

Garbled Circuits for Leakage-Resilience: Hardware Implementation and Evaluation of One-Time Programs

Kimmo Järvinen

Aalto University, Finland

Vladimir Kolesnikov

Alcatel-Lucent Bell Laboratories, USA

Ahmad-Reza Sadeghi

System Security Lab, Ruhr-University Bochum, Germany

Thomas Schneider

System Security Lab, Ruhr-University Bochum, Germany

CHES 2010, Santa Barbara, California, USA - August 17-20, 2010

Scenario: Compute in Hostile Environment

Goal: Guarantee privacy & correctness

in the presence of malicious/attacked HW !

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Methods for Leakage-Resilient Computation

Our Goal & Contribution

Evaluate practicality of OTP:

- Improved GC/OTP for leakage-resilience
 - Adapt OTPs for practice
 - Generic architecture: GCs for leakage-resilience
- First GC/OTP evaluation in Hardware
 - HW architectures
 - Implementation on FPGA: GC/OTP of AES
 - 10x faster than existing SW implementations
 - slower than unprotected / DPA protected implementations

Related Work

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

GC/OTP for Leakage-Resilience

Related Work	Interaction	Attacks	Security
[Yao FOCS'86] "Garbled Circuits (GC)"	interactive	passive	computational
[Gunupudi,Tate FC'08] " Mobile Agents "	non-interactive	passive	computational
[Goldwasser,Kalai,Rothblum CRYPTO'08] " One-Time Programs (OTP) "	non-interactive	active	computational
[Goyal,Ishai,Sahai,Venkatesan,Wadia TCC'10] "Non-Interactive Secure Computation"	non-interactive	active	unconditional

This work: computational security

Garbled Circuits (GC) [Yao FOCS'86]

receiver \mathcal{R} : input x

GC cannot be reused !

Improved GC constructions:

- [Naor,Pinkas,Sumner ACM EC'99]: remove 1 entry from garbled table
- [Kolesnikov,Schneider ICALP'08]: free XOR gates

sender \mathcal{S} : input ygarbled circuit \tilde{C} : circuit C: $\widetilde{w}_1 \widetilde{w}_2$ W_1W_2 W_3 garbled values $\widetilde{w}_i \in \{0, 1\}^t$ gate G_i $=\begin{cases} \widetilde{w}_i^0 & \text{for plain value } 0\\ \widetilde{w}_i^1 & \text{for plain value } 1 \end{cases}$ t: symmetric security parameter (e.g., t = 128) garbled table $\widetilde{T}_i \begin{bmatrix} E_{\widetilde{w}_1^0, \widetilde{w}_2^0}(\widetilde{w}_3^0) \\ E_{\widetilde{w}_1^0, \widetilde{w}_2^1}(\widetilde{w}_3^0) \\ E_{\widetilde{w}_1^1, \widetilde{w}_2^0}(\widetilde{w}_3^0) \end{bmatrix}$

E: semantically secure symmetric encryption (e.g., using SHA-256)

 $E_{\widetilde{w}_1^1,\widetilde{w}_2^1}(\widetilde{w}_3^1)$

CHES 2010

Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Non-Interactive Oblivious Transfer (OT)

receiver \mathcal{R} : input x

[Gunupudi,Tate FC'08]

- implement non-interactive OT with trusted hardware
- use Trusted Platform Module (TPM)
- secure only against <u>passive attacks</u> as active adversary can query adaptively

One-Time Programs (OTP)

[Goldwasser,Kalai,Rothblum CRYPTO'08]

• Minimal tamper-proof HW: One-Time Memory (OTM):

on input x_i , OTM T_i :

- verifies tamper-proof bit b_i is unset $\tilde{x}_1 = \tilde{x}_1^{x_1} r_{1,1}, ..., r_{1,v}$
- sets b_i , outputs $\widetilde{x}_i^{x_i}$

CHES 2010

• never touches or deletes $\widetilde{x}_i^{1-x_i}$

Prevent active attacks by receiver R

- R can decrypt output only after he has queried all OTMs
- proposed technique: secret-sharing + one-time pad use $r_1 = r_{1,1} \oplus \cdots \oplus r_{u,1}$ to mask output bit $z_1, \ldots,$ use $r_v = r_{1,v} \oplus \cdots \oplus r_{u,v}$ to mask output bit z_v

Problem: OTMs depend on number of outputs v

Theoretical Contribution Improved GC/OTP for leakage-resilience

CHES 2010

Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

System Security Lab

Our Improved One-Time Programs

 Make OTMs independent of number of outputs

OTM T_i releases single key $r_i \in \{0, 1\}^t$

t: symmetric security parameter

• Output Verifiability

H: Random Oracle (e.g., SHA-256)

Architecture: GCs for Leakage-Resilience

System Security Lab

Use case: OTP for leakage-resilient AES

- AES is relatively complex function
- Allows comparison with previous works
- Application: encrypt message m with key k in untrusted environment

Practical Contribution Hardware implementation of GC/OTP evaluation

CHES 2010

Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Architecture for Embedded GC Evaluation

Example Circuit and Instruction Sequence:

 $// A \leftarrow \text{mem}[0x0] = \widetilde{x}_1$ 0x0LOAD_A LOAD_B $//B \leftarrow \text{mem}[0x1] = \widetilde{x_2}$ 0x1// $B \leftarrow B \oplus \text{mem}[0\text{x}2] = x_2 \oplus y_1$ XOR_B 0x2EVAL_AB $// C \leftarrow A \land B$ $// \text{mem}[0x0] \leftarrow C$ STORE_C 0x0 EVAL_B $// C \leftarrow \text{not } B$ STORE_C 0x1 $mem[0x1] \leftarrow C$ $//\widetilde{z_1} \leftarrow \text{mem}[0\text{x}0]$ OUT 0x0 $//\widetilde{z_2} \leftarrow \text{mem}[0x1]$ OUT 0x1

CHES 2010

Hardware Architectures for GC Evaluation

Resources for GC Evaluation

on Altera Cyclone II FPGA

Design	LC	FF	M4K
SOPC	7501	4364	22
NIOS II	1104	493	4
SHA-256	2918	2300	8
Stand-Alone Unit	6252	3274	8
SHA-256	3161	2300	8
AES (unprotected)	2418	431	0

Timings of Instructions (average #clock cycles)

Instruction	SOPC	Stand-Alone Unit
LOAD	291.43	87.63
XOR1	395.30	87.65
XOR2	252.00	1.00
STORE	242.00	27.15
EVAL1	1,282.30	109.95
EVAL2	$1,\!491.68$	135.05
OUT	581.48	135.09

Memory access almost as expensive as gate evaluation.

Optimize Circuits for Embedded GC/OTPs

• Memory access slower than computation

⇒ cache values in registers to minimize #read/write operations

- XOR gates faster than non-XOR gates ⇒ reduce #non-XOR gates
- Memory expensive ⇒ reduce memory footprint

 Table 1. Optimized AES Circuits (Sizes in kB)

	Garbled Circuit \tilde{C}			Program P		Memory for GC Evaluation				
Circuit	non-XOR	1-input	XOR	Size	Instr.	Size	Read	Write	Entries	Size
Baseline	11,286	0	22,594	529	113,054	442	67,760	33,880	34,136	533
Optimized	7,200	40	$26,\!680$	338	73,583	287	$42,\!853$	$22,\!650$	17,315	271

Baseline: circuit of [Pinkas,Schneider,Smart,Williams ASIACRYPT'09] Optimized: see paper for optimizations applied

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

CHES 2010

Performance of AES OTP

	System-on-a-Programmable-Chip				Stand-Alone Unit				
	Cloc	k cycles	Timings (ms)		Clock cycles		Timings (ms)		
Circuit	SHA	Total	SHA	Total	SHA	Total	SHA	Total	
Baseline	744,876	$94,\!675,\!402$	14.898	$1,\!893.508$	744,876	$11,\!235,\!118$	14.898	224,702	
Optimized	477,840	62,629,261	9.557	$1,\!252.585$	477,840	$7,\!201,\!150$	9.557	144.023	

Overall times dominated by memory access \Rightarrow key for future improvements

Performance comparison with other AES implementations:

- Unprotected AES: 10 clock cycles = 0.15µs@66MHz
- AES Protected against DPA attacks: ≈ 3.88 · 0.15µs = 0.58µs [Tiri,Hwang,Hodjat,Lai,Yang,Schaumont,Verbauwhede CHES'05]
- GC evaluation in Software: 2s on Intel Core 2 Duo 3.0 GHz, 4GB RAM [Pinkas,Schneider,Smart,Williams ASIACRYPT'09]

Performance of leakage-protected AES

Summary

CHES 2010

Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Summary: GC/OTPs with improvements

- allow provably secure computations in hostile environment
- can be implemented efficiently in HW
 - 10x faster than SW implementation
- have several restrictions
 - each evaluation requires fresh:
 - GC (AES: 338 kB)
 - masking (e.g., one OTM for each input bit)
 - much slower than unprotected implementations

⇒ for highly security-critical applications only!

Full Version: http://eprint.iacr.org/2010/276

Contact: http://www.trust.rub.de

CHES 2010

Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware