High Reliability PUF using Hot-Carrier Injection Based Response Reinforcement

CHES 2013

Mudit Bhargava and Ken Mai Electrical and Computer Engineering Carnegie Mellon University

Key Generation using PUFs

'Generate' the key instead of 'store' the key

- Storage is vulnerable
- PUF response
- Derived from amplification of random process variations
- Unreliability due to environmental conditions, noise, and aging
- **Required PUF characteristics**
- Random
- Unique

PUF Comparison Testchip

4 PUF implementations

- Arbiter
- Ring oscillators
- SRAM
- Sense amplifier

Comparison: Randomness

Comparison: Uniqueness

Electrical & Computer

Reliability Measurement

- Chips and board placed in temperature controlled chamber
- -20°C to 85°C
- 1.0V to 1.4V (1.2V nominal)
- Any response bit that flips is marked as erroneous

Comparison: Reliability

PUF reliability is insufficient for key generation

Conventional Solution: Error Correction Codes

High overheads

Electrical & Computer

- Delay, power, and area
- Complexity scale quickly with number of correctable errors
- For BER=15%, need 20-80 response bits/key bit

- Requires helper data
 - Can leak information
- Decode is slow
 - Often thousands of cycles
 - Micro- or milli-second timescales

Proposed Solution: Response Reinforcement

Response reinforcement

- Increase the baseline reliability of the PUF core circuit
- Post-manufacturing amplification of random variations
- Minimize or eliminate the need for ECC
- No helper data

Implementation

- Measure PUF "golden" response
- Reinforce golden response by directed accelerated aging (DAA)
- DAA: Artificially induce IC aging phenomena to amplify PUF circuit random variation for increased reliability

Integrated Circuit Aging Phenomena

Many IC aging effects

- Negative Bias Temperature Instability (NBTI)
- Time Dependent Dielectric Breakdown (TDDB)
- Metal electro-migration (EM)
- Hot Carrier Injection (HCI)

Desired characteristics

- Easy to artificially induce
- Short reinforcement time
- Strong reinforcement effect
- High permanence

Integrated Circuit Aging Phenomena

Many IC aging effects

- Negative Bias Temperature Instability (NBTI) [Bhargava HOST 2012]
- Time Dependent Dielectric Breakdown (TDDB)
- Metal electro-migration (EM)
- Hot Carrier Injection (HCI)

Desired characteristics

- Easy to artificially induce \rightarrow Only need a raised voltage \sim 3V
- Short reinforcement time → ~10s reinforcement (one time)
- Strong reinforcement effect \rightarrow Shifts transistor V_{TH} by >50mV
- High permanence → Effect lasts for years

Carnegie Mellon

Sense Amplifier: Use as PUF

Electrical & Computer

[Bhargava HOST 2010] Carnegie Mellon

Sense Amplifier: Use as PUF

SA offset voltage strong function of difference in V_{TH} of matched devices

Sense Amplifier Offset Voltage

High $|offset| \rightarrow$ more reliable PUF

Hot Carrier Injection Sense Amplifier (HCI-SA)

Hot Carrier Injection Sense Amplifier (HCI-SA)

This memory structure locally stores the value x1 and x2 as copies of out1 and out2 when the HCI-SA is run like a normal SA (HCIMODE=0; HCIMODEB=1) before any HCI stress. These values are later used to provide the right biasing during HCI-stress in the stress mode (HCIMODE=1; HCIMODEB=0)

Hot Carrier Injection Sense Amplifier (HCI-SA)

Electrical & Computer

HCI-SA Testchip

- 1600 self-reinforcing HCI-SA
- 1600 manually controlled HCI-SA
- Tested across 9 voltage/temperature corners
- HCI stress times of 1s, 5s, 25s, 125s

HCI-SA Offset Shift

HCI-SA Offset Shift

HCI-SA Reliability Measurements

100 runs at all 9 voltage/temperature corners \rightarrow No errors found after stress of 125 seconds

HCI-SA Reliability Measurements

100 runs at all 9 voltage/temperature corners \rightarrow No errors found after stress of 125 seconds

HCI-SA: Permanence of Offset Shift

- 18 hours → 0.33 years
- 93 hours → 1.7 years

Large-Scale Reliability Measurements

Measured 125k evaluations (125s HCI stress)

- At nominal corner (1.2V 27°C)
- At worst case corner (1.0V -20°C)
- No errors observed in any of the 1600 HCI-SAs

- Bit error rate BER < 5 * 10⁻⁹
- Key error rate KER < 0.6 * 10⁻⁶ (128-bit)
- KER target < 10⁻⁶ for reliable key generation

Summary

HCI-SA PUF

- Reliable BER < 5 * 10⁻⁹ without ECC
- Secure No helper data
- Fast Response generation in 1 cycle (~1ns)
- Simple One-time short reinforcement step (125s)
- High Permanence Small change after ~2yr simulated aging

Thank You

