

- Is "Lightweight = Light + Wait?" -

Miroslav Knežević, Ventzislav Nikov, Peter Rombouts

CHES 2012, Leuven, Belgium, September 10-12, 2012

Is "Lightweight = Light + Wait?"

Digital Continuum

Slide credit: Ingrid Verbauwhede

Digital Continuum

Low-Latency Encryption

Is "Lightweight = Light + Wait?"

Digital Continuum

Low-Latency Encryption

Is "Lightweight = Light + Wait?"

Is "Lightweight = Light + Wait?"

Latency vs Throughput

PAGE: 3 of 21

Is "Lightweight = Light + Wait?"

Latency vs Throughput

Is "Lightweight = Light + Wait?"

Latency vs Throughput

Latency = 15 s Throughput = 0.067 beer/s

Is "Lightweight = Light + Wait?"

Latency vs Throughput

Ad Fundum

Is "Lightweight = Light + Wait?"

Latency vs Throughput

Ad Fundum

Latency = 5 s Throughput = 0.2 beer/s

Is "Lightweight = Light + Wait?"

Latency vs Throughput

Is "Lightweight = Light + Wait?"

Latency vs Throughput

Latency = 15 s Throughput = 0.2 beer/s

Is "Lightweight = Light + Wait?"

Latency vs Throughput

Latency = 15 s Throughput = 0.2 beer/s

Is "Lightweight = Light + Wait?"

Latency vs Throughput

Is "Lightweight = Light + Wait?"

Latency vs Throughput

Latency = 15 s Throughput = 0.2 beer/s

Is "Lightweight = Light + Wait?"

Is "Lightweight = Light + Wait?"

Is "Lightweight = Light + Wait?"

Is "Lightweight = Light + Wait?"

Is "Lightweight = Light + Wait?"

Is "Lightweight = Light + Wait?"

Is "Lightweight = Light + Wait?"

Is "Lightweight = Light + Wait?"

Is "Lightweight = Light + Wait?"

Is "Lightweight = Light + Wait?"

Is "Lightweight = Light + Wait?"

Is "Lightweight = Light + Wait?"

Is "Lightweight = Light + Wait?"

Variety of Choices

Is "Lightweight = Light + Wait?"

	BLOCK-SIZE	KEY-SIZE	S-BOX	P-LAYER	KEY SCHEDULE
AES	128	128	8	MDS	LIGHT
NOEKEON	128	128	4	BINARY	NO
MINI-AES	64	64	4	MDS	LIGHT
MCRYPTON	64	64, 96, 128	4	BINARY	LIGHT
PRESENT	64	80, 128	4	BIT PERMUTATION	LIGHT
KLEIN	64	64, 80, 96	4	MDS	LIGHT
LED	64	64, 128	4	MDS	NO

Is "Lightweight = Light + Wait?"

Number of Rounds

Is "Lightweight = Light + Wait?"

Six Architectures

Is "Lightweight = Light + Wait?"

Results - Latency

Is "Lightweight = Light + Wait?"

Results - Latency

Is "Lightweight = Light + Wait?"

Results - Area

Results - Average Latency per Round

Is "Lightweight = Light + Wait?"

Results - Average Latency per Round

Low-Latency Encryption

Is "Lightweight = Light + Wait?"

Results - Area per Round Distribution

Low-Latency Encryption

Is "Lightweight = Light + Wait?"

PRESENT-80, ENC only

Is "Lightweight = Light + Wait?"

Hardware Recommendations

We provide hardware recommendations for designing lowlatency primitives.

Evaluated ciphers are designed with low-area and low-power in mind and not to satisfy new low-latency requirements.

Still, we can learn quite a lot from their constructions.

Is "Lightweight = Light + Wait?"

Hardware Recommendations

-Sbox-

Use small Sboxes (4-bit or even 3-bit ones).

Even among them there are significant differences in latency and area [24].

Final Stress Filler Filler These differences are library dependent.

[24] G. Leander and A. Poschmann, On the Classification of 4-bit Sboxes, in Arithmetic of Finite Fields, First International Workshop - WAIFI 2007, volume 4547 of Lecture Notes in Computer Science, pages 159-176, 2007.

Hardware Recommendations

-Number of Rounds-

Low-Latency Encryption

Is "Lightweight = Light + Wait?"

Minimize!

PAGE: 15 of 21

Hardware Recommendations

-Round Complexity-

Low-Latency Encryption

Is "Lightweight = Light + Wait?"

Not too low complexity.

Reduce the number of rounds at the cost of (slightly) heavier round.

Is "Lightweight = Light + Wait?"

Hardware Recommendations

-Key Schedule-

Number of rounds should be independent of the key schedule.

Use constant addition instead of a key schedule (if possible).

Is "Lightweight = Light + Wait?"

Hardware Recommendations

-Heterogeneous Constructions-

Last few rounds of the cipher are smaller than the middle ones.

Make those few rounds more computationally complex.

Not very good for compact implementations.

Hardware Recommendations

Is "Lightweight = Light + Wait?"

-Encryption vs Decryption-

Use involution: f(f(x)) = x.

Make Encryption and Decryption procedures similar.

BUT: Think "application oriented" - sometimes is beneficial to have "asymmetric" constructions.

Is "Lightweight = Light + Wait?"

J. Borghoff, A. Canteaut, T. Guneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. Thomsen, T. Yalcin, **PRINCE - A Low-latency Block Cipher for Pervasive Computing Applications**, to appear in ASIACRYPT 2012.

Conclusions

meet PRINCE

Thank you!

