Fault Sensitivity Analysis

Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Kazuo Ohta The University of Electro-Communications <u>liyang@ice.uec.ac.jp</u>

> Toshinori Fukunaga, Junko Takahashi NTT Information Sharing Platform Laboratories

Outline

• Differential Fault Analysis and its countermeasure

- o Power-based Side-Channel Attacks
 - DPA, CPA
- o A New Fault-based Attack
 - Fault Sensitivity Analysis (FSA)
 - Some Case Studies on SASEBO-R
 - o FSA attack on PPRM1-AES
 - o FSA attack on WDDL-AES
 - o FSA attack on Satoh's AES (recent result)

o Conclusion

Differential Fault Analysis (DFA)

• Basic idea

- Make a differential path by fault injection
- Get correct outputs and faulty outputs
- Verify the differential path for each key candidate
- General DFA attack requirements
 - Specific transient fault
 - Pairs of correct output and faulty output for the same input
- General DFA countermeasures
 - Inherent resistance, prevent specific transient fault

o e.g. WDDL [1]

- Redundant calculation for error detection
 - o e.g. Satoh's AES [2]

Outline

o Differential Fault Analysis and its countermeasure

• Power-based Side-Channel Attacks

- DPA, CPA
- o A New Fault-based Attack
 - Fault Sensitivity Analysis (FSA)
 - Some Case Studies on SASEBO-R
 - o FSA attack on PPRM1-AES
 - o FSA attack on WDDL-AES
 - o FSA attack on Satoh's AES (recent result)

o Conclusion

Power-based Side-Channel Attacks

• Basic idea

• Power consumption depends on sensitive-data that is calculable with public variables and key guess

• General attack procedures

- Have a key guess
- Calculate sensitive-data
- Check the calculated data with recorded power consumption
- Correct key guess matches the power consumption best!
- Well-kown attacks
 - Correlation Power Analysis (CPA)
 - Differential Power Analysis (DPA)

Outline

• Differential Fault Analysis and its countermeasure

- o Power-based Side-Channel Attacks
 - DPA, CPA

• A New Fault-based Attack

- Fault Sensitivity Analysis (FSA)
- Some Case Studies on SASEBO-R
 - o FSA attack on PPRM1-AES
 - FSA attack on WDDL-AES
 - o FSA attack on Satoh's AES (recent result)

o Conclusion

General Introduction to FSA

• Fault Sensitivity Analysis (FSA)

- Fault-based
- A new side channel leakage
 - o Sensitive-data dependency for fault sensitivity
 - Similar Attack procedures to power-based attacks
- Bypass some DFA countermeasures
- What is <u>Fault Sensitivity</u>?
 - Sensitivity to the fault injection
 - E.g. Minimal clock frequency with correct output
 - Has data dependency
 - Can be used for key retrieval

Review Fault Injection (The idea of FSA)

Works for different types of fault injection: overclock, low-power, laser

Fault Sensitivity under an over-clock

Signal delays for AND gate

• AND Gate (T_X : delay time for signal X)

- Assume $T_A < T_B$
- When signal A=0, $T_C = T_A + T_{AND}$ (small)
- When signal A=1, $T_C = T_B + T_{AND}$ (large)

• T_{AND}: Delay timing of AND gate

Signal delays for XOR gate

- XOR Gate (T_X : delay time for signal X)
 - Assume $T_A < T_B$
 - When signal A=0, $T_C = T_B + T_{XOR}$
 - When signal A=1, $T_C = T_B + T_{XOR}$
 - T_{XOR}: Delay timing of XOR gate

How about an FSA Attack?

FSA Attack Procedures

- Collect pairs of public variables and fault sensitivity
- Retrieval the key by the data analysis
 - Have a key guess
 - Calculate sensitive-data
 - Check the calculated data with recorded fault sensitivity
- Directly apply the techniques in power analysis

Case studies of FSA attacks

FSA attack against PPRM1-AES FSA attack against WDDL-AES FSA attack against Satoh's AES (recent work)

CASE 1: FSA attacks against PPRM1-AES

• PPRM1-AES: a low power AES implementation with "PPRM1-Sbox" [4]

• PPRM1 S-box

AND gate: 0 input, small delay.

AND array: More 0 inputs, smaller delay!

Attack results against last round of PPRM1-AES

How much fault sensitivity data is needed?

How many times of fault injection?

• Which point is the fault sensitivity?

CASE 2: FSA attacks against WDDL-AES

- Naturally immune to DFA attacks based on the setup-time violation. [2]
 - Dual-Rail Precharge Logic
 - Complementary wires: (ture,false)
 - "transient" fault will erase the secret information at the output.

• WDDL is not perfectly immune to FSA attacks based on setup-time violation.

WDDL's Vulnerability against FSA (1/2)

- First of all, no clear correlation between input data and fault sensitivity.
 - All types of gates are mixed up
- However, we observed a data dependence at the output.
 - Imbalance of complementary wires leads to imbalance of critical path delays.

WDDL's Vulnerability against FSA (2/2)

• Assume

- Precharge value = 0
- Delay_ture > Delay_false
- then (1,0) \rightarrow (0,0) happens easier than (0,1) \rightarrow (0,0).

• 1 is more sensitive than 0

Attack result against WDDL-AES with 1200 plaintexts

Correlation 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 Mallon Market Market Market and Market 0 Ω 0 0 128 256 128 256 128 256 128 256 Ω 0 0 0 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 . MAMMMMMMM Mballonononononononononononon wathrown how which WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW 0 0 Λ Λ 128 256 128 256 128 256 128 256 Ω 0 0 0 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 MM Trukm Markan Marka man who who who who who was how you would have been all when 0 0 256 128 256 128 128 256 128 256 0 0 0 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 MANDA MANDA MANDA MANDA When when the the when the when the work of the second sec hanner white way have Kir 0 0 0 ſ 128 256 256 256 256 0 128 0 128 128 0 0 3 of 16 key bytes can be identified. Key guess

CASE 3: FSA attacks against Satoh's AES

• Satoh's AES (CHES2008)

- High performance AES with Error-detection Scheme
- Successful FSA attack
 - Self-Template FSA
- To be continued in the rump section.

Outline

• Differential Fault Analysis and its countermeasure

- o Power-based Side-Channel Attacks
 - DPA, CPA

o A New Fault-based Attack

- Fault Sensitivity Analysis (FSA)
- Some Case Studies on SASEBO-R
 - o FSA attack on PPRM1-AES
 - o FSA attack on WDDL-AES
 - o FSA attack on Satoh's AES (recent result)

• Conclusion

Conclusion

A new side channel leakage: fault sensitivity
FSA has a potential to bypass some fault attack countermeasures.

- Future work:
 - FSA countermeasures (mask technique?)
 - Stronger FSA attacks
 - Try other types of FSA under other fault injection methods

References

- [1]G. Piret and J.-J. Quisquater. A Differential Fault Attack Technique against SPN Structures, with Application to the AES and KHAZAD. CHES 2003
- [2] S. Guilley T. Graba N. Selmane, S. Bhasin and J.-L. Danger. WDDL is Protected Against Setup Time Violation Attacks. FDTC 2009
- [3] Akashi Satoh, Takeshi Sugawara, Naofumi Homma, Takafumi Aoki: High-Performance Concurrent Error Detection Scheme for AES Hardware. CHES 2008
- [4] S. Morioka and A. Satoh. An Optimized S-Box Circuit Architecture for Low Power AES Design. CHES2002

Thank you for your attentions!

Questions?