

eXternal Benchmarking eXtension
for the SUPERCOP

crypto benchmarking framework

CHES 2010, August 17-20, Santa Barbara, UCSB
Christian Wenzel-Benner, ITK Engineering AG

Jens Gräf, LiNetCo GmbH

Slides Overview

 Introduction
 Motivation
 Design Goals

 System Overview
 Hardware
 Software

 Reviewer Comments
 Example Benchmark Results
 Present & Future

Introduction

Motivation

 Big demand for benchmarking in crypto
 For speed, and for embedded applications also size

 Reproducibility is very important
 Compiler versions and flags must be logged
 Benchmarking method must be well specified
 Setup should be cheap so others can replicate it

 SUPERCOP addresses most of the above
 XBX adds benchmarking for size
 XBX allows to benchmark small devices

Design Goals

1. Automatic testing by scripts

2. Precise, real world performance numbers

3. Free source code for others to inspect

4. Cheap, easily available hardware

5. SUPERCOP input compatible

6. SUPERCOP output compatible

7. Development with pre-owned and/or free tools

8. Heavy component re-use

9. Focus on SUPERCOP-eBASH

System Overview

Hardware

XBH

XBD

RS232

ETH

PWR

RS232

P
W

R

Timing
Reset
Data

Hardware

 Personal Computer
 Needs Ethernet, RS232 recommended

 XBH, eXternal Benchmarking Harness
 Ethernet (TCP) to PC
 RS232 to PC for configuration and debug
 Digital I/O Pins to XBD (Timing, Reset)
 Data to/from XBD: I²C, UART or Ethernet (UDP)

 XBD, eXternal Benchmarking Device
 Digital I/O Pins to XBH (Timing, Reset)
 Data to/from XBH: I²C, UART or Ethernet (UDP)

Hardware

NSLU2
NAS

appliance
LED

(green)

Phototransistor

Comparator
circuit

Timing signal
to XBH

Software

 Designed to closely emulate SUPERCOP
 Builds binaries from algorithms under test

 Using different implementations
 Using different compiler options
 Using different compilers if available

 Tests binaries (try phase)
 Execute a known-answer checksum test
 Verify the result, flag broken binaries
 Measure and log the time the operation needs
 Measure and log stack usage

Software

 Tests binaries (measure phase)
 Fastest implementation-compiler-options triple per

algorithm is subjected to detailed benchmarking
 Using different input/plaintext sizes

 Reports results
 Detailed timings from measure phase
 Static sizes from binary files (e.g. ELF,COFF)
 Stack usage from the try phase
 Generate best-of lists: Speed, RAM, ROM

Software

Software

 PC-based XBX software
 Mostly Perl scripts
 Some Bash scripts
 SQLite for results analysis

 XBH software
 C, some assembler

 XBD software
 C, some assembler on small targets, some bash on

embedded linux targets

Reviewer Comments

Reviewer Comments

 Why do you not use a XBH external clock pin to
clock the XBD? This would give you the best
timing accuracy.

➔ Yes, it would. Drawbacks would be:
 None for self-designed AVR boards
 Crystal removal and voltage level shifting for most

(3.3V) microcontroller eval boards
 Same for commandeered routers or NAS devices
 Some on-chip oscillators and/or PLLs might not

work with externally applied clock

Reviewer Comments

 What about a multi XBD capable XBH, where
you can switch between the desired target
platform?

➔ Feasible, but not with an ATmega644 due to
limited RAM, I/O and timer resources
 Could do it with a modern 32bit microcontroller
 Current XBH has a €40 pricetag incl. accessories

➔ Current solution is the ”XBX farm”
 Severals XBH-XBD pairs, each with own IP
 One Linux PC, XBX software plus ”farm” scripts

Example Benchmark Results

Hamsi, Speed

Platform 8 Bytes 64 Bytes 512 Bytes 1024 Bytes 2048 Bytes Compiler
lm3s811-evb 329483 3874 696 272 220 216 214 212

fritzbox-7170 399196 52391 7009 1172 347 283 250 218
artila_m501 413696 19485 2734 585 304 278 272 266

nslu2-openwrt 475957 26667 3780 798 387 334 297 261

8312273 89949 16595 6758 5529 5441 5397 5353

8312293 89950 16595 6758 5529 5441 5397 5353

Try Cycles
(1536)

Empty
Message

Long
Messages

arm-elf-gcc -O2
mips-uclib-gcc -O2
arm-artila-gcc -O1

armeb-uclibc-gcc -O1
atmega1281_1

6mhz avr-gcc 1281 -O3
atmega1284p_

16mhz avr-gcc 1284p -O3

Present & Future

Present

 Fully automated benchmarks, speed and size
 XBD communication by I²C, UART or Ethernet
 Four XBD families currently supported

 Atmel ATmega
 Artila M501 (ARM 920T)
 NSLU2 (Intel XScale, ARMv5te)
 Fritz!Box 7170 (Texas Instruments AR7, MIPS)

 Website: https://xbx.das-labor.org/trac/wiki
 Peer-reviewed paper

https://xbx.das-labor.org/trac/wiki

Future

 Comprehensive hardware documentation
 User's Guide
 More XBDs
 XBD power benchmarking

 Voltage & Current measurement
 Will require power management on XBD

 More SUPERCOP: ciphers, signatures...
 FPGA boards as XBDs

Thank You!

Questions, Comments?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

