On the Effectiveness of the Remanence Decay Side-Channel to Clone Memory-based PUFs

Christian Wachsmann

christian.wachsmann@trust.cased.de Intel CRI-SC at TU Darmstadt, Germany

Joint work with:

Ahmad-Reza Sadeghi

Technische Universität Darmstadt / CASED Germany **Yossef Oren**

Tel Aviv University Israel

Memory-based Physically Unclonable Functions (PUFs) often considered as lightweight alternative to secure non-volatile memory

Typical assumptions on memory PUF-based systems

- Reading out the secret PUF state is hard
- Re-use of existing device memory minimizes implementation costs

We show: Re-use of device memory allows reading out secret PUF state

CASED

In This Talk

• Cloning attack against memory-based PUFs

- Exploits data remanence decay as side-channel
- Applies differential fault analysis [Biham and Shamir, CRYPTO'97] to extract secret PUF state
- Experimental and practical validation of the attack
- Countermeasures

What is a Memory-Based PUF?

Memory-Based PUFs

Major class of PUFs based on instability of volatile memory

Such as SRAM cells, flip-flops or latches

Our focus: SRAM-based PUFs

Goal: Extract unique device-specific fingerprint

SRAM-PUF

SRAM block (array of SRAM cells)

SRAM cell: pair of cross-coupled inverters

- Inverters designed identically
- Identical inverters mean state 0 and 1 is equiprobable at power-up (when bit lines are undefined)

Manufacturing variations affect properties of inverters

- Most cells are biased towards 0 or 1 at SRAM power-up
- Some cells are metastable (take 0 or 1 with equal probability)

What are Memory-Based PUFs used for?

On the Effectiveness of the Remanence Decay Side-Channel to Clone Memory-based PUFs

Typical Application: Secure Key Storage

Common assumptions

- PUF response can only be read by post processing algorithm
- Post processing and security mechanism do not leak key or PUF response

These assumptions are not sufficient!

LINIVERSITÄT

Why are these assumptions insufficient?

9 On the Effectiveness of the Remanence Decay Side-Channel to Clone Memory-based PUFs

Observation: Data Remanence Decay

Data

SRAM

SRAM stores data

Power off \Rightarrow Data slowly decays to PUF state

Power on \Rightarrow Decay stops

CHES 2013

TECHNISCHE

How to turn this into an attack?

Fault Injection Attack

Assumptions

- Adversary knows value written to the SRAM
- Adversary controls power supply of device
- Adversary can observe device behavior (e.g., a device response)

Adversary can force the security mechanism to use a wrong key that depends on a partially known memory state

CASED

How to exploit this to extract the secret PUF state?

SCASED

Differential Fault Analysis

[Biham and Shamir, CRYPTO'97]

Two phases:

1. Data Collection Phase

Observe and record device behavior for different partially known memory states

2. Analysis Phase

Recover secret PUF state in a step-by-step fashion

Data Collection Phase

System

Security Lab

🜌 Fraunhofer

TECHNISCHE

UNIVERSITÄT

SCASED

Requirement: Difference between two consecutive memory states must be small

Does this work in practice?

Test Setup and PUF ASIC

PUF ASIC

- ASIC manufactured in TSMC 65 nm CMOS multi-project wafer run
- Includes four 8Kbyte SRAM-PUFs (amongst other PUF types)

Evaluation Result: Decay Times of SRAM Cells

Each SRAM cell has a characteristic decay time

Careful control of power-off time minimizes number of bit-changes between two consecutive experiments

CASED

What about real systems?

SCASED

Effectiveness Against Real System

• Target system: PUF key storage and authentication scheme

- 8 KByte SRAM used as PUF
- Uses repetition code and linear encoding [Bösch et al., CHES'08]
- Generates 128 bit key from PUF response
- Key used in standard challenge/response authentication protocol

Attack complexity

- 128 bit key stored in PUF can be recovered with $\approx 2^{56}$ operations
- Key recovery can be parallelized

How to prevent the attack?

Countermeasures

Use dedicated read-only SRAM for the PUF

- Contradicts idea of using existing memory for lightweight implementations
- Not suitable for low-end embedded devices (e.g., sensors)

Wait until all memory cells have returned to PUF state

- Takes considerable amount of time
- Decay-time depends on operating conditions (e.g., temperature)

Obfuscate device behavior

- Seems to increase complexity of the algorithms and protocols
- May exceed capabilities of low-end embedded devices (e.g., sensors)

CASED

Conclusion and Future Work

We presented

- First non-invasive cloning attack against memory-based PUFs based on the data remanence decay side channel
- Experimental and practical validation of the attack
- Performance improvement of TARDIS time-keeping mechanism for clock-less devices [Rahmati et al., USENIX'12] (see paper for details)

Current and future work

- Improving the attack
 - More precise control of decay effect (use voltage-based approach)
 - Optimize analysis phase (exploit properties of PUF post processing algorithms)

Thank you!

Christian Wachsmann

christian.wachsmann@trust.cased.de

This work has been supported by the EU FP7 project UNIQUE

