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Direction for improvements #2
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This work: leakage-resilient PRFs

« Why PRFs (not PRPs)?

One of the most important primitives In
symmetric cryptography (see Goldreich’s book)
Enough for encryption / authentication

Needed for re-keying / init. of stream ciphers
Stateless primitive!



This work: leakage-resilient PRFs

« Main gquestion: can leakage-resilient PRFs be
« Secure (super-exponential security)?
 Efficient (compared to other countermeasures)?



Secure —1n what sense?

« Main focus so far: # of measurements
* e.g. hoise addition: # of measurements
Increases linearly with the noise variance
* e.g. masking: # of measurements may increase
exponentially with the number of masks
* But requires hardware assumptions
(e.g. leakage of shares must be independent)



Secure —1n what sense?

« Leakage-resilient PRFs approach:
* Bound the data complexity by design
* Try to guarantee high time complexity
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Tree-based PRF (GGM 86)
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Efficiency / security tradeoff

stage 1 (x[0:7]=5F)

stage 2 (x[8:15]=C3)

stages 4-14

stage 15 (x[112:119]=5F)

Fi(x=5FC3F8...2A87)

©: 16 AES per
128-Dbit input

©: 256-bounded
data complexity?
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Possible security Improvements

« Add countermeasures (masking, hiding, ...)



Possible security improvements 7

 Bound the number of measurements rather than
the data complexity (i.e. prevent averaging)
* e.g. store previous paths (but not efficient)



Possible security improvements 7

« Take advantage of algorithmic noise (parallelism)



1. Tree-based PRF (GGM 86)
2. |Is bounded data complexity enough?
3. Efficiently exploiting parallelism
a. Previous leakage-resilient PRFs
b. Our tweak: carefully chosen plaintexts
4. Worst case analyses
5. Instantiation issues
6. Conclusions
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Single S-box attack results
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Single S-box attack results
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same input plaintext for all bytes

ot

e.g. CPA + HW model: same predictions for 16 key bytes



Our tweak: carefully chosen plaintexts (ll) 12

 Intuition #1: algorithmic noise Is key dependent
=> Divide & conquer attacks hardly apply
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 Intuition #2: assume the leakage functions are
(roughly) identical for all S-boxes
 Then the models in standard DPA attacks are
also 1dentical for all S-boxes



Our tweak: carefully chosen plaintexts (ll) 12

* Even Iin the (unlikely) situation where the Ns
key bytes are rated in the first Ns positions by
DPA, it remains to enumerate Ns! Permutations

« e.g. 16!1=27M4, 241=2"79, 321=2"117
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Single S-box attack results
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Worst case security evaluations (I)

« Standard DPA attacks do not appear very relevant
to analyze the security of our tweaked design

=> \We considered two alternatives considering

noiseless traces as a first-step investigation



Worst case security evaluations (I)

1. Iterative DPA-like attack

* Fori=1:Ns
* Perform a DPA and keep best-rated key
« Remove the hypothetical leakage of this
Key from the actual leakage traces




Worst case security evaluations (l1)
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2. Lattice-based attacks:

 Recovering Ns key bytes satisfying this relation
for Np plaintexts Is a vectorial knapsack problem
=> We used LLL as a black box for solving it

N, =256 254 252 251 250 249 248 247 246 245

N, = 16 100 100 100 100 100 100 100 100 100 100
1.3s 14s 1.4s 1.4s 1.5s 1.5s 3.1s 34.8s T73.0s 131.4s

24 99.9 100 100 100 100 100 100 100 TBD TBD

1.4s 1.4s 14s 1.4s 1.5s 1.5s 3.1s 35.5s = 88s = 143s

32 79.6 79 79 83 80 79 76  TBD TBD TBD

14s 1.5s 1.5s 1.bs 1.6s 1.6s 3.3s ~33s =~ 8ls =~ 140s
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Main question

Do different S-boxes leak the same?

 FPGA case study with two types of S-boxes
* Using the RAM blocks of modern FPGAs
« Combinatorial (from Canright, CHES 2005)
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Can we exploit different leakage models? 17

e Case study using the Canright S-boxes
 Template attacks, correlation attacks
» Both using the Ns different models
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Conclusions (l)

Remember back in the days...

We thought masking was “secure”
"hen came HO attacks,

nen came glitches,

nen came early propagation,
nen came coupling,

Yet, masking remains one of the frequently used
solutions to protect HW and SW implementations!
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A similar situation probably holds for leakage resilience

* New designs, assumptions, attack techniques
* Raises many open questions, e.g.
 What about attacks after the S-box?
« Whatabout EM radiation to “isolate” S-boxes
« Some of them tackled in the paper
« Many other ones to be investigated

We expect that secure & efficient PRFs (e.g. with 16 or
32 block cipher executions per 128-bit input) exist !!
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