Performance Analysis of the SHA-3 Candidates on Exotic Multi-Core Architectures

Joppe W. Bos¹ Deian Stefan²

¹Laboratory for Cryptologic Algorithms EPFL, Station 14, CH-1015 Lausanne, Switzerland

²Department of Electrical Engineering The Cooper Union, NY 10003, New York, USA

Motivation

SHA-3 competition

Abacus, ARIRANG, AURORA, BLAKE, Blender, BMW, BOOLE, Cheetah, CHI, CRUNCH, CubeHash, DCH, Dynamic SHA, Dynamic SHA2, ECHO, ECOH, EDON-R, EnRUPT, ESSENCE, FSB, Fugue, Grøstl, Hamsi, JH, Keccak, Khichidi-1, LANE, Lesamnta, Luffa, LUX, MCSSHA-3, MD6, MeshHash, NaSHA, SANDstorm, Sarmal, Sgàil, Shabal, SHAMATA, SHAvite-3, SIMD, Skein,

Spectral Hash, StreamHash, SWIFFTX, Tangle, TIB3, Twister, Vortex, WaMM, Waterfall

Main evaluation criteria

- Security
- Cost (computational efficiency, memory requirements)
- Algorithmic and implementation characteristics

NIST states that is it preferable if the algorithm "can be implemented securely and efficiently on a wide variety of platforms."

eBASH results (accessed 2 August 2010)

BMW	6.4	Shabal	10.2
Skein	6.6	BMW	11.5
Shabal	8.2	SHA-256	19.6
BLAKE	10.2	BLAKE	20.9
SIMD	11.5	Luffa	32.8
Keccak	12.4	ECHO	34.5
ch-16-32	13.2	SHAvite-3	34.7
Luffa	13.5	Keccak	38.3
SHA-256	15.4	Fugue	41.6
JH	17.0	Grøstl	42.6
Grøstl	21.3	Skein	52.1
Fugue	22.8	ch-16-32	72.4
ECHO	24.4	SIMD	96.1
SHAvite-3	27.4	JH	127.7
Hamsi	30.5		

eBASH results (accessed 2 August 2010)

	BMW	6.4	Shabal	10.2	
	Skein	6.6	BMW	11.5	
	Shabal	8.2	SHA-256	19.6	
	BLAKE	10.2	BLAKE	20.9	
a ma d <i>G</i> 4	SIMD	11.5	Luffa	32.8	
amd04 Intel Veen	Keccak	12.4	ECHO	34.5	x86
(\mathbf{F}_{2210})	ch-16-32	13.2	SHAvite-3	34.7	AMD Athlon
(E7510) MMX CCE	Luffa	13.5	Keccak	38.3	(622)
MIMA, SSE	SHA-256	15.4	Fugue	41.6	MMX
55E2, 55E3	JH	17.0	Grøstl	42.6	3DNow!
22252	Grøstl	21.3	Skein	52.1	
	Fugue	22.8	ch-16-32	72.4	
	ECHO	24.4	SIMD	96.1	
	SHAvite-3	27.4	JH	127.7	
	Hamsi	30.5		,	

eBASH results (accessed 2 August 2010)

(BMW	6.4	Shabal	10.2	
	Skein	6.6	BMW	11.5	
	Shabal	8.2	SHA-256	19.6	
	BLAKE	10.2	BLAKE	20.9	
	SIMD	11.5	Luffa	32.8	
	Keccak	12.4	ECHO	34.5	x86
	ch-16-32	13.2	SHAvite-3	34.7	AMD Athlon
	Luffa	13.5	Keccak	38.3	(622)
	SHA-256	15.4	Fugue	41.6	MMX
	JH	17.0	Grøstl	42.6	3DNow!
	Gr østl	21.3	Skein	52.1	
	Fugue	22.8	ch-16-32	72.4	
	ECHO	24.4	SIMD	96.1	
	SHAvite-3	27.4	JH	127.7	
	Hamsi	30.5			

Evaluate performance on two *exotic* platforms Cell Broadband Engine architecture (Cell) NVIDIA Graphics Processing Units (GPUs)

- Performance analysis framework of all SHA-3 candidates
- Specific optimization techniques for each of our target platforms
- Implementations of all non-AES based candidates

Multi-stream fixed-length message processing applications:

- Cryptanalytic applications (e.g., cube testers, differential attacks),
- Optimal asymmetric encryption (ANSI, IEEE, PKCS) mask generation function based on a fixed-input size hash-function
- Hash-based Message Authentication Codes (HMAC)

Exotic platform I: Cell architecture

8 Synergistic Processing Elements (SPEs) 1 Dual-threaded Power Processing Element

The SPEs contain

- a Synergistic Processing Unit (SPU)
 - Access to 128 registers of 128-bit
 - SIMD operations
 - Dual pipeline (odd and even)
 - Rich instruction set all distinct binary operations $f: \{0,1\}^2 \rightarrow \{0,1\}$ are available
 - In-order processor
- 256 KB of fast local memory (Local Store)
- Memory Flow Controller (MFC)

Available in BladeServer, PlayStation 3, PCIe card

Exotic Platform II: NVIDIA GT200 GPUs

- A TPC contains
 - 3 Simultaneous Multiprocessors (SMs)
 - 24KB texture cache
- The SMs contain
 - 8 Streaming Processors (SPs): support simple 32-bit operations
 - 16384 32-bit registers
 - 16KB 16-way banked shared memory
 - 8KB constant memory cache
 - Texture cache read port
 - 2 special function units (SFUs)
 - Multithreaded scheduler
- Each GTX200 GPU contains 8-10 TPCs
 - \rightarrow total of 192-240 SPs/GTX200
 - \rightarrow GeForce GTX 295 graphics card: 480 SPs

Estimating performance by counting 32-bit instructions

Is this approach the holy grail to predict benchmarks?

Estimating performance by counting 32-bit instructions

Is this approach the holy grail to predict benchmarks? Of course not!

Pros	Cons
Give a crude performance estimate	Ignores all overhead related to I/O
on a hypothetical 32-bit architecture	(loading/storing, cache misses etc)
Use as a base for more refined	Ignores flexibility provided by
architecture-specific estimates	SIMD-coprocessors
Not biased to any candidate	State size not considered

Very suitable for Cell and GPU Rich 32-bit instruction set, no SIMD-coprocessors

AES-inspired candidates

Build the compression function using

- \bullet AES-round function \rightarrow ECHO, SHAvite-3
- \bullet AES-like (byte-oriented) operations \rightarrow Fugue, Grøstl

AES-inspired candidates

Build the compression function using

- AES-round function \rightarrow ECHO, SHAvite-3
- AES-like (byte-oriented) operations \rightarrow Fugue, Grøstl

Motivation

- Security: no known attacks on AES-128
- Speed: AES (and its components) is fast on many platforms
- \bullet Cost: Intel AES instruction set \rightarrow simple, efficient, secure

AES-inspired candidates

Build the compression function using

- AES-round function \rightarrow ECHO, SHAvite-3
- AES-like (byte-oriented) operations \rightarrow Fugue, Grøstl

Motivation

- Security: no known attacks on AES-128
- Speed: AES (and its components) is fast on many platforms
- \bullet Cost: Intel AES instruction set \rightarrow simple, efficient, secure

Function	b	AES (R)	SB	MC4	MC8	MC16	<pre>xor(byte)</pre>
AES-128	16	10	-	-	-	-	16
ECHO-256	192	256	-	512	-	-	448
Fugue-256	4	-	32	-	-	2	60
Grøstl-256	64	-	1280	-	160	-	1472
SHAvite-3-256	64	52	-	-	-	-	1280

 $\mathsf{Mix}\mathsf{Columns}\;(\mathsf{MC})$ operation has the greatest effect on performance

- MCX: each column of state is multiplied by a $X \times X$ matrix
- Typically implemented using XTIME function and several xors

XTIME (byte-value shift + cxor) and xor operations

- For MCX ($X \in \{8, 16\}$) compute the double and quadruple
- All constants in Fugue $< 8 \therefore$ no need for octuple in MC16
 - $\rightarrow 2 \cdot X$ XTIME operations, and # xor depends on the constants

 \rightarrow Exploit circulant matrix structure

"T-table" approach

Combine the MC and substitution step into table-lookup

Performance Considerations

 $\mathsf{Mix}\mathsf{Columns}\;(\mathsf{MC})$ operation has the greatest effect on performance

- MCX: each column of state is multiplied by a $X \times X$ matrix
- Typically implemented using XTIME function and several xors

				T-table, operat	e on	X bytes
MCX		XTIME	xor	size of table(s)	xor	rotate
			(byte)	in bytes		
MCA	(AES)	1	16	1,024	3	3
WIC4 (7	(ALS)	- T	10	4,096	3	0
MCO	(Cractl)	16	104	2,048	7	7
IVICO	(Giøsti)	10		16,384	7	0
MC16	(Fugue)	30	148	4,096	15	15
INIC10		52		65,536	15	0

Note: These estimates are an upper bound!

Example of a *better* implementation:

[Osvik,Bos,Stefan,Canright-FSE10]: AES MC4: 3 XTIME, 15 xor

Use the AES results from [OBSC-10] to estimate performance

Hash function	b	add	sub	m11]	and	nand	eav	or	rotate	shift	xor	Cycles
			csub			andc	°9.	orc	100000			/ byte
		Hash	functio	ns op	peratin	g on 3	2-bit	words				
BLAKE-32	64	480	-	-	-	-	-	-	320	-	508	20.4
BMW-256	64	296	58	-	-	-	-	-	212	144	277	15.4
CubeHash-16/32	32	512	-	-	-	-	-	-	512	-	512	48.0
Hamsi-256	4	-	-	-	24	12	-	24	72	24	287	110.8
JH-256	64	-	-	-	1792	1152	288	688	-	800	4024	136.6
Keccak-256	136	-	-	-	684	96	144	480 144	1248	204	3810	50.1
Luffa-256	32	-	-	-	144	-	96	96	392	-	756	46.4
Shabal-256	64	52	16	96	-	48	48	-	112	-	242	9.6
SIMD-256	64	817	901 <i>256</i>	419	852	-	-	256	288	804	176	74.5
		Hash	functio	ns op	peratin	g on 6	i4-bit	words				
Skein-512	64	497	-	-	1	-	-	-	288	-	305	17.0

Non-AES candidates' estimated performance

Estimate by counting instructions

9.6 Shabal Shabal 10.2 BMW 15.4 BMW 11.5BLAKE 20.4 BLAKE 20.9 Luffa 46.4 Luffa 32.8 ch-16-32 48.0 Keccak 38.3 Keccak 50.1 ch-16-32 72.4 SIMD 74.5 SIMD 96.1 JH 136.6 JH 127.7

x86 AMD Athlon (622) MMX 3DNow! Estimates are too optimistic:

no rotate instructions, ignores table lookups Estimates are too *pessimistic*:

AMD Athlon can sustain a throughput of 3 instructions per cycle

	(Shabal	9.6	Shabal	10.2	
Estimate by counting { instructions	BMW	15.4	BMW	11.5	96
	BLAKE	20.4	BLAKE	20.9	AMD Athlen
	Luffa	46.4	Luffa	32.8	(622)
	ch-16-32	48.0	Keccak	38.3	
	Keccak	50.1	ch-16-32	72.4	
	SIMD	74.5	SIMD	96.1	3DNow!
	JH	136.6	JH	127.7	

Improve estimates: consider all characteristics of the target platform

Algorithm		SI	PE		NVIDIA GTX 295 GPU				
	Су	cles	Throughput		Cycles			Throughput	
	per	byte	(Gb	/sec)	per byte			(Gb/sec)	
SHA-256 [BCO08]	8	3.2	3.1		-			-	
BLAKE-32	5.0	(4.5)	5.1	(5.7)	0.27	[0.13]	(0.13)	36.8	(76.4)
BMW-256	4.2	(3.7)	6.2	(6.9)	0.27	[0.27]	(0.10)	36.8	(99.4)
CubeHash-16/32	11.6	(9.9)	2.2	(2.6)	0.36	[0.35]	(0.34)	27.6	(29.2)
Hamsi-256	32.2	(26.9)	0.8	(1.0)	5.19	[0.66]	(0.64)	1.91	(15.5)
JH-256	31.5	(29.8)	0.8	(0.9)	0.76	[0.75]	(0.67)	13.1	(14.8)
Keccak-256	13.0	(11.1)	2.0	(2.3)	0.56	[0.56]	(0.31)	17.7	(32.1)
Luffa-256	11.5	(10.1)	2.2	(2.5)	0.35	[0.34]	(0.32)	28.4	(31.1)
Shabal-256	3.5	(2.8)	7.2	(9.2)	0.69	[0.56]	(0.07)	14.4	(141.9)
SIMD-256	22.6	(19.0)	1.1	(1.4)	3.60	[3.60]	(0.43)	2.76	(23.1)
Skein-512	13.7	(12.1)	1.9	(2.1)	0.46	[0.29]	(0.22)	22.1	(45.2)

Algorithm		SI	PE		NVIDIA GTX 295 GPU				
	Су	cles	Throughput		Cycles			Throughput	
	per	byte	(Gb	/sec)		per by	te	(Gb/sec)	
SHA-256 [BCO08]	8	3.2	3	.1	-			-	
BLAKE-32	5.0	(4.5)	5.1	(5.7)	0.27	[0.13]	(0.13)	36.8	(76.4)
BMW-256	4.2	(3.7)	6.2	(6.9)	0.27	[0.27]	(0.10)	36.8	(99.4)
CubeHash-16/32	11.6	(9.9)	2.2	(2.6)	0.36	[0.35]	(0.34)	27.6	(29.2)
Hamsi-256	32.2	(26.9)	0.8	(1.0)	5.19	[0.66]	(0.64)	1.91	(15.5)
JH-256	31.5	(29.8)	0.8	(0.9)	0.76	[0.75]	(0.67)	13.1	(14.8)
Keccak-256	13.0	(11.1)	2.0	(2.3)	0.56	[0.56]	(0.31)	17.7	(32.1)
Luffa-256	11.5	(10.1)	2.2	(2.5)	0.35	[0.34]	(0.32)	28.4	(31.1)
Shabal-256	3.5	(2.8)	7.2	(9.2)	0.69	[0.56]	(0.07)	14.4	(141.9)
SIMD-256	22.6	(19.0)	1.1	(1.4)	3.60	[3.60]	(0.43)	2.76	(23.1)
Skein-512	13.7	(12.1)	1.9	(2.1)	0.46	[0.29]	(0.22)	22.1	(45.2)

4 input streams per SPE 6 SPEs in a PS3, 16 SPEs in a BladeServer QS{20,21,22} Estimates and benchmark results are consistent

Algorithm	SPE				NVIDIA GTX 295 GPU				
	Су	cles	Throughput		Cycles			Throughput	
	per	byte	(Gb,	/sec)	per byte			(Gb/sec)	
SHA-256 [BCO08]	8	3.2	3	.1	-			-	
BLAKE-32	5.0	(4.5)	5.1	(5.7)	0.27	[0.13]	(0.13)	36.8	(76.4)
BMW-256	4.2	(3.7)	6.2	(6.9)	0.27	[0.27]	(0.10)	36.8	(99.4)
CubeHash-16/32	11.6	(9.9)	2.2	(2.6)	0.36	[0.35]	(0.34)	27.6	(29.2)
Hamsi-256	32.2	(26.9)	0.8	(1.0)	5.19	[0.66]	(0.64)	1.91	(15.5)
JH-256	31.5	(29.8)	0.8	(0.9)	0.76	[0.75]	(0.67)	13.1	(14.8)
Keccak-256	13.0	(11.1)	2.0	(2.3)	0.56	[0.56]	(0.31)	17.7	(32.1)
Luffa-256	11.5	(10.1)	2.2	(2.5)	0.35	[0.34]	(0.32)	28.4	(31.1)
Shabal-256	3.5	(2.8)	7.2	(9.2)	0.69	[0.56]	(0.07)	14.4	(141.9)
SIMD-256	22.6	(19.0)	1.1	(1.4)	3.60	[0.65]	(0.43)	2.76	(23.1)
Skein-512	13.7	(12.1)	1.9	(2.1)	0.46	[0.29]	(0.22)	22.1	(45.2)

680 blocks of 64 threads (43520 streams) per GPU in [brackets] the compression function only in (parentheses) the estimates

Hamsi

- Message expansion requires random reads from huge 32KB table
- Atomic xor to global memory, random access reads, use of 2 kernels, and large #threads/stream lead to poor performance
- Note: Compression function performance closely agrees with estimate

SIMD

- Memory pressure: message expansion 4Kb in addition to internal state
- Use of slow local memory required in multi-stream implementation

Shabal

- Addressing compiler bug \rightarrow cannot inline function in permutations
- Code will be re-benchmarked upon new release of CUDA

SPE result-visualization

SIMD-256 Shabal-256 Luffa-256 Candidate Keccak-256 Hamsi-256 CH16/32 BMW-256

GPU results-visualization

Skein-512 SIMD-256 Shabal-256 Luffa-256 Keccak-256 JH-256 Hamsi-256 CH16/32 BMW-256

Candidate

Compression-function Benchmark

Benchmark

- Throughput analysis of all 2nd-round SHA-3 candidates
 → useful as base for architecture-specific estimates
- Estimated performance of all $2^{\rm nd}\text{-round}$ SHA-3 candidates on Cell and GPU \rightarrow target-specific optimizations considered in the estimates
- Implemented all non-AES based 2nd-round SHA-3 candidates
 → benchmarked results agree with most estimates

We hope this work can assist in the decision process of the SHA-3 competition