

Outline

- What is Template-TASCA?
- How do you use it?

Review: solvers and optimizers

Cryptanalysis using solvers

 Modern crypto is strong enough to withstand Algebraic Cryptanalysis using solvers [MM00]

 If we add side-channel inf be recovered quickly and

Physical limitations of the introduce errors which carellose replacing solvers with opt

Oren, Kirschbaum, Popp and Wool, CHES 2010

Renauld and Standaert,
INSCRYPT 2009

Our contributions

- We extend ASCA from a priori (HW) leakage model towards any profiled model
- The resulting attack methodology, called Template-TASCA (alt. Template-Set-ASCA), combines the low data complexity of algebraic attacks and the versatility of template attacks
- Our results apply both to solvers and to optimizers

Versatility of Template-TASCA

Versatility of Template-TASCA

Two cases of successful key recovery

Solvers and Optimizers

Solvers are fast, optimizers are versatile

attack	set	decoding	key rec.	med. solving	max. solving	# of correct
	size	success	success	time	$_{ m time}$	key bytes
set-ASCA	1	0%	0%	N/A	N/A	N/A
set-ASCA	2	83%	83%	2 seconds	6 seconds	16
set-ASCA	3	100%	0%	24+ hours	24+ hours	N/A
basic TASCA	1	0%	0%	N/A	N/A	N/A
basic TASCA	2	83%	75%	43.7 minutes	11.8 hours	14.48
basic TASCA	3	100%	80%	16.8 hours	66 hours	13.25
prob. TASCA	1	0%	0%	N/A	N/A	N/A
prob. TASCA	2	83%	82%	56.7 minutes	10.07 hours	15.88
prob. TASCA	3	100%	100%	8.2 hours	143 hours	16

Solvers and Optimizers

 Solvers cannot operate over the entire solution space (need additional heuristics)

Shopping list

- Device under test (DUT)
- Template decoder
- Optimizer (or solver)
- Cipher equations
- Leak equations

Start like template...

- In offline phase, create template decoders for many intermediate states
- In online phase, apply decoders to power trace, obtaining multiple aposteriori probability vectors

... end like TASCA

- Pass probability vectors, together with device description, to optimizer or solver
- The output will be the state (and key) which optimally matches the probabilities of all the intermediate values:

$$x_1 \cdots x_m = \arg\max_{x_1 \cdots x_m} \prod_{i=1 \cdots m} \Pr(x_i | trace) s.t.$$
 cipher eq'ns are satisfied.

Summary

- Using Template-TASCA and Template-Set-ASCA, crypto devices can be attacked with very low data complexity
- Any leak can be used, as long as a "soft decoder" exists for it
- This is theoretically a very strong attack
 - can it have impact on real world devices?

Thank you!

http://iss.oy.ne.ro/Template-TASCA

The Information-Robustness Tradeoff

The Harsh Reality of Power Analysis

- The side channel traces have **errors**
- Equation set with errors causes unsatisfiability
- Compensating for errors causes intractability

Decoder does not have to be very good!

- In our experiment:
 - Ensemble of 100 decoders for intermediate bytes
 - Average rank of correct byte in decoder output: 14/256
 - Worst-case rank of correct byte:90/256
 - Success rate: 100%

