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OUTLINE

I What is profiled DPA? – an overview of the popular methods

I What makes a good power model? – our evaluation criteria

I How ‘good’ is good enough? – analysis of some example scenarios
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SIDECHANNELANALALALYSIS∗

∗ (By way of ‘wittily’ acknowledging my frequent pronunciation fails...)
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C. WHITNALL (UNIVERSITY OF BRISTOL) PROFILING DPA CHES 2013 4 / 20



PROFILED DPA

PROFILING PHASE (SUPERVISED LEARNING)

PROF. DPA ATTACKER
XX-XX-XX     INACTIVE CARD

XXXX XXXX XXXX XXXX
XX-XX    XX-XX

MS. ALICE GELDOF
42-42-42     CURRENT ACCOUNT

1984 CT22 F451 2001
03-12    03-17


BANK

k = k1

k = k2

k = kn

...

Mk1

Mk2

Mkn

...

k = ?

ATTACK PHASE (CLASSIFICATION)

C. WHITNALL (UNIVERSITY OF BRISTOL) PROFILING DPA CHES 2013 4 / 20



PROFILED DPA

PROFILING PHASE (SUPERVISED LEARNING)

PROF. DPA ATTACKER
XX-XX-XX     INACTIVE CARD

XXXX XXXX XXXX XXXX
XX-XX    XX-XX

MS. ALICE GELDOF
42-42-42     CURRENT ACCOUNT

1984 CT22 F451 2001
03-12    03-17


BANK

k = k1

k = k2

k = kn

...

Mk1

Mk2

Mkn

...

k = ?

ATTACK PHASE (CLASSIFICATION)

PROF. DPA ATTACKER
XX-XX-XX     INACTIVE CARD

XXXX XXXX XXXX XXXX
XX-XX    XX-XX

k = k1

k = k2

k = kn

...

Mk1

Mk2

Mkn

...

k = ?
ALICE T ARGET
42-42-42     CURRENT ACCOUNT

1984 CT22 F451 2001
03-12    03-17


BANK

C. WHITNALL (UNIVERSITY OF BRISTOL) PROFILING DPA CHES 2013 4 / 20



TWO TYPICAL METHODS

‘CLASSICAL’ TEMPLATES:

Separate multivariate Gaussian models for each key-dependent value

Covariance matrix estimated for each key-dependent value

LINEAR REGRESSION-BASED TEMPLATES:

Linear regression model fitted to the pooled data at each time point

Covariance matrix estimated for pooled data (2nd, independent sample)

Choose the key hypothesis which maximises the log-likelihood of the
observed traces.

OR (ignoring noise):
Choose the key hypothesis which maximises the correlation between the

model fitted values and the observed traces.
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LINEAR REGRESSION VS. CLASSICAL

Consider an 8-bit intermediate value target (e.g. AES S-box output). . .

Classical templates have fixed complexity: 2m conditional mean vectors,
2m covariance matrices.

Linear regression has adjustable complexity: an intercept, coefficients
on all the equation terms, and one covariance matrix.

Potentially large reduction in profiling traces needed (e.g. linear model
expression requires only m + 1 coefficients).
Potentially substantial degradation in model quality if simplifying
assumptions are not correct.
Higher-order terms in the model equation militate against model
degradation but add to profiling data complexity.

Linear regression models coincide with classical (in complexity and
quality of deterministic part) once all possible monomial terms are
included in the equation.
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PREVIOUS WORK

Templates vs. Stochastic Methods, B. Gierlichs, K. Lemke-Rust, C. Paar.
CHES 2006, LNCS 4249: 15–29, Springer.

LR templates recover key with fewer (profiling) traces but classical
achieve higher success rates once profiling sample is large.

Analysis primarily experimental: true distributions unknown so
difficult to comment on model quality.

Tested scenarios limited and favourable to LR (close to HW).

How to Compare Profiled Side-Channel Attacks?, F.X. Standaert, F.
Koeune, W. Schindler. ACNS 2009, LNCS 5536: 485–498, Springer.

Information theoretic metric can be used to quantify model quality.

Analysis geared more towards theory (establishing an evaluation
framework).

Tested scenarios limited to simulated HW leakage – LR has big
advantage; comparative findings do not extend to general case.
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OUR CONTRIBUTION

Explore trade-offs in a wider range of scenarios, including those not
well-suited to low-degree approximations.

Theoretic (rather than experimental) evaluation where possible.

Hypothetical scenarios with fully-specified leakage distributions give
concrete benchmarks for model quality/performance.

Hamming
weight
model

Degree 8
polynomial
(‘classical’)

Linear
function
of bits

Degree 4
polynomial

(for example)
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WHAT MAKES A GOOD POWER MODEL?

1 Profiling complexity: the fewer traces needed to build the model, the
better.

2 Goodness-of-fit: the closer the model is to the actual leakage
distribution, the better.

3 DPA performance: the fewer the traces needed to recover the key from
the target device, the better.
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MEASURING PROFILING COMPLEXITY

Difficult to measure theoretically: sample size formulae exist for
simpler statistical problems but not for precise coefficient estimation.
Empirical approach:

1,000 repeat experiments on randomly drawn balanced samples
Gaussian noise at high (8) medium (1) and low (0.125) signal-to-noise
ratios
Fit models of degree ranging from 1 through to 8
Count number of traces required to reach a certain threshold of precision
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MEASURING GOODNESS-OF-FIT

Find least squares solution {β̂0, . . . , β̂p} for the system of equations
representing the regression in the absence of noise:

{Yv}v∈V =


p∑

j=0

βjgj(v)


v∈V

Compute coefficient of determination – proportion of variation in the
leakage function which is accounted for by the model:

Model fitted
values

ρ


p∑

j=0

β̂jgj(v)


v∈V

, {Yv}v∈V

2

Actual leakage
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MEASURING DPA PERFORMANCE

Compute the theoretic correlation distinguishing vector under each
model:

Dρ(k) = ρ(Y,MLR(Vk)) =
cov(Y,MLR(Vk))√

var(Y)
√

var(MLR(Vk))

Use sample size formulae to calculate the number of traces required to
distinguish the true key from the nearest rival:

0 50 100 150 200 250
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0.2

0.4
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0.8

1
Dρ(k∗ )

Dρ(knr) N∗ = 3 + 8 ·
z2

1−α(
ln 1+Dρ(k∗)

1−Dρ(k∗)
− ln 1+Dρ(knr)

1−Dρ(knr)

)2
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α: “significance level”
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SOME EXAMPLE SCENARIOS

Consider leakage of the form L(v) + ε, where L(v) is the deterministic,
data-dependent component which we will call the leakage function and
ε ∼ N(0, σε) is additive Gaussian noise. (The intermediate value v in our
analysis is the AES S-box output.)

1 The leakage function is proportional to the Hamming weight, as
motivated by typical behaviour of CMOS technology.

2 Adjacent wires interact so that the leakage is proportional to the
Hamming weight plus quadratic terms involving adjacent bits of the
intermediate value.

3 The leakage is a highly nonlinear function of the intermediate bits such
as that arising from hardware implementations of AES.
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PROFILING COMPLEXITY
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Affects all leakage scenarios similarly.
Sample sizes to estimate maximum degree polynomials are around 30
times more than those to estimate linear polynomials.
Little change in complexity between degree 6 and degree 8 models.
Reasonable savings only possible at degree 5 or lower.
Sample size increases as signal decreases but relationship between
models of different degree is consistent.
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LOW DEGREE LEAKAGES

Hamming weight leakage:
Perfectly approximated by a linear model function.
Performs equivalently to ‘classical’ models.

Leakage with adjacent interactions:
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Closely approximated by a linear model function.
Performance only marginally diminished.
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TOGGLE COUNT-BASED LEAKAGE:
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Deterministic leakage

ρ2 = 0.851

2.1 2.2 2.3

2.1

2.2

2.3

Degree of model: 6

Deterministic leakage
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Linear model inadequate to approximate the leakage – captures just 6%
of the variation.
Degree 4 model accounts for about two thirds of the variation, with less
than half the number of parameters required for the classical model.
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TOGGLE COUNT-BASED LEAKAGE:
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Very little difference in distinguishing power between the degree 5 and
classical models.

Linear and quadratic models are able to recover the key, but by very
small margins and requiring lots of traces – over a hundred times as
many in the case of the linear model.

Degree 4 model requires around twice as many traces.
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SUMMARY TABLE

Experiments suggest the formula overstates the sample size in the case of
highly-degraded models (further work needed).

Adjacent Toggle count-
interactions based

Model #Params Profiling Model Attack Model Attack
complexity fit complexity fit complexity

HW – 0 0.88 1.2–1.3 0.04 930–1,270
Deg. 1 9 0.03 0.96 1.0–1.1 0.06 136–220
Deg. 2 37 0.13 1 1 0.13 19–29
Deg. 3 93 0.33 1 1 0.35 3.6–5.2
Deg. 4 163 0.63 1 1 0.65 1.7–2.2
Deg. 5 219 0.83 1 1 0.85 1.2–1.4
Deg. 6 247 0.90 1 1 0.96 1.0–1.1
Deg. 7 255 1 1 1 1 1
Deg. 8 256 1 1 1 1 1
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CONCLUSION

Linear regression is an excellent alternative to classical profiling when
the true leakage function is simple.

Over-simplified assumptions when the leakage is complex can
substantially diminish attack performance.

Device evaluation perspective:
Classical profiling remains the best way to test for vulnerability against
the strongest possible adversary.

Attacker perspective:
In our example, degree 4 models offer a promising trade-off between
profiling and attack complexity.
Even minimal profiling can substantially increase attack performance
relative to standard assumptions (such as Hamming weight leakage)
when those assumptions do not hold.
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THANK YOU FOR LISTENING!

Any questions?
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