Analysis and Improvement of the Random Delay Countermeasure of CHES 2009

Jean-Sébastien Coron Ilya Kizhvatov

UNIVERSITÉ DU LUXEMBOURG

CHES 2010, Santa-Barbara, CA, USA

Random Delays 000	Method of CHES'09 0000	Improved Method	Efficiency Criterion	Practical Evaluation	Conclusion

- 1 Random Delays as a Countermeasure
- 2 Method of CHES'09 and its Limitations
- 3 Improved Method for Random Delay Generation
- 4 Correct Efficiency Criterion
- 5 Practical Evaluation

Random Delays	Method of CHES'09 0000	Improved Method	Efficiency Criterion	Practical Evaluation	Conclusion

1 Random Delays as a Countermeasure

- 2 Method of CHES'09 and its Limitations
- 3 Improved Method for Random Delay Generation
- 4 Correct Efficiency Criterion
- 5 Practical Evaluation

 Random Delays
 Method of CHES'09
 Improved Method
 Efficiency Criterion
 Practical Evaluation
 Conclusion

 o●o
 000
 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Random Delays: More Details

Assumptions

- multiple delays are harder to remove than a single one
- adversary is facing the cumulative sum of N delays

Desired properties of S_N

- should increase attacker's uncertainty
- smaller mean to decrease performance penalty

Methods with Independent Delay Generation

Plain uniform delays: $d_i \sim \mathcal{U}[0, a]$

Random Delays

• WISTP07: uniform \longrightarrow pit-shaped to increase σ

Central Limit Theorem: $S_N \xrightarrow{N} \mathcal{N}(N\mu, N\sigma^2)$

Random Delays 000	Method of CHES'09	Improved Method	Efficiency Criterion	Practical Evaluation	Conclusion

- 1 Random Delays as a Countermeasure
- 2 Method of CHES'09 and its Limitations
- 3 Improved Method for Random Delay Generation
- 4 Correct Efficiency Criterion
- 5 Practical Evaluation

Method of CHES'09: Floating Mean

Idea: generate delays non-independently

Algorithm

0000

- within an execution: generate delays within a small interval [m, m + b]
- across executions: vary m within a larger interval [0, a b]
- parameters a and b are fixed for an implementation

 Random Delays
 Method of CHES'09
 Improved Method
 Efficiency Criterion
 Practical Evaluation
 Conclusion

 000
 000
 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 <

Method of CHES'09: Floating Mean

$$E(S_N) = \frac{Na}{2}$$
, $Var(S_N) = N^2 \cdot \frac{(a-b+1)^2 - 1}{12} + N \cdot \frac{b^2 + 2b}{12}$

Method of CHES'09: Floating Mean

$$E(S_N) = \frac{Na}{2}$$
, $Var(S_N) = N^2 \cdot \frac{(a-b+1)^2 - 1}{12} + N \cdot \frac{b^2 + 2b}{12}$

Random DelaysMethod of CHES'09Improved MethodEfficiency CriterionPractical EvaluationConclusion000000000000000000

The Issue with Floating Mean

Using parameters from the practical implementation of CHES'09:

The Issue with Floating Mean

Explanation

- S_N is a mixture of a b + 1 Gaussians with means $N \cdot (m + b/2)$ and variance $\sigma^2 \approx Nb^2$
- The distance between component means is N
- Components are not visible if $\sigma > N$, which yields the condition

$$b \gg \sqrt{N}$$

Conclusion

- we have to use longer and less frequent delays in Floating Mean
- this is not good for security and performance

Random Delays 000	Method of CHES'09	Improved Method	Efficiency Criterion	Practical Evaluation	Conclusion

- 1 Random Delays as a Countermeasure
- 2 Method of CHES'09 and its Limitations
- 3 Improved Method for Random Delay Generation
- 4 Correct Efficiency Criterion
- 5 Practical Evaluation

Improved Floating Mean

Algorithm

- **1** in an implementation, fix parameters a, b, and an additional parameter k
- **2** before an execution, generate random m' from $[0, (a b) \cdot 2^k]$
- 3 throughout the execution, generate delays d in two steps:

• generate
$$d' \in [m', m' + (b+1) \cdot 2^k[$$

• let $d \leftarrow \lfloor d' \cdot 2^{-k} \rfloor$.

Can be efficiently implemented in 8-bit assembly.

Improved Floating Mean: Distribution

$$\operatorname{E}[S_N] = N \cdot \left(\frac{a}{2} - 2^{-k-1}\right) , \qquad \operatorname{Var}(S_N) \simeq N^2 \cdot \frac{(a-b)^2 - 1}{12}$$

Condition on Parameters

Cogs are not visible when

$$b \gg \sqrt{N} \cdot 2^{-k}$$

 \Rightarrow shorter and more frequent delays are possible, which is better for security

Random Delays	Method of CHES'09	Improved Method	Efficiency Criterion	Practical Evaluation	Conclusion
000	0000	000	000	00	

- 1 Random Delays as a Countermeasure
- 2 Method of CHES'09 and its Limitations
- 3 Improved Method for Random Delay Generation
- 4 Correct Efficiency Criterion
- 5 Practical Evaluation

 Random Delays
 Method of CHES'09
 Improved Method
 Efficiency Criterion
 Practical Evaluation
 Conclusion

 000
 000
 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 <

Drawbacks of the Coefficient of Variation

At CHES'09, σ/μ was suggested as the efficiency criterion. However, σ is not a good measure of uncertainty. Example:

 σ is larger for X, but X is better for the attacker!

In presence of timing disarrangement:

 $\rho_{\rm max} \sim \hat{p}$

 $T_{\rm DPA} \sim \frac{1}{\rho_{\rm max}^2}$

Efficiency Criterion

000

where \hat{p} is the maximum of the distribution density.

$$T_{
m DPA} \sim rac{1}{\hat{p}^2}$$

So the key parameter is \hat{p} , not σ .

Recalling the DPA Complexity

From [Mangard CT-RSA'04]:

 Random Delays
 Method of CHES'09
 Improved Method
 Efficiency Criterion
 Practical Evaluation
 Conclusion

 000
 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 <

The New Criterion

$$E=rac{1}{2\hat{p}\mu}, \hspace{1em} E\in \hspace{1em}]0,1]$$

E = 1 when the distribution is uniform, otherwise E < 1.

Information-theoretic sense Min-entropy:

$$H_\infty(S) = -\log \hat{p} \ , \quad H_\infty(S) \leq H(S)$$

where H(S) is the Shannon entropy.

$$E = \frac{2^{H_{\infty}(S)-1}}{\mu}$$

Random Delays 000	Method of CHES'09 0000	Improved Method	Efficiency Criterion	Practical Evaluation	Conclusion

- 1 Random Delays as a Countermeasure
- 2 Method of CHES'09 and its Limitations
- 3 Improved Method for Random Delay Generation
- 4 Correct Efficiency Criterion
- 5 Practical Evaluation

Practical Evaluation: Implementation

- AES-128 on Atmel ATmega16
- 10 delays per round, 3 dummy rounds at start/end
- almost the same performance overhead for all methods
- no other countermeasures
- CPA attack [Brier et al. CHES'04]

00

Practical Evaluation: Results

	ND	PU	WISTP07	CHES09	CHES10
μ , cycles	0	720	860	862	953
<i>p</i>	1	0.014	0.009	0.004	0.002
$1/(2\hat{p}\mu)$	_	0.048	0.063	0.145	0.259
CPA, traces	50	2500	7000	45000	> 150000

Random Delays 000	Method of CHES'09 0000	Improved Method	Efficiency Criterion	Practical Evaluation	Conclusion

Conclusion

Our result

- more secure method for random delay generation allows for more frequent but shorter delays
- correct efficiency criterion directly related to the attack complexity and information-theoretically sound