
Motivation Keccak Our Designs Results Comparison Conclusions 1 / 24

Pushing the Limits of SHA-3
Hardware Implementations to Fit
on RFID
Peter Pessl and Michael Hutter

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 2 / 24

Co-Author

Peter Pessl

VHDL implementation of Keccak

Currently working on integrating Keccak
into low-resource ECDSA

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 3 / 24

Outline

1 Motivation

2 Keccak

3 Our Designs

4 Results

5 Comparison

6 Conclusions

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 4 / 24

Motivation

Keccak as winner of the SHA-3 contest

Main goal: what are the lower bounds of Keccak in terms of area
and power?

How do highly serialized (8 or 16-bit) versions perform on ASICs?

Suitable candidate for low-cost
passive RFID?

I Power should be less than 15µW
at 1 MHz (reading range)

I Few milliseconds of response time
OK (not recognizable by humans)

Follow the RFID design principle:
“few gates and many cycles” as
suggested by S. Weis [10]

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 5 / 24

Keccak

Cryptographic sponge function family

Instances call b-bit permutations f with parameters r , c :
I r bits of rate
I c bits of capacity (defines the security level of 2c/2)
I b = r + c = 25, 50, 100, 200, 400, 800 or 1600

SHA-3 instance example
I b = 1600 with r = 1088 and c = 512
I 256-bit security

Deinterleave

r0 / 64bit

r1 / 64bit

lane

sliceslice

lane

0

0
f f f f f

r

c

Padded message Output

SqueezeAbsorb

...

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 6 / 24

The Keccak-f Permutation

Block permutations on a b = 5× 5× 2`-bit
state matrix, where ` ∈ [0, 6]

Consists of 12 + 2` rounds with 5
sub-functions:

Θ Adds the parity (linear diffusion)

ρ Cyclic shifts of lanes (slice dispersion)

π Slice permutation (break alignment)

χ Combination of rows (non-linearity)

ι Add round constant (avoid symmetry)

ΣΣ

���Χ

Θ

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 7 / 24

Design Exploration and Decisions

We target Keccak[1600] and Keccak[800]
I ...because most likely to be standardized

For each target, we implement two versions:
I 8-bit version: aims for lowest area
I 16-bit version: trading area for higher throughput

Memory type and I/O interface
I Use of RAM macros for state storage
I Standardized 8/16-bit AMBA APB interface

Constants: LUT vs. LFSR
I Round constants for ρ and ι stored in LUT
I No dedicated LFSR unit required

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 8 / 24

Lane-wise vs. Slice-wise Processing

Lane-wise processing
I Often applied in SW
I A lane with 2` bits is stored in 8, 16, 32, or

64-bit registers
I Can be combined with bit interleaving:

X Helps to improve the performance of ρ
X Reduces costly instructions necessary for

rotation

Slice-wise processing
I More HW oriented
I Round function has to be re-scheduled
I Example: Jungk and Apfelbeck [6]

X Processed 8 slices in parallel
X ρ permutation required extra registers and

special RAM addressing
X Stored the state in 25 8 × 8 RAMs

Deinterleave

r0 / 64bit

r1 / 64bit

lane

sliceslice

lane

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 9 / 24

Idea

Apply lane interleaving
X Store pairs of lanes interleaved in RAM
X Each 8-bit word in RAM contains information

about 2 lanes and 4 slices
X Allows to efficiently process 4 slices instead of 8

Combine lane and slice-wise processing in a
single datapath

1 Lane-processing phase:

X Apply ρ on two entire 64-bit lanes
X No RAM addressing issues (implicit rotation)

2 Slice-processing phase:

X Process 4 slices

Allows usage of 200× 8 RAM

Deinterleave

r0 / 64bit

r1 / 64bit

lane

sliceslice

lane

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 10 / 24

Lane Interleaving

Two shared 64-bit registers r0 and r1
I Used to store 2 lanes or 4 slices
I r0 stores odd lanes and r1 stores even lanes

Only 24 lanes interleaved
I Lane[0,0] has zero rotation offset

Deinterleave

r0 / 64bit

r1 / 64bit

lane

sliceslice

lane

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 11 / 24

Ressource Requirements

Two shared 64-bit registers

Interleave/Deinterleave unit

Two ρ units
I Rotate two lanes in parallel
I Two 4-bit rotation registers and Barrel shifters

Slice unit
I Reuse of rotation registers to store parities for Θ

Re-schedule of round function (25 rounds):
I First round: ρ ◦Θ
I 23 rounds: ρ ◦Θ ◦ ι ◦ χ ◦ π
I Last round: ι ◦ χ ◦ π

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 12 / 24

The Datapath Architecture

Datapath

r0 / 64bit
4

100

4

13

r1 / 64bit

ρ0

ρ1

25 Slice Unit
θ∘ι∘χ∘π

Deinterleave8

4

4

25

Interleave

8

8

RAM Out

RAM In

12

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 13 / 24

Lane Processing

ρ-Unit

BarrelShift4

rotReg2/24bit2222

shiftIn

curr

rotations[1:0]

r2/264bit

rotations[5:2]

4 4

Load and deinterleave two 64-bit lanes (16 cycles)

Apply ρ on entire lanes
I 1 init cycle for pre-setting rotation register
I Implicitly rotation by specified offsets using Barrel shifter

Store two 64-bit lanes back interleaved (16 cycles)

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 14 / 24

Slice Processing

Load and deinterleave 4 slices with consecutive z-coordinates (13
cycles)

Permutation of Θ, ι, χ, π in a single cycle

Parities of previous slice columns are stored in a 5-bit parity register

Resources for parity register are shared with rotation registers for ρ

Slice Unit

Parity

ParityReg / 5bit >>1

ι∘χπ

25

5
25<<1

0

5

bypass θ

25

bypass ι∘χ∘πRoundConstant bit

25

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 15 / 24

8-bit vs. 16-bit Version

Drawbacks of 8-bit version
I Narrow memory interface
I Asymmetric datapath

X 25-bits for slice unit
X 8-bits for the two ρ units

Trading area for higher throughput
I 16-bit RAM macro instead of 8-bit

X Allows writing of single bytes

I Two 8-bit ρ units (instead of 4 bits)

X Twice as fast

I No modifications for slice unit (e.g., process 8 slices instead of 4)

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 16 / 24

Results

Table 1 : Area of chip components for
our low-area version (8-bit)

Component GEs

Datapath 1 922
r0 + r1 1 213
Slice unit 382
ρ units 38

Controller 598
LUT 144
AMBA IO 69
Core Total 2 927

RAM macro 2 595
Total 5 522

Table 2 : Area of chip components for
our higher-throughput version (16-bit)

Component GEs

Datapath 2 083
r0 + r1 1 205
Slice unit 382
ρ units 119

Controller 646
LUT 144
AMBA IO 69
Core Total 3 148

RAM macro 2 750
Total 5 898

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 17 / 24

Comparison with Related Work

Table 3 : Comparison of 1 600-bit Keccak, SHA-1, and SHA-256

Techn. Area Power Cycles/ Throughput
[nm] [GEs] [µW/MHz]a Blockb @1MHz [kbps]

Ours, 8-bit version 130 5 522 12.5 22 570 48.2

Ours, 16-bit version 130 5 898 13.7 15 427 70.5

Keccak team [4] 130 9 300 N/A 5 160 210.9

Kavun et al. [7] 130 20 790 44.9 1 200 906.6

SHA-1 [9] 130 5 527 23.2 344 1 488.0

SHA-1 [5] 350 8 120 - 1 274 401.8

SHA-256 [8] 250 8 588 - 490 1 044.0

SHA-256 [5] 350 10 868 - 1 128 454.0

aPower values of designs using different process technologies are omitted
bBlocksizes: 1 600-bit Keccak: 1 088 bits [3], SHA-1 & SHA-256: 512 bits

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 18 / 24

What About Keccak[800]?

Optimizations
I RAM size halved
I Size reduction of internal registers

X 100 bits (2 × 50) instead of 128 (2 × 64)
X Memory needed to store 4 slices or 2 lanes (2 × 32)

I Keccak-f is twice as fast
I Round reduction from 24 to 22

Synthesis results:

Table 4 : Keccak[800] results

Keccak[800]
Techn. Area Power Cycles Throughput
[nm] [GEs] [µW/MHz] Blocka @1MHz [kbps]

8-bit version 130 4 627 12.4 10 712 26.9

16-bit version 130 4 945 13.1 7 464 38.6

aBlocksizes: 800-bit Keccak: r = 288 bits [3]

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 19 / 24

Further Research Suggestions

Find own trade-off between area and speed
I Broader memory interfaces (e.g., 32 bits) require more area...
I Factor-n lane interleaving?

Maybe more compact solutions that provide hashing capabilities, e.g.,
PRESENT, AES?

Integration
I External memory needed or is it already included in the system?
I 8-bit AMBA APB interface available

More “lightweight”? Change of Keccak properties, e.g., collision
resistance or security level (< 256 bits)

Protection against implementation attacks, hiding (e.g., shuffling) or
masking (e.g., secret sharing [1, 2])

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 20 / 24

Conclusions

Serialized Keccak[1600] requires ≈ 5.5− 6 kGEs

Less than 15µW at 1 MHz on 130 nm CMOS

8 vs. 16-bit version?
I Spend 376 GEs for a 32 % speed improvement
I No power differences

Keccak[800] preferred for RFIDs
I 900 GEs smaller in size, i.e., 4.6 kGEs
I With external memory available: only 2 016 GEs necessary
I Twice as fast as Keccak[1600]
I 10.7 ms per block at 1 MHz
I But almost no power savings

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 21 / 24

References I

G. Bertoni, J. Daemen, N. Debande, T.-H. Le, M. Peeters, and G. Van Assche.

Power Analysis of Hardware Implementations Protected with Secret Sharing.

Cryptology ePrint Archive: Report 2013/067, February 2013.

G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche.

Building Power Analysis Resistant Implementations of Keccak.

In Second SHA-3 Candidate Conference, University of California, Santa Barbara,
August 23-24, 2010.

G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche.

The Keccak SHA-3 submission.

Submission to NIST (Round 3), 2011.

G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. V. Keer.

Keccak Implementation Overview, V3.2, 2012.

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 22 / 24

References II

M. Feldhofer and C. Rechberger.

A Case Against Currently Used Hash Functions in RFID Protocols.

In Workshop on Information Security - IS, Montpellier, France, 2006.

B. Jungk and J. Apfelbeck.

Area-Efficient FPGA Implementations of the SHA-3 Finalists.

In Reconfigurable Computing and FPGAs–ReConFig 2011, International
Conference, November 30-December 2, Cancun, Mexico, 2011, pages 235–241,
2011.

E. B. Kavun and T. Yalcin.

A Lightweight Implementation of Keccak Hash Function for Radio-Frequency
Identification Applications.

In S. B. O. Yalcin, editor, Workshop on RFID Security – RFIDsec 2010, 6th
Workshop, Istanbul, Turkey, June 7-9, 2010, Proceedings, volume 6370, pages
258–269. Springer, 2010.

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 23 / 24

References III

M. Kim, J. Ryou, and S. Jun.

Efficient Hardware Architecture of SHA-256 Algorithm for Trusted Mobile
Computing.

In Information Security and Cryptology–Inscrypt 2008, 4th International
Conference, Beijing, China, December 14-17, 2008, Revised Selected Papers.

M. O’Neill.

Low-Cost SHA-1 Hash Function Architecture for RFID Tags.

In S. Dominikus, editor, Workshop on RFID Security 2008 (RFIDsec08), pages
41–51, July 2008.

S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels.

Security and Privacy Aspects of Low-Cost Radio Frequency Identification Systems.

In Security in Pervasive Computing, 1st Annual Conference on Security in Pervasive
Computing, Boppard, Germany, March 12-14, 2003, Revised Papers.

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Motivation Keccak Our Designs Results Comparison Conclusions 24 / 24

Thanks for your attention!

Questions?

Michael Hutter

michael.hutter@iaik.tugraz.at

Graz University of Technology

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

michael.hutter@iaik.tugraz.at

	Motivation
	Keccak
	Our Designs
	Results
	Comparison
	Conclusions

