_{t,r_{\phi}}[0] = 0, \eta_{t,r_{\phi}}[1] = 1.$$

• Recall that $\eta_{t,r_{67}}[1]$ is given by

$$z_{t+1} + z_{t+1,\Delta r_{67}}(t) = \theta_1(R_t, S_t) + \theta_1(R_{t,\Delta r_{67}}(t), S_{t,\Delta r_{67}}(t)) = r_0^t$$

- ▶ If # P1 = 98 and # P2 = 1 \Rightarrow the P2 stream must have been produced due to fault on r_{99} . $\Rightarrow \eta_{t,r_{67}}[1] = 0 \Rightarrow r_0^t = 0$.
- ▶ If # P1 = 97 and # P2 = 2 \Rightarrow the P2 streams must have been produced due to faults on r_{99}, r_{67} . $\Rightarrow \eta_{t,r_{67}}[1] = 1 \Rightarrow r_0^t = 1$.

- ▶ The same as A for faults on S.
- Exactly one stream has the property

 $\eta_{t,s_{\phi}}[0] = 1$

- This must have been produced due to fault on s_0 .
- No other information is gained.

Faults on S : Implication of E, F

 \blacktriangleright E \Rightarrow of the remaining 99 streams, atleast 97 satisfy

(P3) $\eta_{t,s_{\phi}}[0] = \eta_{t,s_{\phi}}[1] = 0.$

• $F \Rightarrow$ at least 1 and at most 2 satisfy

(P4) $\eta_{t,s_{\phi}}[0] = 0, \eta_{t,s_{\phi}}[1] = 1.$

• Recall that $\eta_{t,s_{99}}[2]$ is given by

 $z_{t+2} + z_{t+2,\Delta s_{99}}(t) = \theta_2(R_t, S_t) + \theta_2(R_{t,\Delta s_{99}}(t), S_{t,\Delta s_{99}}(t)) = CS_t$

▶ If # P3 = 98 and $\# P4 = 1 \Rightarrow$ the P4 stream must have been produced due to fault on $s_{99} \Rightarrow \eta_{t,s_{99}}[2] = CS_t$.

Faults on *S* : **Implication of E, F contd.**

▶ If # P3 = 97 and $\# P4 = 2 \Rightarrow$ the P4 streams must have been produced due to fault on s_{99}, s_{34} .

(i) If the bit indexed 2 of these streams are equal $\Rightarrow CS_t = \eta_{t,s_{39}}[2] = \eta_{t,s_{34}}[2]$

- (ii) If the bit indexed 2 of these streams are unequal, no conclusions can be drawn.
- Under randomness assumptions, $Pr[(ii) \text{ occurs}] = \frac{1}{4}$.
- Let γ = number of undecided CS'_t s in [0, 100]. Then

$$\gamma ~\sim~ Binomial(101,rac{1}{4}){\Rightarrow}E(\gamma)=25.25$$

Strategy : guess the undecided $CS'_t s \Rightarrow$ Comp. burden 2^{γ} .

- Fault requirement for $R : 2^{15.7}$. Same for S.
- ▶ Total fault requirement : 2^{16.7}
- ▶ Computational burden comes from guessing γ values of CS_t where

$$\gamma~\sim~Binomial(101,rac{1}{4})$$

• Time complexity $\approx 2^{32.5}$.

CONCLUSION

- A differential fault attack on Mickey 2.0 using
 - using faults at chosen locations
 - using faults at random and unknown locations
- DFA against all 3 hardware candidates of eStream portfolio now reported.

Cipher	State size	Average # of Faults
Trivium	288	3.2
Grain v1	160	$\approx 2^{8.5}$
MICKEY 2.0	200	$\approx 2^{16.7}$

- MICKEY requires more faults because of complex structure.
- The attack can be extended to cases where a single fault injection affects multiple bits.

THANK YOU

resenter: Meltem Sonmez-Turan

A Differential Fault Attack on MICKEY 2.0