Co-Z Addition Formulæ and Binary Ladders on Elliptic Curves

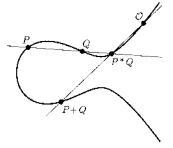
Raveen Goundar • Marc Joye • Atsuko Miyaji

Co-Z Addition Formulæ and Binary Ladders on Elliptic Curves

Raveen Goundar • Marc Joye • Atsuko Miyaji

Elliptic Curve Cryptography

Invented [independently] by Neil Koblitz and Victor Miller in 1985



Useful for key exchange, encryption and digital signature

Scalar Multiplication

Definition

Given scalar k and a point **P**, compute $[k]\mathbf{P} = \underbrace{\mathbf{P} + \mathbf{P} + \dots + \mathbf{P}}_{k \text{ times}}$

ECDLP Given **P** and **Q** = [k]**P**, recover k

- no subexponential algorithms are known to solve the ECDLP (in the general case)
- smaller key sizes can be used

Bit security							
	80	112	128	192	256		
ECC	160	224	256	384	512		
RSA	1024	2048	3072	8192	15360		

This Talk

Goal

Implementation of the Montgomery ladder and of its dual version using efficient co-Z formulæ

- binary scalar multiplication algorithms
- suitable for memory-constrained devices

Outline

1 Arithmetic on Elliptic Curves

- Jacobian coordinates
- Co-Z point addition

2 Binary Scalar Multiplication Algorithms

- Left-to-right methods
- Right-to-left methods

3 New Implementations

- Binary ladders with co-Z trick
- Point double-add operation

4 Discussion

- Performance analysis
- Security analysis

5 Conclusion

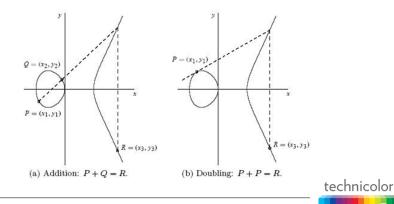
5/22 4 🗇 🕨

Outline

- Arithmetic on Elliptic Curves
 Jacobian coordinates
 - Co-Z point addition
- 2 Binary Scalar Multiplication Algorithms
 Left-to-right methods
 Right-to-left methods
- **3** New Implementations
 - Binary ladders with co-Z trick
 - Point double-add operation
- 4 Discussion
 - Performance analysis
 - Security analysis
- 5 Conclusion

Weierstraß equation (affine coordinates)

Let $E: y^2 = x^3 + ax + b$ define over \mathbb{F}_q (*char* \neq 2,3) with discriminant $\Delta = -16(4a^3 + 27b^2) \neq 0$



Jacobian Coordinates

■ To avoid computation of inverse in \mathbb{F}_q ■ affine point $(x, y) \rightarrow$ projective point (X : Y : Z) such that $x = X/Z^2$ and $y = Y/Z^3$

Weierstraß equation (projective Jacobian coordinates)

Let $E: Y^2 = X^3 + aXZ^4 + bZ^6$ define over \mathbb{F}_q (char $\neq 2, 3$) with discriminant $\Delta = -16(4a^3 + 27b^2) \neq 0$

- **Point at infinity** $\boldsymbol{O} = (1:1:0)$
- If $P = (X_1 : Y_1 : Z_1) \in E$ then $-P = (X_1 : -Y_1 : Z_1)$

Co-Z Point Addition (ZADD)

- Introduced by Meloni [WAIFI 2007]
- Addition of two distinct points with the same Z-coordinate

Co-Z point addition

Let $P = (X_1 : Y_1 : Z)$ and $Q = (X_2 : Y_2 : Z)$. Then $P + Q = (X_3 : Y_3 : Z_3)$ where

$$X_3 = D - W_1 - W_2$$
, $Y_3 = (Y_1 - Y_2)(W_1 - X_3) - A_1$, $Z_3 = Z(X_1 - X_2)$

with $A_1 = Y_1(W_1 - W_2)$, $W_1 = X_1C$, $W_2 = X_2C$, $C = (X_1 - X_2)^2$ and $D = (Y_1 - Y_2)^2$

• Cost of ZADD: 5M + 2S

Co-Z Point Addition with Update (ZADDU)

Main advantage of Meloni's addition

Equivalent representation of P

Evaluation of $\mathbf{R} = \text{ZADD}(\mathbf{P}, \mathbf{Q})$ yields for free

$$\mathbf{P}' = (X_1(X_1 - X_2)^2 : Y_1(X_1 - X_2)^3 : Z_3) = (W_1 : A_1 : Z_3) \sim \mathbf{P}$$

that is, $Z(\mathbf{P}') = Z(\mathbf{R})$

- Notation: $(\boldsymbol{R}, \boldsymbol{P'}) = ZADDU(\boldsymbol{P}, \boldsymbol{Q})$
- Cost of ZADDU: 5M + 2S

Outline

Arithmetic on Elliptic Curves
 Jacobian coordinates
 Co-Z point addition

2 Binary Scalar Multiplication Algorithms

- Left-to-right methods
- Right-to-left methods
- 3 New Implementations
 - Binary ladders with co-Z trick
 - Point double-add operation
- 4 Discussion
 - Performance analysis
 - Security analysis
- 5 Conclusion

Algorithm 1 Left-to-right binary method Input: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ Output: Q = kP

- 1: $R_0 \leftarrow O$; $R_1 \leftarrow P$ 2: for i = n - 1 down to 0 do 3: $R_0 \leftarrow 2R_0$ 4: if $(k_i = 1)$ then $R_0 \leftarrow R_0 + R_1$ 5: end for 6: return R_0
 - Subject to SPA-type attacks
 - Inserting dummy addition prevents SPA
 - subject to safe-error attacks

Algorithm 2 Montgomery ladder Input: $P \in E(\mathbb{F}_q)$ and $k = (k_q, 1, \dots, d)$

Input: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ Output: Q = kP

1:
$$R_0 \leftarrow O$$
; $R_1 \leftarrow P$
2: for $i = n - 1$ down to 0 do
3: $b \leftarrow k_i$; $R_{1-b} \leftarrow R_{1-b} + R_b$
4: $R_b \leftarrow 2R_b$
5: end for
6: return R_0

- Regular structure, no dummy operations
- Naturally resistant against SPA and safe-error attacks
- 2 registers

Algorithm 3 Right-to-left binary method Input: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ Output: Q = kP

- 1: $R_0 \leftarrow O$; $R_1 \leftarrow P$ 2: for i = 0 to n - 1 do 3: if $(k_i = 1)$ then $R_0 \leftarrow R_0 + R_1$ 4: $R_1 \leftarrow 2R_1$ 5: end for 6: return R_0
 - Idem left-to-right method (SPA-type attacks, safe-error attacks)

Algorithm 4 Joye's double-add Input: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ Output: Q = kP1: $R_0 \leftarrow O$; $R_1 \leftarrow P$ 2: for i = 0 to n - 1 do 3: $b \leftarrow k_i$ 4: $R_{1-b} \leftarrow 2R_{1-b} + R_b$ 5: end for 6: return R_0

Idem Montgomery ladder

(regular structure, no dummy operations, 2 registers)

Outline

- Arithmetic on Elliptic Curves
 Jacobian coordinates
 Co-Z point addition
- 2 Binary Scalar Multiplication Algorithms
 Left-to-right methods
 Right-to-left methods
- 3 New Implementations
 - Binary ladders with co-Z trick
 - Point double-add operation
- 4 Discussion
 - Performance analysis
 - Security analysis

5 Conclusion

Conjugate co-Z Point Addition (ZADDC)

New co-Z point operation
 using caching techniques

Conjugate co-Z point addition

From $-\mathbf{Q} = (X_2 : -Y_2 : Z_2)$, evaluation of $\mathbf{R} = \text{ZADD}(\mathbf{P}, \mathbf{Q})$ allows one to get $\mathbf{S} := \mathbf{P} - \mathbf{Q} = (\overline{X_3}, \overline{Y_3}, \overline{Z_3})$ where

$$\overline{X_3} = (Y_1 + Y_2)^2 - W_1 - W_2, \ \overline{Y_3} = (Y_1 + Y_2)(W_1 - \overline{X_3})$$

with an additional cost of 1M + 1S

- Notation: $(\boldsymbol{P} + \boldsymbol{Q}, \boldsymbol{P} \boldsymbol{Q}) = ZADDC(\boldsymbol{P}, \boldsymbol{Q})$
- Total cost of ZADDC: <u>6M+3S</u>

Algorithm 5 Montgomery ladder with co-Z formulæ Input: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ with $k_{n-1} = 1$ Output: Q = kP1: $R_0 \leftarrow O$; $R_1 \leftarrow P$ 2: for i = n - 1 down to 0 do 3: $b \leftarrow k_i$; $R_{1-b} \leftarrow R_{1-b} + R_b$ 4: $R_b \leftarrow 2R_b$

- 5: **end for**
- 6: return **R**₀

Algorithm 5 Montgomery ladder with co-Z formulæ Input: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ with $k_{n-1} = 1$ Output: Q = kP

1: $\mathbf{R}_0 \leftarrow \mathbf{P}$; $(\mathbf{R}_1, \mathbf{R}_0) \leftarrow \text{DBLU}(\mathbf{R}_0)$ 2: for i = n - 2 down to 0 do 3: $b \leftarrow k_i$; $\mathbf{R}_{1-b} \leftarrow \mathbf{R}_{1-b} + \mathbf{R}_b$ 4: $\mathbf{R}_b \leftarrow 2\mathbf{R}_b$ 5: end for 6: return \mathbf{R}_0

 $(2\textbf{\textit{P}},\textbf{\textit{P}}')=\text{DBLU}(\textbf{\textit{P}})$ where $\textbf{\textit{P}}'\sim\textbf{\textit{P}}$ and $\text{Z}(\textbf{\textit{P}}')=\text{Z}(2\textbf{\textit{P}})$ Cost: 1M+5S

Algorithm 5 Montgomery ladder with co-Z formulæInput: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ with $k_{n-1} = 1$ Output: Q = kP1: $R_0 \leftarrow P$; $(R_1, R_0) \leftarrow \text{DBLU}(R_0)$ 2: for i = n-2 down to 0 do3: $b \leftarrow k_i$; $R_{1-b} \leftarrow R_{1-b} + R_b$ 4: $R_b \leftarrow 2R_b$ 5: end for6: return R_0

$$T \leftarrow R_b - R_{1-b}$$

$$R_{1-b} \leftarrow R_b + R_{1-b}; R_b \leftarrow R_{1-b} + T (= 2R_b)$$

Algorithm 5 Montgomery ladder with co-Z formulæ Input: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ with $k_{n-1} = 1$ Output: Q = kP1: $R_0 \leftarrow P$; $(R_1, R_0) \leftarrow \text{DBLU}(R_0)$ 2: for i = n - 2 down to 0 do 3: $b \leftarrow k_i$; $(R_{1-b}, R_b) \leftarrow \text{ZADDC}(R_b, R_{1-b})$ 4: $(R_b, R_{1-b}) \leftarrow \text{ZADDU}(R_{1-b}, R_b)$ 5: end for 6: return R_0

$$T \leftarrow R_b - R_{1-b}$$

$$R_{1-b} \leftarrow R_b + R_{1-b}; R_b \leftarrow R_{1-b} + T (= 2R_b)$$

Algorithm 5 Montgomery ladder with co-Z formulæInput: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \ldots, k_0)_2 \in \mathbb{N}$ with $k_{n-1} = 1$ Output: Q = kP1: $R_0 \leftarrow P$; $(R_1, R_0) \leftarrow \text{DBLU}(R_0)$ 2: for i = n - 2 down to 0 do3: $b \leftarrow k_i$; $(R_{1-b}, R_b) \leftarrow \text{ZADDC}(R_b, R_{1-b})$ 4: $(R_b, R_{1-b}) \leftarrow \text{ZADDU}(R_{1-b}, R_b)$ 5: end for6: return R_0

Cost per bit: $(6M+3S) + (5M+2S) = \frac{11M+5S}{5}$

Algorithm 6 Joye's double-add with co-Z formulæ Input: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ with $k_0 = 1$ Output: Q = kP1: $R_0 \leftarrow O$; $R_1 \leftarrow P$ 2: for i = 0 to n - 1 do 3: $b \leftarrow k_i$; 4: $R_{1-b} \leftarrow 2R_{1-b} + R_b$ 5: end for 6: return R_0

Algorithm 6 Joye's double-add with co-Z formulæ Input: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ with $k_0 = 1$ Output: Q = kP1: $R_0 \leftarrow P$; $R_1 \leftarrow P$ 2: for i = 1 to n - 1 do 3: $b \leftarrow k_i$; 4: $R_{1-b} \leftarrow 2R_{1-b} + R_b$ 5: end for 6: return R_0

 R_0 and R_1 now have the same Z-coordinate but are not different (!) \implies start for-loop at i = 2

Algorithm 6 Joye's double-add with co-Z formulæ Input: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ with $k_0 = 1$ Output: Q = kP1: $b \leftarrow k_1$; $R_b \leftarrow P$; $(R_{1-b}, R_b) \leftarrow \text{TPLU}(R_b)$ 2: for i = 2 to n - 1 do 3: $b \leftarrow k_i$; 4: $R_{1-b} \leftarrow 2R_{1-b} + R_b$ 5: end for

6: return **R**₀

(3P,P')=TPLU(P) where $\textit{P'}\sim\textit{P}$ and Z(P')=Z(3P) Cost: 6M+7S

Algorithm 6 Joye's double-add with co-Z formulæ Input: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ with $k_0 = 1$ Output: Q = kP1: $b \leftarrow k_1$; $R_b \leftarrow P$; $(R_{1-b}, R_b) \leftarrow \text{TPLU}(R_b)$ 2: for i = 2 to n - 1 do 3: $b \leftarrow k_i$; 4: $R_{1-b} \leftarrow 2R_{1-b} + R_b$ 5: end for 6: return R_0

Can be rewritten as $T \leftarrow R_{1-b} + R_b$; $R_{1-b} \leftarrow T + R_{1-b}$

Algorithm 6 Joye's double-add with co-Z formulæ Input: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ with $k_0 = 1$ Output: Q = kP1: $b \leftarrow k_1$; $R_b \leftarrow P$; $(R_{1-b}, R_b) \leftarrow \text{TPLU}(R_b)$ 2: for i = 2 to n - 1 do 3: $b \leftarrow k_i$; $T \leftarrow R_{1-b} + R_b$ 4: $R_{1-b} \leftarrow T + R_{1-b}$ 5: end for 6: return R_0

 $(\mathbf{T}, \mathbf{R_{1-b}}) \leftarrow \mathsf{ZADDU}(\mathbf{R_{1-b}}, \mathbf{R_b}); \ (\mathbf{R_{1-b}}, \mathbf{T}) \leftarrow \mathsf{ZADDU}(\mathbf{T}, \mathbf{R_{1-b}}) \\ + \text{update of } \mathbf{R_b} \quad (\text{cost: 3M})$

Algorithm 6 Joye's double-add with co-Z formulæ Input: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ with $k_0 = 1$ Output: Q = kP1: $b \leftarrow k_1$; $R_b \leftarrow P$; $(R_{1-b}, R_b) \leftarrow \text{TPLU}(R_b)$ 2: for i = 2 to n - 1 do 3: $b \leftarrow k_i$; $T \leftarrow R_{1-b} + R_b$ 4: $R_{1-b} \leftarrow T + R_{1-b}$ 5: end for 6: return R_0

 $(T, R_{1-b}) \leftarrow \mathsf{ZADDU}(R_{1-b}, R_b); \ (R_{1-b}, R_b) \leftarrow \mathsf{ZADDC}(T, R_{1-b})$ since $T - R_{1-b} = R_b$

Algorithm 6 Joye's double-add with co-Z formulæ Input: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ with $k_0 = 1$ Output: Q = kP1: $b \leftarrow k_1$; $R_b \leftarrow P$; $(R_{1-b}, R_b) \leftarrow \text{TPLU}(R_b)$ 2: for i = 2 to n - 1 do 3: $b \leftarrow k_i$; $(R_b, R_{1-b}) \leftarrow \text{ZADDU}(R_{1-b}, R_b)$ 4: $(R_{1-b}, R_b) \leftarrow \text{ZADDC}(R_b, R_{1-b})$ 5: end for 6: return R_0

 $(T, R_{1-b}) \leftarrow \mathsf{ZADDU}(R_{1-b}, R_b); \ (R_{1-b}, R_b) \leftarrow \mathsf{ZADDC}(T, R_{1-b})$ since $T - R_{1-b} = R_b$

Algorithm 6 Joye's double-add with co-Z formulæInput: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ with $k_0 = 1$ Output: Q = kP1: $b \leftarrow k_1$; $R_b \leftarrow P$; $(R_{1-b}, R_b) \leftarrow \text{TPLU}(R_b)$ 2: for i = 2 to n - 1 do3: $b \leftarrow k_i$; $(R_b, R_{1-b}) \leftarrow \text{ZADDU}(R_{1-b}, R_b)$ 4: $(R_{1-b}, R_b) \leftarrow \text{ZADDC}(R_b, R_{1-b})$ 5: end for6: return R_0

Cost per bit: (5M+2S) + (6M+3S) = 11M+5S

Point Doubling-Addition

Point doubling-addition evaluates: $\mathbf{R} \leftarrow 2\mathbf{P} + \mathbf{Q}$ $\mathbf{T} \leftarrow \mathbf{P} + \mathbf{Q}$ followed by $\begin{cases} \mathbf{R} \leftarrow \mathbf{T} + \mathbf{P} \\ \mathbf{Q} \leftarrow \mathbf{T} - \mathbf{P} \end{cases}$ $(\mathbf{T}, \mathbf{P}) \leftarrow \text{ZADDU}(\mathbf{P}, \mathbf{Q}); \quad (\mathbf{R}, \mathbf{Q}) \leftarrow \text{ZADDC}(\mathbf{T}, \mathbf{P})$ cost: 11M + 5S

Combined operation

Co-Z point doubling-addition with update

 $(\textit{\textbf{R}}, \textit{\textbf{Q}}) \gets \mathsf{ZDAU}(\textit{\textbf{P}}, \textit{\textbf{Q}})$

trades 2M against 2S
 cost: <u>9M + 7S</u>

Algorithm 7 Joye's double-add with co-Z formulæInput: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ with $k_0 = 1$ Output: Q = kP1: $b \leftarrow k_1$; $R_b \leftarrow P$; $(R_{1-b}, R_b) \leftarrow \text{TPLU}(R_b)$ 2: for i = 2 to n - 1 do3: $b \leftarrow k_i$ 4: $(R_{1-b}, R_b) \leftarrow \text{ZDAU}(R_{1-b}, R_b)$ 5: end for6: return R_0

- Cost per bit: 9M + 7S
- (Similar saving applies to Montgomery ladder)

Outline

- Arithmetic on Elliptic Curves
 Jacobian coordinates
 Co-Z point addition
 - Co-Z point addition
- 2 Binary Scalar Multiplication Algorithms
 Left-to-right methods
 Right-to-left methods
- **3** New Implementations
 - Binary ladders with co-Z trick
 - Point double-add operation
- 4 Discussion
 - Performance analysis
 - Security analysis

5 Conclusion

Performance: Addition Formulæ

Operation	Notation	Cost
Point addition:		
 general addition 	ADD	11M + 5S
 co-Z addition 	ZADD	5M + 2S
 co-Z addition with update 	ZADDU	<u>5M + 2S</u>
 general conjugate addition 	ADDC	12M + 6S
 – conjugate co-Z addition 	ZADDC	<u>$6M + 3S$</u>
Point doubling-addition:		
 general version 	DA	13M + 8S
 mixed version 	mDA	11M + 7S
 co-Z version with update 	ZDAU	<u>9M + 7S</u>

Comparison

very efficient co-Z formulæ

Performance: Scalar Multiplication

Algorithm	Operations	Cost per bit
Joye's double-add:		
 basic version 	DA	13M + 8S
 – co-Z version 	ZDAU	<u>9M + 7S</u>
Montgomery ladder:		
 basic version 	DBL and ADD	14M + 10S
 X-only version 	XDBL and XADD	$9M + 7S^{\dagger}$
- co-Z version	ZDAU'	<u>9M + 7S</u>

 † assuming that multiplications by *a* have negligible cost

Comparison

- co-Z versions are always faster
- cost is independent of the curve parameters

Latest news: cost reduced to 8M + 6S with new ZACAU' op.

Performance: Scalar Multiplication

Algorithm	Operations	Cost per bit
Joye's double-add:		
 basic version 	DA	13M + 8S
 – co-Z version 	ZDAU	<u>9M + 7S</u>
Montgomery ladder:		
 basic version 	DBL and ADD	14M + 10S
 X-only version 	XDBL and XADD	$9M + 7S^{\dagger}$
– co-Z version	ZACAU'	<u>8M + 6S</u>

 † assuming that multiplications by *a* have negligible cost

Comparison

- co-Z versions are always faster
- cost is independent of the curve parameters
- **Latest news: cost reduced to 8M + 6S with new ZACAU' op.**

Security Analysis

- Proposed co-Z implementations are built on highly regular scalar multiplication algorithms
 - inherit similar security features
 - naturally resistant against
 - SPA-type attacks
 - safe-error attacks
- Can be combined with existing DPA-type countermeasures
- Output complete point representation
 - possible to check redundant relations
 - e.g., output point belongs to the curve
 - useful feature against (regular) fault attacks

Outline

- Arithmetic on Elliptic Curves
 Jacobian coordinates
 Co. 7 point addition
 - Co-Z point addition
- 2 Binary Scalar Multiplication Algorithms
 Left-to-right methods
 Right-to-left methods
- **3** New Implementations
 - Binary ladders with co-Z trick
 - Point double-add operation
- 4 Discussion
 - Performance analysis
 - Security analysis

5 Conclusion

Summary

- New strategies for evaluating scalar multiplications on elliptic curves using co-Z arithmetic
 - nicely combine with certain binary ladders
- Efficient co-Z conjugate point addition formula (as well as other companion co-Z formulæ)
 - require 7 or 8 registers
 - suitable for memory constrained devices

Full version available at http://eprint.iacr.org/2010/309

Acknowledgments

We would like to thank

- Jean-Luc Beuchat
- Francisco Rodriguez Henriquez
- Patrick Longa
- Francesco Sica
- Alexandre Venelli
- An anonymous referee

