
Ruhr-University Bochum Chair for System SecurityRuhr-University Bochum System Security Lab

CHES 2010, Santa Barbara, California, USA - August 17-20, 2010

Vladimir Kolesnikov
Alcatel-Lucent Bell Laboratories, USA

Ahmad-Reza Sadeghi
System Security Lab,

Ruhr-University Bochum, Germany

Kimmo Järvinen
Aalto University, Finland

Thomas Schneider
System Security Lab,

Ruhr-University Bochum, Germany

Garbled Circuits for Leakage-Resilience:
Hardware Implementation and

Evaluation of One-Time Programs

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Scenario: Compute in Hos2le Environment

2

Goal: Guarantee privacy & correctness
in the presence of malicious/a7acked HW !

input x

program P

output z=P(x,y)
or fail

input y

privacy threats
• hardware trojans
• side-‐channel a?acks

correctness threats
• hardware bugs/viruses/implementaDon errors
• fault injecDon

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Methods for Leakage-‐Resilient Computa2on

3

Leakage-‐Resilient Primi1ves
• specific funcDonaliDes
(PRF, signatures, MAC, ...)

• leakage assumpDons
(computaDon vs. memory)

Garbled Circuits (GC) /
One-‐Time Programs (OTP)
• arbitrary funcDonaliDes
•minimal assumpDons on
tamper-‐proof HW

TheoryPrac?ce

Side-‐Channel Protec1on in SW
• against specific a?acks
(e.g., Dming)

This work:
How prac?cal are GC/OTPs?

SW

HW
Side-‐Channel Protec1on in HW
• against specific a?acks
(e.g., DPA)

?

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Our Goal & Contribu2on

Evaluate pracDcality of OTP:

• Improved GC/OTP for leakage-‐resilience
– Adapt OTPs for pracDce
– Generic architecture: GCs for leakage-‐resilience

• First GC/OTP evaluaDon in Hardware
– HW architectures

– ImplementaDon on FPGA: GC/OTP of AES

• 10x faster than exisDng SW implementaDons

• slower than unprotected / DPA protected implementaDons
4

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Related Work

5

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

GC/OTP for Leakage-‐Resilience

6

Related Work Interac?on A7acks Security

[Yao FOCS’86]
“Garbled Circuits (GC)”

interacDve passive computaDonal

[Gunupudi,Tate FC’08]
“Mobile Agents”

non-‐interac?ve passive computaDonal

[Goldwasser,Kalai,Rothblum CRYPTO’08]
“One-‐Time Programs (OTP)”

non-‐interac?ve ac?ve computaDonal

[Goyal,Ishai,Sahai,Venkatesan,Wadia TCC’10]
“Non-‐Interac?ve Secure Computa?on”

non-‐interac?ve ac?ve uncondi?onal

This work: computa?onal security

receiver R: input x

circuit C:

sender S: input y

�C

OT

�z
EVAL GC

�xi = �xxi
i

xi

z = C(x, y)

TRANSLATE

�x0
i , �x1

i

�yi = �yyi
i

translation table

garbled circuit �C:

⇐

gate Gi

W1W2

W3

∧

garbled table �Ti

�w1 �w2

�w3

∧⇐

garbled values �wi ∈ {0, 1}t

=

�
�w0
i for plain value 0

�w1
i for plain value 1

t: symmetric security parameter (e.g., t = 128)

E �w0
1, �w0

2
(�w0

3)

E �w0
1, �w1

2
(�w0

3)

E �w1
1, �w0

2
(�w0

3)

E �w1
1, �w1

2
(�w1

3)

E: semantically secure symmetric encryption

(e.g., using SHA-256)

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Garbled Circuits (GC) [Yao FOCS’86]

7

Improved GC construcDons:
• [Naor,Pinkas,Sumner ACM EC’99]:

remove 1 entry from garbled table
• [Kolesnikov,Schneider ICALP’08]:

free XOR gates

GC cannot be reused !

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Non-‐Interac2ve Oblivious Transfer (OT)

8

[Gunupudi,Tate FC’08]

• implement non-‐interacDve OT
 with trusted hardware

• use Trusted Plajorm Module (TPM)

• secure only against passive a?acks as
 ac?ve adversary can query adap?vely

OT

�z
EVAL GC

�xi = �xxi
i

x1

TRANSLATE

�x0
i , �x1

i

�yi, �C

z1 zv. . .

xu. . .

receiver R: input x

[Goldwasser,Kalai,Rothblum CRYPTO’08]

• Minimal tamper-‐proof HW:
 One-‐Time Memory (OTM):

• Prevent ac?ve a7acks by receiver R
• R can decrypt output only aker he has queried all OTMs
• proposed technique: secret-‐sharing + one-‐Dme pad

• Problem: OTMs depend on number of outputs v

use r1 = r1,1 ⊕ · · ·⊕ ru,1 to mask output bit z1, . . . ,
use rv = r1,v ⊕ · · ·⊕ ru,v to mask output bit zv

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

One-‐Time Programs (OTP)

9

x1

�x1 = �xx1
1

OTM T1

�x0
1

�x1
1

b1

xu

OTM Tu

�x0
u

�x1
u

bu

ru,1,.., ru,v�xu = �xxu
u

. . .

. . .

r1,1,.., r1,v

ru,1,.., ru,vr1,1,.., r1,v
on input xi, OTM Ti:

• verifies tamper-proof bit bi is unset
• sets bi, outputs �xxi

i
• never touches or deletes �x1−xi

i

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware 10

Theore?cal Contribu?on
Improved GC/OTP

for leakage-‐resilience

H: Random Oracle (e.g., SHA-256)

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Our Improved One-‐Time Programs

11

• Make OTMs independent of
 number of outputs
OTM Ti releases single key ri ∈ {0, 1}t
t: symmetric security parameter

xi

�xi

OTM Ti

�x0
i

�x1
i

ri

�x

EVAL GC �C, �y

�z

MASK

EVAL

UNMASK

r =
�
i
ri

zj =

0 if H(�zj ||r) = �z0j
1 if H(�zj ||r) = �z1j
⊥ else

bi ri

• Output Verifiability

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Architecture: GCs for Leakage-‐Resilience

12

390 K. Järvinen et al.

masked input x̃

masked output z̃

output z or fail ⊥

UNMASK

EVAL

input x

MASK

untrusted
environment

trusted
environment

trusted
environment

masked program P̃ ,
masked input ỹ of S

(a) Generic Architecture

xi

x̃i

OTM Ti

x̃0
i , x̃

1
i , bi, ri

ri

x̃

EVAL GC C̃, ỹ

z̃

MASK

EVAL

UNMASK

r =
⊕
i
ri

zj =

0 if H(z̃j ||r) = ẑ0j
1 if H(z̃j ||r) = ẑ1j
⊥ else

(b) Using One-Time Memory

Fig. 1. Evaluating a Functionality Without Leakage

More specifically, the masked program P̃ is a garbled circuit C̃, masked values
x̃, ỹ, z̃ are garbled values and the algorithms MASK, EVAL and UNMASK can
be implemented as described next.

MASK: Masking the input data x of receiver R is performed by mapping each
bit xi to its corresponding garbled value x̃i, i.e., to one of two garblings x̃0

i , x̃
1
i .

This can be provided externally (e.g., by interaction with a party on the net-
work). We concentrate on on-board non-interactive masking which requires cer-
tain hardware assumptions (see below). The following can be directly used as a
(non-interactive) MASK procedure:

– OTMs [4]: For small functionalities, we favor the very cheap One-Time Mem-
ory (OTM), as this seems to carry the weakest assumptions (cf. §2). However,
as OTMs can be used only once, a fresh OTM must be provided for each
input bit of the evaluated functionality. For practical applications, OTMs
(together with their garbled circuits) could be implemented for example on
tamper-proof USB tokens for easy distribution.

– TPM [6]: Trusted Platform Modules (TPM) are low-cost tamper-proof cryp-
tographic chips embedded in many of today’s PCs [26]. TPM masking based
on the non-interactive Oblivious Transfer (OT) protocol of [6] requires the
(slightly extended) TPM to perform asymmetric cryptographic operations
in form of a count-limited private key whose number of usages is restricted
by the TPM chip. An interactive protocol allows re-initialization for future
non-interactive OTs instead of shipping new hardware.

– Smartcard: In our preferred solution for larger functionalities, masking could
be performed by a tamper-proof smartcard. The smartcard would keep a
secure monotonic counter to ensure a single query per input bit. Another
advantage of this approach is that the same smartcard can be used to gener-
ate GC as well, thus eliminating GC transfer over the network as done in [8].
Further, the smartcard can be naturally used for multiple OTP evaluations.

Possible implementaDons:
• interacDve OT
• non-‐interacDve OT with TPM
• OTMs
• smartcard

Possible implementaDons:
• created & sent by S
• local on-‐the-‐fly generaDon with smartcard
 [Järvinen,Kolesnikov,Sadeghi,Schneider FC’10]

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Use case: OTP for leakage-‐resilient AES

13

• AES is relaDvely complex funcDon
• Allows comparison with previous works
• ApplicaDon: encrypt message m with key k in untrusted environment

masked message �m

masked ciphertext �c = �P (�m,�k)

output c = AESk(m) or fail ⊥

UNMASK

EVAL

MASK

untrusted
environment

trusted
environment

trusted
environment

masked AES program �P ,
masked key �k

message m

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Prac?cal Contribu?on
Hardware implementa?on
of GC/OTP evalua?on

14

392 K. Järvinen et al.

Eval Gate

Garbled
Tables

OUTI/O

(1
or

2)
of

3XOR AC

EVAL A/B/C
EVAL AB/AC/BC

M
em

or
y
(m

em
)

STORE C

LOAD A

LOAD B

STORE A

STORE B

XOR A

XOR B

XOR C Reg C

Reg B

Reg A

XOR AB

XOR BC

x̃, ỹ

z̃
SHA-256

Fig. 2. Architecture for GC Evaluation (EVAL) on Memory-Constrained Devices

memory cells and registers store 128 bit garbled values. This can be mapped to
standard hardware architectures by using multiple elements in parallel.

Fig. 2 shows a conceptual high-level overview of our architecture described
next. At the high-level, EVAL, the process of evaluating GC, on our architecture
consists of the following steps (cf. §3.2). First, the garbled input values x̃, ỹ are
stored in memory using the I/O interface. Then, GC gates are evaluated, using
registers A, B, and C to cache the garbled inputs and outputs of a single garbled
gate. Finally, garbled output value z̃ is output over the I/O interface.

As memory access is expensive (cf. §4.3) we optimize code to re-use values
already in registers. Our instructions are one-address, i.e., each instruction con-
sists of an operator and up to one memory address. Each of our instructions
has length 32 bits: 5 bits to encode one of 18 instructions (described next) and
27 bits to encode an address in memory.

LOAD/STORE: Registers can be loaded from memory using instructions
LOAD A and LOAD B. Register C cannot be loaded as it will hold the out-
put of evaluated non-XOR gates (see below). Values in registers can be stored
back into memory using STORE A, STORE B, and STORE C respectively.

XOR: We evaluate XOR gates [10] as follows. XOR A addr computes A ← A⊕
mem[addr]. Similarly, the other one-operand XOR operations (XOR1) XOR B
and XOR C xor the value from memory with the value in the respective register.
To compute XOR gates where both inputs are already in registers (XOR2),
the instruction XOR AB computes A ← A ⊕ B. Similarly, XOR AC computes
A ← A ⊕ C and XOR BC computes B ← B ⊕ C.

EVAL: Non-XOR gates [18] are evaluated with the Eval Gate block that con-
tains a hardware accelerator for SHA-256 (cf. §2 for details). The garbled inputs
are in one (EVAL1) or two registers (EVAL2), and the result is stored in register
C. The respective instructions for 1-input gates are EVAL A, EVAL B, EVAL C
and for 2-input gates EVAL AB, EVAL AC, EVAL BC. The required garbled
table entry is read from memory.

I/O: The garbled inputs are always stored at the first |x|+|y| memory addresses.
The garbled outputs are obtained from memory with OUT instructions.

The full version [7] shows the sequence of instructions for an example circuit.

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Architecture for Embedded GC Evalua2on

15

10 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

��x1

�x2

�y1 1

�z1

�z2

LOAD A 0x0 // A ← mem[0x0] = �x1

LOAD B 0x1 // B ← mem[0x1] = �x2

XOR B 0x2 // B ← B ⊕ mem[0x2] = �x2 ⊕�y1

EVAL AB // C ← A ∧ B
STORE C 0x0 // mem[0x0] ← C
EVAL B // C ← not B
STORE C 0x1 // mem[0x1] ← C

OUT 0x0 // �z1 ← mem[0x0]

OUT 0x1 // �z2 ← mem[0x1]

Fig. 4. Example Circuit (left) and Instruction Sequence to Evaluate its GC on our Architecture of Fig. 3

(right).

the number of non-XOR gates), the size of the program (number of instructions), the number of

memory accesses and memory size for storing intermediate garbled values. For concreteness, we

use AES as representative functionality for the optimizations and performance measurements, but

our techniques are generic.

Optimization a:Base [40]) Our baseline is the AES circuit/code of [40], already optimized for a

small number of non-XOR gates. Their circuit consists of 11, 286 two-input non-XOR gates; thus,

its GC has size 11, 286 · 3 · 128 bit ≈ 529 kByte. Without considering any caching strategies, this

results in 113, 054 instructions, hence the program size is 113, 054 · 32 bit ≈ 442 kByte, and the

total amount of memory needed for EVAL is 34, 136 · 128 bit ≈ 533 kByte.

We start with further reduction of the size of the garbled circuit.

Optimization b:NoXNOR) We reduce the GC size by replacing XNOR gates with XOR gates,

and propagating the inverted output into the successor gates. Output XNOR gates are replaced

with XOR and a 1-input inverter gate. The cost of this optimization is linear in the size of the

circuit [38]. Overall, this optimization results in the elimination of 4, 086 XNOR gates and reduces

the size of AES GC to (7, 200 · 3 + 40) · 128 bit ≈ 338 kByte (improvement of 36%).

Remaining optimizations use b:NoXNOR; d:MaxFanout, e:Rand use c:Cache.

Optimization c:Cache) We re-use values already in registers to reduce the number of LOADs.

Values in registers are saved to memory only if needed later.

Optimization d:MaxFanout) We select a specific topologic order (traversing the circuit depth-

first and following children in decreasing order of their fan-out).

Optimization e:Rand) We randomly consider several orders of evaluation, and select the most

efficient one for EVAL. (This is a one-time compilation expense per function.) For present work,

we considered several random topologic orders of the circuit, constructed by the traversal where

the next gate is selected at random from the set of unprocessed gates with maximal fan-out. A

more rigorous approach to this randomized technique can result in more substantial improvement,

and is a good direction for future work.

Result. Using our optimizations we were able to substantially decrease the memory footprint

of EVAL. As shown in Table 1 the smallest program was obtained with the non-deterministic opti-

mization e:Rand which is only slightly better than our best deterministic optimization d:MaxFanout

and improves over a:Base [40]as follows. The size of the AES program P is only 73, 583 · 32 bit ≈
287 kByte (improvement of 34.9%). The amount of intermediate memory is 17, 315 · 128 bit ≈
271 kByte (improvement of 49.3%) and the number of memory accesses (read and write) is re-

duced by ≈ 35%.

Table 1. Optimized AES Circuits (Sizes in kB)

Garbled Circuit �C Program P Memory for GC Evaluation

Optimization non-XOR 1-input XOR Size Instr. Size Read Write Entries Size

a:Base [40] 11,286 0 22,594 529 113,054 442 67,760 33,880 34,136 533

b:NoXNOR 7,200 40 26,680 338 109,088 426 67,800 33,920 34,176 534

c:Cache 7,200 40 26,680 338 95,885 375 56,779 30,338 21,237 332

d:MaxFanout 7,200 40 26,680 338 74,052 289 42,469 23,767 18,676 292

e:Rand 7,200 40 26,680 338 73,583 287 42,853 22,650 17,315 271

Example Circuit and InstrucDon Sequence:

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 395

Table 2. Areas of the Prototypes for GC
Evaluation on an Altera Cyclone II FPGA

Design LC FF M4K

SOPC 7501 4364 22
NIOS II 1104 493 4
SHA-256 2918 2300 8

Stand-Alone Unit 6252 3274 8
SHA-256 3161 2300 8

AES (unprotected) 2418 431 0

Table 3. Timings for Instructions on
Prototypes (clock cycles, average)

Instruction SOPC Stand-Alone Unit

LOAD 291.43 87.63
XOR1 395.30 87.65
XOR2 252.00 1.00
STORE 242.00 27.15
EVAL1 1,282.30 109.95
EVAL2 1,491.68 135.05
OUT 581.48 135.09

embedded memory blocks (M4K). SHA-256 is the largest and most significant
block in both prototypes. Table 2 also shows the area for an iterative imple-
mentation of AES-128 with no countermeasures against side-channel attacks on
the same FPGA. Compared to an unprotected implementation, countermeasures
against power analysis have area overheads ranging from factor of 1.5 to 5 [23]
as discussed in §1.2; therefore, the area overheads of OTP evaluation are com-
parable with other side-channel countermeasures.

Timings. Instructions. The timings of instructions are summarized in Table 3.
They show the average number of clock cycles required to execute an instruction
excluding the latency of fetching the instruction. Gate evaluations are expensive
in the SOPC implementation, although the SHA-256 computations are fast,
because they involve a lot of data movement (to/from the SHA-256 unit and
from the SDRAM) which is expensive. The dominating role of memory reads
and writes is clear in the timings of the stand-alone implementation: the only
instructions that do not require memory operations (XOR2) require only a single
clock cycle and EVAL1 is faster than EVAL2 because it accesses the memory on
average every other time (no access if the permutation bit is zero) compared to
three times out of four (no access if both permutation bits are zeros).

AES. The timings to evaluate the optimized GCs for the AES functionality of
§4.2 on our prototype implementations are given in Table 4. These timings are
for GC evaluation only; i.e, they neglect the time for transferring data to/from
the system because interface timings are highly technology dependent. The SHA-
256 computations take an equal amount of time for both implementations as the
SHA-256 unit is the same. The (major) difference in timings is caused by data
movement, XORs, interface to the SHA-256 unit, etc. The runtimes for both
implementations are dominated by writing and reading the SDRAM; e.g., 84.3%
for the stand-alone unit and our optimized AES circuit. Hence, accelerating
memory access, e.g., with burst reads and writes, is the key for further speedups.

Performance Comparison. A software implementation that evaluates the GC/
OTP of the unoptimized AES functionality (Baseline [18]) required 2 seconds
on an Intel Core 2 Duo 3.0GHz with 4GB of RAM [18]. Our optimized circuit
evaluated on the stand-alone unit requires only 144ms for the same operation

394 K. Järvinen et al.

SDRAM

SRAM

NIOS II
Processor

FPGA

I/O

SHA-256

(a) System-on-a-Programmable-Chip

SDRAM Control SHA-256

FPGA

I/O

Regs

(b) Stand-Alone Unit

Fig. 3. Architectures for Hardware-Assisted GC Evaluation

comprising an Altera Cyclone II EP2C20F484C7 FPGA and 512kB SRAM and
8MB SDRAM running at 50 MHz (cf. full version [7] for details on our prototype
environment) and are functionally equivalent: they take the same inputs (pro-
gram P , garbled circuit C̃, and garbled inputs x̃, ỹ) and return the same garbled
outputs z̃; the only differences are the methods used in the implementation. The
interfaces (I/Os in Fig. 3) allow the host to write to and read from the SDRAM.
In the beginning, the host writes the inputs to the SDRAM and, in the end, the
outputs are written into specific addresses from which the host retrieves them.

System-on-a-Programmable-Chip (SOPC). Our first implementation is a
system-on-a-programmable-chip (SOPC) consisting of a processor with access to
a hardware accelerator for SHA-256, which speeds up the most computational
burden of the GC evaluation. This is a representative architecture for next gen-
eration smartphones or smartcards such as the STMicroelectronics ST33F1M
smartcard which includes a 32-bit RISC processor, cryptographic peripherals,
and memory comparable to our prototype system [22].

The architecture of our implementation is shown in Fig. 3(a). It consists of a
NIOS II/e 32-bit softcore RISC processor (the smallest variation of NIOS II), a
custom-made SHA-256 unit, the SRAM, and the SDRAM. The entire process is
run in the NIOS II processor which uses the SHA-256 unit for accelerating gate
evaluations. The SHA-256 unit is connected to the Avalon bus of the NIOS II
as a peripheral component and it computes the hash for a 512-bit message in
66 clock cycles (excluding interfacing delays). The NIOS II program is stored in
SRAM whereas OTP related data is stored in SDRAM.

Stand-Alone Unit. Our second implementation is a stand-alone unit consist-
ing of a custom-made control state machine, registers (A, B, C), a custom-made
SHA-256 unit, and SDRAM. This architecture could be used to design an Appli-
cation Specific IC (ASIC) as high-speed hardware accelerator for GC evaluation.
The architecture is depicted in Fig. 3(b).

When the host has written the inputs to the SDRAM, the stand-alone unit
executes the program. The state machine parses the program and reads/writes
data from/to SDRAM to/from the registers or evaluates the non-XOR gates
using the SHA-256 unit according to the instructions (see §4.1 for details).

Area. The area requirements of our implementations are shown in Table 2. Both
fit into the low-cost Cyclone II FPGA with 18,754 logic cells (LC), each con-
taining a 4-to-1-bit look-up table (LUT) and a flip-flop (FF), and 52 4096-bit

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Hardware Architectures for GC Evalua2on

16

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 395

Table 2. Areas of the Prototypes for GC
Evaluation on an Altera Cyclone II FPGA

Design LC FF M4K

SOPC 7501 4364 22
NIOS II 1104 493 4
SHA-256 2918 2300 8

Stand-Alone Unit 6252 3274 8
SHA-256 3161 2300 8

AES (unprotected) 2418 431 0

Table 3. Timings for Instructions on
Prototypes (clock cycles, average)

Instruction SOPC Stand-Alone Unit

LOAD 291.43 87.63
XOR1 395.30 87.65
XOR2 252.00 1.00
STORE 242.00 27.15
EVAL1 1,282.30 109.95
EVAL2 1,491.68 135.05
OUT 581.48 135.09

embedded memory blocks (M4K). SHA-256 is the largest and most significant
block in both prototypes. Table 2 also shows the area for an iterative imple-
mentation of AES-128 with no countermeasures against side-channel attacks on
the same FPGA. Compared to an unprotected implementation, countermeasures
against power analysis have area overheads ranging from factor of 1.5 to 5 [23]
as discussed in §1.2; therefore, the area overheads of OTP evaluation are com-
parable with other side-channel countermeasures.

Timings. Instructions. The timings of instructions are summarized in Table 3.
They show the average number of clock cycles required to execute an instruction
excluding the latency of fetching the instruction. Gate evaluations are expensive
in the SOPC implementation, although the SHA-256 computations are fast,
because they involve a lot of data movement (to/from the SHA-256 unit and
from the SDRAM) which is expensive. The dominating role of memory reads
and writes is clear in the timings of the stand-alone implementation: the only
instructions that do not require memory operations (XOR2) require only a single
clock cycle and EVAL1 is faster than EVAL2 because it accesses the memory on
average every other time (no access if the permutation bit is zero) compared to
three times out of four (no access if both permutation bits are zeros).

AES. The timings to evaluate the optimized GCs for the AES functionality of
§4.2 on our prototype implementations are given in Table 4. These timings are
for GC evaluation only; i.e, they neglect the time for transferring data to/from
the system because interface timings are highly technology dependent. The SHA-
256 computations take an equal amount of time for both implementations as the
SHA-256 unit is the same. The (major) difference in timings is caused by data
movement, XORs, interface to the SHA-256 unit, etc. The runtimes for both
implementations are dominated by writing and reading the SDRAM; e.g., 84.3%
for the stand-alone unit and our optimized AES circuit. Hence, accelerating
memory access, e.g., with burst reads and writes, is the key for further speedups.

Performance Comparison. A software implementation that evaluates the GC/
OTP of the unoptimized AES functionality (Baseline [18]) required 2 seconds
on an Intel Core 2 Duo 3.0GHz with 4GB of RAM [18]. Our optimized circuit
evaluated on the stand-alone unit requires only 144ms for the same operation

Memory access almost as expensive as gate evaluaDon.

Resources for GC EvaluaDon
on Altera Cyclone II FPGA

Timings of InstrucDons
(average #clock cycles)

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 393

4.2 Compile-Time Optimizations for Memory-Constrained Devices

In this section, we summarize compile-time optimizations to improve perfor-
mance of GC evaluation (EVAL) on our hardware architecture. We aim to reduce
the size of GC (by minimizing the number of non-XOR gates), the size of the
program (number of instructions), the number of memory accesses and memory
size for storing intermediate garbled values. For concreteness, we use AES as rep-
resentative functionality for the optimizations and performance measurements,
but our techniques are generic.

Baseline [18]) Our baseline is the AES circuit/code of [18], already optimized
for a small number of non-XOR gates. Their circuit consists of 11, 286 two-input
non-XOR gates; thus, its GC has size ≈ 529 kByte. Without considering any
caching strategies, this results in 113, 054 instructions, hence the program size is
113, 054 ·32 bit ≈ 442 kByte, and the total amount of memory needed for EVAL
is 34, 136 · 128 bit ≈ 533 kByte.

We summarize our best optimization next and refer for a detailed description
and intermediate optimization steps to the full version [7].

Optimized) First, we replace XNOR gates with an XOR gates and propa-
gate the inverted output into the successor gates. For AES, this optimization
results in the elimination of 4, 086 XNOR gates and reduces the size of AES GC
to ≈ 338 kByte (improvement of 36%). Additionally, we re-use values already
in registers to reduce the number of LOADs. Values in registers are saved to
memory only if needed later. Finally, we randomly consider several orders of
evaluation, and select the most efficient one for EVAL.

Result. Using our optimizations we were able to substantially decrease the
memory footprint of EVAL. As shown in Table 1, our optimized circuit strongly
improves over the circuit of [18] as follows. The size of the AES program P
is only 73, 583 · 32 bit ≈ 287 kByte (improvement of 34.9%). The amount of
intermediate memory is 17, 315 · 128 bit ≈ 271 kByte (improvement of 49.3%)
and the number of memory accesses (read and write) is reduced by ≈ 35%.

Table 1. Optimized AES Circuits (Sizes in kB)

Garbled Circuit C̃ Program P Memory for GC Evaluation
Circuit non-XOR 1-input XOR Size Instr. Size Read Write Entries Size

Baseline [18] 11,286 0 22,594 529 113,054 442 67,760 33,880 34,136 533
Optimized 7,200 40 26,680 338 73,583 287 42,853 22,650 17,315 271

4.3 Implementation

We have designed two prototype implementations of the architecture of §4.1 –
one for a System-on-a-Programmable-Chip with a hardware accelerator for SHA
(reflecting smartcard and future smartphone architectures) and another for a
stand-alone unit (reflecting a custom-made GC accelerator in hardware). Both
prototype implementations are evaluated on an Altera/Terasic DE1 FPGA board

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Op2mize Circuits for Embedded GC/OTPs

17

• Memory access slower than computaDon
 ⇒ cache values in registers to minimize #read/write operaDons

• XOR gates faster than non-‐XOR gates ⇒ reduce #non-‐XOR gates

• Memory expensive ⇒ reduce memory footprint

Baseline: circuit of [Pinkas,Schneider,Smart,Williams ASIACRYPT’09]
OpDmized: see paper for opDmizaDons applied

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Performance of AES OTP

18

Performance comparison with other AES implementaDons:
• Unprotected AES: 10 clock cycles = 0.15μs@66MHz
• AES Protected against DPA a?acks: ≈ 3.88 ·∙ 0.15μs = 0.58μs
 [Tiri,Hwang,Hodjat,Lai,Yang,Schaumont,Verbauwhede CHES’05]

• GC evaluaDon in Sokware: 2s on Intel Core 2 Duo 3.0 GHz, 4GB RAM
 [Pinkas,Schneider,Smart,Williams ASIACRYPT’09]

396 K. Järvinen et al.

Table 4. Timings for the FPGA-based Prototypes for GC Evaluation

System-on-a-Programmable-Chip Stand-Alone Unit
Clock cycles Timings (ms) Clock cycles Timings (ms)

Circuit SHA Total SHA Total SHA Total SHA Total

Baseline [18] 744,876 94,675,402 14.898 1,893.508 744,876 11,235,118 14.898 224,702
Optimized 477,840 62,629,261 9.557 1,252.585 477,840 7,201,150 9.557 144.023

and, therefore, provides a speedup by a factor of 10.4–17.4 (taking the lack of
precision into account). On the other hand, the unprotected AES implementa-
tion listed in Table 2 encrypts a message block in 10 clock cycles and runs on a
maximum clock frequency of 66MHz resulting in a timing of 0.1515µs; hence,
the GC/OTP evaluation suffers from a timing overhead factor of ≈ 950, 000. For
comparison, the timing overhead of one specific implementation with counter-
measures against differential power analysis was factor of 3.88 [24].

Acknowledgements. We thank anonymous reviewers of CHES’10 for their
helpful comments and co-authors of [18] for the initial AES circuit.

References

1. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against
some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

2. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

3. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC’09, pp.
169–178. ACM, New York (2009)

4. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

5. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptogra-
phy on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 308–326. Springer, Heidelberg (2010)

6. Gunupudi, V., Tate, S.: Generalized non-interactive oblivious transfer using count-
limited objects with applications to secure mobile agents. In: Tsudik, G. (ed.) FC
2008. LNCS, vol. 5143, pp. 98–112. Springer, Heidelberg (2008)

7. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Garbled circuits for
leakage-resilience: Hardware implementation and evaluation of one-time programs.
Cryptology ePrint Archive, Report 2010/276(2010), http://eprint.iacr.org

8. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Embedded SFE: Of-
floading server and network using hardware tokens. In: Sion, R. (ed.) FC 2010.
LNCS, vol. 6052, pp. 207–221. Springer, Heidelberg (2010)

9. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

10. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

Overall (mes dominated by memory access ⇒ key for future improvements

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Performance of leakage-‐protected AES

19

0

0,001

0,01

0,1

1

10

100

1000

10000

T
im

e
in

 m
s

unprotected DPA
protected

[THHLYSV05]

OTP HW
Stand-‐Alone

Unit

OTP HW
SoPC

OTP SW
[PSSW09]

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware 20

Summary

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Summary: GC/OTPs with improvements
• allow provably secure computaDons
in hosDle environment

• can be implemented efficiently in HW
– 10x faster than SW implementaDon

• have several restricDons
– each evaluaDon requires fresh:
• GC (AES: 338 kB)
• masking (e.g., one OTM for each input bit)

– much slower than unprotected implementaDons

⇒ for highly security-‐criDcal applicaDons only!
21

Ruhr-University Bochum System Security Lab

CHES 2010 Garbled Circuits for Leakage-Resilience: One-Time Programs in Hardware

Full Version:
http://eprint.iacr.org/2010/276

Contact:
http://www.trust.rub.de

22

