Efficient Techniques for High-Speed Elliptic Curve Cryptography

Workshop on Cryptographic Hardware and Embedded Systems (CHES 2010)

Patrick Longa University of Waterloo

Joint work with C. Gebotys

Outline

- Elliptic Curve Cryptography (ECC):
 - Basics and recent developments
- x86-64 based Processors
- Approach
- Optimizations
 - Scalar, point and field arithmetic levels
- Optimizations with the GLS Method
- Implementation Results
- Conclusions and References

ECC: Basics

• An elliptic curve *E* over a prime field \mathbb{F}_p , p > 3, in (short) Weierstrass form is given by:

$$E: y^2 = x^3 + ax + b$$

where $a, b \in \mathbb{F}_p$ (a = -3 for efficiency purposes) Given a point $P \in E(\mathbb{F}_p)$ of order r and an integer $k \in [1, r-1]$, we define scalar multiplication as:

$$Q = [k]P = P + P + ... + P$$
 (*k* times)

- Scalar multiplication is the central/most time-consuming operation in ECC
- Security is based on the ECDLP problem: given points P and Q, find k
- Only exponential attacks are known for solving ECDLP

ECC: Recent developments

Curve forms with faster arithmetic

An elliptic curve *E* over a prime field \mathbb{F}_p , p > 3, in Twisted Edwards form is given by, Bernstein et al. (2008):

$$E: ax^2 + y^2 = 1 + dx^2 y^2$$

where $a, d \in \mathbb{F}_p^*$, $a \neq d$ (a = -1 for efficiency purposes)

→ The Galbraith-Lin-Scott (GLS) method, Galbraith et al. (Eurocrypt 2009) Let *E* be an elliptic curve over \mathbb{F}_p , s.t. the quadratic twist *E*' of $E(\mathbb{F}_{p^2})$ has an efficiently computable homomorphism $\psi(x,y) \rightarrow (\alpha x, \alpha y), \ \psi(P) = \lambda P$

Then: $[k]P = [k_0]P + [k_1](\lambda P)$

where $\log k_0 \approx \log k_1 \approx \frac{1}{2} \log k$

x86-64 based Processors

Computers from laptop/desktop/server classes are rapidly adopting x86-64 ISA (wordlength w = 64)

Main features:

- 64-bit GPRs and operations with powerful multiplier \Rightarrow favours \mathbb{F}_p arithmetic
- Deeply pipelined architectures (e.g., Intel Core 2 Duo: 15 stages)
- Aggressive out-of-order scheduling to exploit *Instruction Level Parallelism* (ILP)
- Sophisticated branch predictors

Key observation:

As $w \uparrow$, $\lceil (\log p)/w \rceil \downarrow$, number of stages in pipeline gets larger and scheduling gets more "aggressive", "negligible" operations/issues get significant: addition, subtraction, division/ multiplication by constants, pipeline stalls (by data dependencies) and branch mispredictions

Approach

- Bottom-up optimization of each layer of ECC computation taking into account architectural features of x86-64 based processors
- Best ECC algorithms (to our knowledge) for each layer are identified and optimized
- *Three* representative 64-bit processors for our analysis and tests:
 - 1.66GHz Intel Atom N450 (netbook/notebook class)
 - 2.66GHz Intel Core 2 Duo E6750 (desktop class)
 - 2.6GHz AMD Opteron 252 (server/workstation class)

Incomplete Reduction (IR), Yanik et al. (2002):

Given $a, b \in [0, p-1]$, allow the result to stay in the range $[0, 2^{s} - 1]$ instead of performing a complete reduction, where $p < 2^{s} < 2p - 1$, s = n.w (*n*: number of words, *w*: wordlength)

- For maximal efficiency, select a pseudo-Mersenne prime $p = 2^m c$, where m = s, c small (i.e., $c \ll 2^w$):
 - Reduction after addition a + b: discard carry bit in most significant word and then add c
 - Subtraction does not require IR (already optimal!)
- However, other operations may benefit from IR: addition between *completely reduced* and *incompletely reduced* numbers, multiplication by constant, division by constant,...

Conditional branches

- Modular operations are traditionally implemented with conditional branches
- Example: addition

Given $a, b \in [0, p-1]$, execute a + b. If a + b > p, then a + b - p

- Condition is true ~50% in a random pattern \Rightarrow worst "nightmare" of predictors
- We'd better eliminate conditional branches in modular reduction. *Two* alternatives:
 - Using predicated move instructions (e.g., cmov in x86)
 - Using look-up tables and indexed indirect addressing
- Basic idea: perform reduction with 0 when it is not actually required

Incomplete Reduction and Conditional branches

Cost (in cycles) of 256-bit modular operations, $p = 2^{256} - 189$

Intel Care O Dur

	1111	Intel Core 2 Duo			AND Opteron		
Modular operation	w/o CB	with CB	Cost reduction (%)	w/o CB	with CB	Cost reduction (%)	
Sub	21	37	43%	16	23	30%	
Add with IR	20	37	46%	13	21	38%	
Add	25	39	36%	20	23	13%	
Mult2 with IR	19	38	50%	10	19	47%	
Mult2	24	38	37%	17	20	15%	
Div2 with IR	20	36	44%	11	18	39%	
Div2	25	39	36%	18	27	33%	

 \Rightarrow Cost reductions using IR in the range 7% - 41%

 \Rightarrow Cost reductions by eliminating conditional branches as high as 50%

 \Rightarrow Operations using IR are more benefited

AND Outors

"Contiguous" dependencies: RAW dependencies between successive field operations

"Contiguous" dependencies (Cont'd)

We propose *three* solutions:

- 1. Field arithmetic scheduling \Rightarrow execute other field operations while previous memory writings complete their pipeline latencies
- 2. Merging point operations \Rightarrow more possibilities for field operation rescheduling (it additionally reduces number of function calls)
- Merging field operations ⇒ direct elimination of "contiguous" dependencies (it additionally reduces memory reads/writes)

E.g., $a-b-c \pmod{p}$, $a+a+a \pmod{p}$ (as in other crypto libraries, MIRACL) $a-2b \pmod{p}$, merging of $a-b \pmod{p}$ and $(a-b)-2c \pmod{p}$

"Contiguous" dependencies (*Cont'd*) $(X_1, Y_1, Z_1) \leftarrow 2(X_1, Y_1, Z_1)$

>	Sqr(Z1,t3)	
>	Add(X1,t3,t1)	D
>	Sub(X1,t3,t3)	
>	Mult(t3,t1,t2)	D
>	Mult3(t2,t1)	D
>	Div2(t1,t1)	D
>	Mult(Y1,Z1,t3)	
>	Sqr(Y1,t2)	
>	Mult(t2,X1,t4)	D
>	Sqr(t1,t3)	
>	Sub(t3,t4,X1)	D
>	Sub(X1,t4,X1)	D
>	Sub(t4,X1,t3)	D
>	Mult(t3,t1,t4)	D
>	Sqr(t2,t0)	
>	Sub(t4,t0,Y1)	D

"Unscheduled"

> Sqr(Z1, t3) > Sqr(Y1, t2) > Add(X1,t3,t1)> Sub(X1,t3,t3)> Mult3(t3,t0)D > Mult(X1, t2, t4) > Mult(t1,t0,t3) > Sqr(t2, t0) > Div2(t3,t1)> Mult(Y1,Z1,Z1) > Sqr(t1, t2) > DblSub(t2,t4,X1) D > Sub(t4, X1, t2)D > Mult(t1, t2, t4) D > Sub(t4,t0,Y1)D

> Add(X1,t3,t1) > Sub(X1,t3,t3) > Mult3(t3,t0) > Mult(X1,t2,t4) > Mult(t1,t0,t3) > Sqr(t2,t0) > Div2(t3,t1) > Mult(Y1,Z1,Z1) > Sqr(t1,t2) > Sqr(t1,t2) > Sqr(Z1,t3) > DblSub(t2,t4,X1) > Sub(t4,X1,t2) > Add(X1,t3,t5) > Mult(t1,t2,t4) > Sub(X1,t3,t3)

D

D

> Sqr(Z1,t3)

> Sqr(Y1,t2)

> Sub(t4,t0,Y1)

> Mult3(t3,t1)

> Sqr(Y1,t2)

> ...

Scheduled and merged DBL-DBL

Scheduled

"Contiguous" dependencies (Cont'd)

Cost (in cycles) of point doubling, $p = 2^{256} - 189$

	Intel Atom		Intel Core 2 Duo		AMD Opteron	
Point operation	"Unscheduled"	Scheduled and merged	"Unscheduled"	Scheduled and merged	"Unscheduled"	Scheduled and merged
DBL	3390	3332	1115	979	786	726
Relative reduction	-	2%	-	12%	-	8%
Estimated reduction for [k]P	-	1%	-	9%	-	5%

 \Rightarrow Estimated reduction of 5% and 9% on AMD Opteron and Intel Core 2 Duo, respect.

 \Rightarrow Less "aggressive" architectures are not greatly affected by "contiguous" dependencies

Point Arithmetic

Our choice of formulas:

• Jacobian coordinates: $(x, y) \mapsto (X/Z^2, Y/Z^3, 1), (X : Y : Z) = \{(\lambda^2 X, \lambda^3 Y, \lambda Z): \lambda \in \mathbb{F}_p^*\}$ DBL $(a = -3) \Rightarrow 4M + 4S$ mDBLADD $(Z_2 = 1) \Rightarrow 13M + 5S$ DBLADD $(Z_2^2, Z_2^3 \text{ cached}) \Rightarrow 16M + 5S$ Longa 2007

• Extended Twisted Edwards coordinates: $(x, y) \mapsto (X/Z, Y/Z, 1, T/Z), T = XY/Z$ $(X : Y : Z : T) = \{(\lambda X, \lambda Y, \lambda Z, \lambda Z): \lambda \in \mathbb{F}_p^*\}$

DBL (a = -1) $\Rightarrow 4M + 3S$ mDBLADD $(Z_2 = 1)$ $\Rightarrow 11M + 3S$ DBLADD $\Rightarrow 12M + 3S$

Point Arithmetic

Minimizing costs:

- Trade additions for subtractions (or vice versa) by applying $\lambda = -1 \in \mathbb{F}_p^*$
- Minimize constants and additions/subtractions by applying $\lambda = 2^{-1} \in \mathbb{F}_p^*$

E.g., $(X_2, Y_2, Z_2) \leftarrow 2(X_1, Y_1, Z_1)$ using Jacobian coord.

$$A = 3(X_{1} + Z_{1}^{2})(X_{1} - Z_{1}^{2}), B = 4X_{1}Y_{1}^{2}$$

$$X_{2} = A^{2} - 2B$$

$$Y_{2} = A(B - X_{2}) - 8Y_{1}^{4}$$

$$Z_{2} = 2Y_{1}Z_{1}$$

$$A = 3(X_{1} + Z_{1}^{2})(X_{1} - Z_{1}^{2})/2, B = X_{1}Y_{1}^{2}$$

$$X_{2} = A^{2} - 2B$$

$$Y_{2} = A(B - X_{2}) - Y_{1}^{4}$$

$$Z_{2} = Y_{1}Z_{1}$$

- Most constants are eliminated
- If 1Mult > 1Sqr + 3"Add", replace Y_1Z_1 by $[(Y_1+Z_1)^2 Y_1^2 Z_1^2]/2$
- See our database of formulas using Jacobian coordinates:

http://patricklonga.bravehost.com/jacobian.html

Scalar Arithmetic

1. Convert k to an efficient "window-based" representation, say $k = \sum_{i=0}^{N-1} k_i 2^i$, where $k_i \in \{0, 1, 3, 5, \dots, m\}$

In particular, we use width-*w* non-adjacent form (*w*NAF) that insert (w-1) "0"-digits between nonzero digits:

• If $m = 2^{w-1} - 1$, $w \ge 2 \in \mathbb{Z} \implies$ traditional integral window, nonzero density $(w+1)^{-1}$

On-the-fly conversion algorithms that save memory are not good candidates here (too many function calls, and memory is not constrained)

 \Rightarrow we'd better convert *k* first and then execute evaluation stage

Scalar Arithmetic

- 2. Precompute L = (m 1)/2 non-trivial points {*P*, [3]*P*, [5]*P*, ..., [*m*]*P*} Inversion is relatively expensive, 1I = 175M
 - For Jacobian coord., use LM method without inversions, Longa and Gebotys (2009):

$$Cost = (5L+2)M + (2L+4)S,$$

which is the lowest cost in the literature

- For Twisted Edwards, compute P + 2P + 2P + ... + 2P using general additions
- 3. Evaluate [k]P using a *double-and-doubleadd* algorithm
 - For both systems, w = 5 (L = 7) is optimal for bitlength(k) = 256 bits Two main functions: merged 4DBL and DBLADD

GLS Method

Field and Point Arithmetic:

- Similar techniques apply to \mathbb{F}_{p^2} arithmetic
- Conditional branches can be avoided by clever choice of p (e.g., $p = 2^{127} 1$)
- "Contiguous" dependencies are more expensive (n = 2 words), but more easily avoided by rescheduling \Rightarrow scheduling at \mathbb{F}_{p^2} and \mathbb{F}_p levels
- More opportunities for merging field operations because of $\mathbb{F}_{p^2}/\mathbb{F}_p$ interaction and reduced operand size (more GPRs are available for intermediate computations)

E.g., $a-2b \pmod{p}$, $(a+a+a)/2 \pmod{p}$, $a+b-c \pmod{p}$, merging of $a+b \pmod{p}$ and $a-b \pmod{p}$, merging of $a-b \pmod{p}$ and $c-d \pmod{p}$, and merging of $a+a \pmod{p}$ and $a+a+a \pmod{p}$

GLS Method

Scalar Arithmetic:

• Recall that $[k]P = [k_0]P + [k_1](\lambda P)$ Use (fractional) wNAF to convert k_0 and k_1 :

 \Rightarrow Again, it is better to convert k_0 and k_1 first and then execute evaluation stage

- Precompute L = (m 1)/2 non-trivial points {*P*, [3]*P*, [5]*P*, ..., [*m*]P} Inversion is not so expensive, II = 59M
 - For Jacobian coord., use LM method with *one* inversion, Longa and Miri (PKC 2008):

$$Cost = 1I + (9L+1)M + (2L+5)S,$$

which is the lowest cost in the literature

• For Twisted Edwards, compute P + 2P + 2P + ... + 2P using general additions (general addition is only 1M more expensive than mixed addition)

GLS Method

Scalar Arithmetic: (*Cont'd*)

- Evaluate $[k]P = [k_0]P + [k_1](\lambda P)$ using *interleaving*, Gallant et al. (Crypto 2001) and Möller (SAC 2001)
 - For Jacobian coord., a fractional window L = 6 is optimal (*bitlength*(k) = 256 bits)
 - For Twisted Edwards, an integral window w = 5 (L = 7) is optimal (*bitlength*(k) = 256 bits)
- *Three* main functions: DBL, DBLADD and DBLADDADD

- Implementation of variable-scalar-variable-point [k]P with ~ 128 -bit security
- Mostly in C with underlying field arithmetic in assembly
- Plugged to MIRACL library [Scott]
- *Four* versions:
 - Jacobian coordinates, $p = 2^{256} 189$: *jac256189* E / \mathbb{F}_p : $y^2 = x^3 - 3x + b$, with $b = 0 \times fd63c3319814da55e88e9328e96273c483dca6cc84df53ec8d91b1b3e0237064$ $\#E(\mathbb{F}_p) = p + 1 - t = 10r$, *r* prime
 - (Extended) Twisted Edwards coord., $p = 2^{256} 189$: *ted256189* E / \mathbb{F}_p : $-x^2 + y^2 = 1 + 358x^2 y^2$, $\#E(\mathbb{F}_p) = p + 1 - t = 4r$, r prime
 - GLS method using Jacobian coordinates, $p = 2^{127} 1$: *jac1271gls* E'/\mathbb{F}_{p^2} : $y^2 = x^3 - 3\mu^2 x + 44\mu^3$, $\mu = 2 + i \in \mathbb{F}_{p^2}$, $\#E'(\mathbb{F}_{p^2}) = (p + 1 - t)(p + 1 + t)$ is prime
 - GLS method using (Extended) Twisted Edwards coord., $p = 2^{127} 1$: *ted1271gls* E'/\mathbb{F}_{p^2} : $-\mu x^2 + y^2 = 1 + 109\mu x^2 y^2$, $\mu = 2 + i \in \mathbb{F}_{p^2}$, $\#E'(\mathbb{F}_{p^2}) = (p + 1 - t)(p + 1 + t) = 4r$, *r* prime
- We ran each implementation 10⁴ times on targeted processors and averaged the timings

Standard curve (256 bits): cost of [k]P in cycles

	Intel Co	re 2 Duo	AMD O	pteron
Method	Cost	Relative reduction (%)	Cost	Cost reduction (%)
Hisil et al. [HWC09]	468000	-	-	-
Jac256189 (this work)	337000	28% / 13%	274000	- / 11%
Curve25519 [GT07]	386000	-	307000	-

Twisted Edwards curve (256 bits):

	Intel Core 2 Duo		AMD O	pteron
Method	Cost	Relative reduction (%)	Cost	Cost reduction (%)
Hisil et al. [HWC09]	362000	-	-	-
<i>Ted256189</i> (this work)	281000	22% / 27%	232000	- /24%
Curve25519 [GT07]	386000	-	307000	-

Standard curve using GLS: cost of $[k_0]P + [k_1](\lambda P)$ in cycles

	Intel	Atom	Intel Co	re 2 Duo	AMD O	pteron
Method	Cost	Relative reduction (%)	Cost	Relative reduction (%)	Cost	Cost reduction (%)
Galbraith et al. [GLS09] *	832000	-	332000	-	341000	-
Jac1271gls (this work)	644000	23%/-	252000	24% / 35%	238000	30% / 22%
Curve25519 [GT07]	-	-	386000	-	307000	-

Twisted Edwards curve using GLS:

	Intel Atom Intel Core 2 Du		re 2 Duo	AMD Opteron		
Method	Cost	Relative reduction (%)	Cost	Relative reduction (%)	Cost	Cost reduction (%)
Galbraith et al. [GLS08] *	732000	-	295000	-	295000	-
<i>Ted1271gls</i> (this work)	588000	20%/-	229000	22% / 41%	211000	28% / 31%
* Curve25519 [GT07]	-	-	386000	-	307000	-

Recent improvements!!

Intel Core 2 Duo E6750Galbraith et al.
[GLS09]295000 (1)Ted1271gls21000029%

AMD Opteron 275

Galbraith et al. [GLS09]	284000 (1)	
Ted1271gls	200000	30%

Intel Xeon 513	0	
Galbraith et al. [GLS09]	323000 ⁽²⁾	
Ted1271gls	213000	34%

AMD Phenom II X4 940 / 955

Galbraith et al. [GLS09]	255000 (1) / 262000 (2)	
Ted1271gls	181000	

(1) Our own measurements, same platform, same compiler

(2) eBACS, accessed 08/2010 (http://bench.cr.yp.to/results-dh.html)

Conclusions

- Thorough bottom-up optimization process (field/point/scalar arithmetic levels)
- Proposed several optimizations taking into account architectural features
- New implementations are (at least) **30%** faster than state-of-the-art implementations on all x86-64 CPUs tested
- Optimizations can be easily extended to other implementations using fixed point *P*, digital signatures and different coordinate systems/curve forms/underlying fields

References

More details can be found in:

• P. Longa, "Speed Benchmarks for Elliptic Curve Scalar Multiplication", 07/2010. Available at:

http://patricklonga.bravehost.com/speed_ecc.html

• P. Longa and C. Gebotys, "Analysis of Efficient Techniques for Fast Elliptic Curve Cryptography on x86-64 based Processors", in *Cryptology ePrint Archive*, Report 2010/335, 2010.

References

[GLS08] S. Galbraith, X. Lin and M. Scott, "Endomorphisms for Faster Elliptic Curve Cryptography on a Large Class of Curves," in *Cryptology ePrint Archive*, Report 2008/194, 2008.

[GLS09] S. Galbraith, X. Lin and M. Scott, "Endomorphisms for Faster Elliptic Curve Cryptography on a Large Class of Curves," in *EUROCRYPT 2009*.

[GLS01] R. Gallant, R. Lambert and S. Vanstone, "Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms," in *CRYPTO 2001*.

[GT07] P. Gaudry and E. Thomé, "The mpFq Library and Implementing Curve-Based Key Exchanges," in SPEED 2007.

[HWC08] H. Hisil, K. Wong, G. Carter and E. Dawson, "Twisted Edwards Curves Revisited," in ASIACRYPT 2008.

[HWC09] H. Hisil, K. Wong, G. Carter and E. Dawson, "Jacobi Quartic Curves Revisited," in *Cryptology ePrint Archive*, Report 2009/312, 2009.

[LG08] P. Longa and C. Gebotys, "Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method for Efficient Elliptic Curve Scalar Multiplication," *CACR technical report*, CACR 2008-06, 2008.

[LM08] P. Longa and A. Miri, "New Composite Operations and Precomputation Scheme for Elliptic Curve Cryptosystems over Prime Fields," in *PKC 2008*.

[Möl01] B. Möller, "Algorithms for Multi-Exponentiation," in SAC 2001.

[Scott] M. Scott, "MIRACL – Multiprecision Integer and Rational Arithmetic C/C++ Library," 1988–2007.

Efficient Techniques for High-Speed Elliptic Curve Cryptography

Q & A

Patrick Longa University of Waterloo http://patricklonga.bravehost.com

