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Motivation

Keccak as winner of the SHA-3 contest

Main goal: what are the lower bounds of Keccak in terms of area
and power?

How do highly serialized (8 or 16-bit) versions perform on ASICs?

Suitable candidate for low-cost
passive RFID?

I Power should be less than 15µW
at 1 MHz (reading range)

I Few milliseconds of response time
OK (not recognizable by humans)

Follow the RFID design principle:
“few gates and many cycles” as
suggested by S. Weis [10]
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Keccak

Cryptographic sponge function family

Instances call b-bit permutations f with parameters r , c :
I r bits of rate
I c bits of capacity (defines the security level of 2c/2)
I b = r + c = 25, 50, 100, 200, 400, 800 or 1600

SHA-3 instance example
I b = 1600 with r = 1088 and c = 512
I 256-bit security
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The Keccak-f Permutation

Block permutations on a b = 5× 5× 2`-bit
state matrix, where ` ∈ [0, 6]

Consists of 12 + 2` rounds with 5
sub-functions:

Θ Adds the parity (linear diffusion)

ρ Cyclic shifts of lanes (slice dispersion)

π Slice permutation (break alignment)

χ Combination of rows (non-linearity)

ι Add round constant (avoid symmetry)

ΣΣ

���Χ

Θ
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Design Exploration and Decisions

We target Keccak[1600] and Keccak[800]
I ...because most likely to be standardized

For each target, we implement two versions:
I 8-bit version: aims for lowest area
I 16-bit version: trading area for higher throughput

Memory type and I/O interface
I Use of RAM macros for state storage
I Standardized 8/16-bit AMBA APB interface

Constants: LUT vs. LFSR
I Round constants for ρ and ι stored in LUT
I No dedicated LFSR unit required
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Lane-wise vs. Slice-wise Processing

Lane-wise processing
I Often applied in SW
I A lane with 2` bits is stored in 8, 16, 32, or

64-bit registers
I Can be combined with bit interleaving:

X Helps to improve the performance of ρ
X Reduces costly instructions necessary for

rotation

Slice-wise processing
I More HW oriented
I Round function has to be re-scheduled
I Example: Jungk and Apfelbeck [6]

X Processed 8 slices in parallel
X ρ permutation required extra registers and

special RAM addressing
X Stored the state in 25 8 × 8 RAMs

Deinterleave
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r1 / 64bit
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Idea

Apply lane interleaving
X Store pairs of lanes interleaved in RAM
X Each 8-bit word in RAM contains information

about 2 lanes and 4 slices
X Allows to efficiently process 4 slices instead of 8

Combine lane and slice-wise processing in a
single datapath

1 Lane-processing phase:

X Apply ρ on two entire 64-bit lanes
X No RAM addressing issues (implicit rotation)

2 Slice-processing phase:

X Process 4 slices

Allows usage of 200× 8 RAM

Deinterleave

r0 / 64bit

r1 / 64bit

lane

sliceslice

lane
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Lane Interleaving

Two shared 64-bit registers r0 and r1
I Used to store 2 lanes or 4 slices
I r0 stores odd lanes and r1 stores even lanes

Only 24 lanes interleaved
I Lane[0,0] has zero rotation offset

Deinterleave
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r1 / 64bit
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Ressource Requirements

Two shared 64-bit registers

Interleave/Deinterleave unit

Two ρ units
I Rotate two lanes in parallel
I Two 4-bit rotation registers and Barrel shifters

Slice unit
I Reuse of rotation registers to store parities for Θ

Re-schedule of round function (25 rounds):
I First round: ρ ◦Θ
I 23 rounds: ρ ◦Θ ◦ ι ◦ χ ◦ π
I Last round: ι ◦ χ ◦ π
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The Datapath Architecture

Datapath
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Lane Processing

ρ-Unit

BarrelShift4

rotReg2/24bit2222

shiftIn

curr

rotations[1:0]

r2/264bit

rotations[5:2]

4 4

Load and deinterleave two 64-bit lanes (16 cycles)

Apply ρ on entire lanes
I 1 init cycle for pre-setting rotation register
I Implicitly rotation by specified offsets using Barrel shifter

Store two 64-bit lanes back interleaved (16 cycles)
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Slice Processing

Load and deinterleave 4 slices with consecutive z-coordinates (13
cycles)

Permutation of Θ, ι, χ, π in a single cycle

Parities of previous slice columns are stored in a 5-bit parity register

Resources for parity register are shared with rotation registers for ρ

Slice Unit

Parity

ParityReg / 5bit  >>1

ι∘χπ

25

5
25<<1

0

5

bypass θ

25

bypass ι∘χ∘πRoundConstant bit

25
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8-bit vs. 16-bit Version

Drawbacks of 8-bit version
I Narrow memory interface
I Asymmetric datapath

X 25-bits for slice unit
X 8-bits for the two ρ units

Trading area for higher throughput
I 16-bit RAM macro instead of 8-bit

X Allows writing of single bytes

I Two 8-bit ρ units (instead of 4 bits)

X Twice as fast

I No modifications for slice unit (e.g., process 8 slices instead of 4)
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Results

Table 1 : Area of chip components for
our low-area version (8-bit)

Component GEs

Datapath 1 922
r0 + r1 1 213
Slice unit 382
ρ units 38

Controller 598
LUT 144
AMBA IO 69
Core Total 2 927

RAM macro 2 595
Total 5 522

Table 2 : Area of chip components for
our higher-throughput version (16-bit)

Component GEs

Datapath 2 083
r0 + r1 1 205
Slice unit 382
ρ units 119

Controller 646
LUT 144
AMBA IO 69
Core Total 3 148

RAM macro 2 750
Total 5 898

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013



Motivation Keccak Our Designs Results Comparison Conclusions 17 / 24

Comparison with Related Work

Table 3 : Comparison of 1 600-bit Keccak, SHA-1, and SHA-256

Techn. Area Power Cycles/ Throughput
[nm] [GEs] [µW/MHz]a Blockb @1MHz [kbps]

Ours, 8-bit version 130 5 522 12.5 22 570 48.2

Ours, 16-bit version 130 5 898 13.7 15 427 70.5

Keccak team [4] 130 9 300 N/A 5 160 210.9

Kavun et al. [7] 130 20 790 44.9 1 200 906.6

SHA-1 [9] 130 5 527 23.2 344 1 488.0

SHA-1 [5] 350 8 120 - 1 274 401.8

SHA-256 [8] 250 8 588 - 490 1 044.0

SHA-256 [5] 350 10 868 - 1 128 454.0

aPower values of designs using different process technologies are omitted
bBlocksizes: 1 600-bit Keccak: 1 088 bits [3], SHA-1 & SHA-256: 512 bits
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What About Keccak[800]?

Optimizations
I RAM size halved
I Size reduction of internal registers

X 100 bits (2 × 50) instead of 128 (2 × 64)
X Memory needed to store 4 slices or 2 lanes (2 × 32)

I Keccak-f is twice as fast
I Round reduction from 24 to 22

Synthesis results:

Table 4 : Keccak[800] results

Keccak[800]
Techn. Area Power Cycles Throughput
[nm] [GEs] [µW/MHz] Blocka @1MHz [kbps]

8-bit version 130 4 627 12.4 10 712 26.9

16-bit version 130 4 945 13.1 7 464 38.6

aBlocksizes: 800-bit Keccak: r = 288 bits [3]
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Further Research Suggestions

Find own trade-off between area and speed
I Broader memory interfaces (e.g., 32 bits) require more area...
I Factor-n lane interleaving?

Maybe more compact solutions that provide hashing capabilities, e.g.,
PRESENT, AES?

Integration
I External memory needed or is it already included in the system?
I 8-bit AMBA APB interface available

More “lightweight”? Change of Keccak properties, e.g., collision
resistance or security level (< 256 bits)

Protection against implementation attacks, hiding (e.g., shuffling) or
masking (e.g., secret sharing [1, 2])
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Conclusions

Serialized Keccak[1600] requires ≈ 5.5− 6 kGEs

Less than 15µW at 1 MHz on 130 nm CMOS

8 vs. 16-bit version?
I Spend 376 GEs for a 32 % speed improvement
I No power differences

Keccak[800] preferred for RFIDs
I 900 GEs smaller in size, i.e., 4.6 kGEs
I With external memory available: only 2 016 GEs necessary
I Twice as fast as Keccak[1600]
I 10.7 ms per block at 1 MHz
I But almost no power savings
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Thanks for your attention!

Questions?

Michael Hutter

michael.hutter@iaik.tugraz.at

Graz University of Technology
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