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Elliptic Curve Cryptography

Invented [independently] by Neil Koblitz and Victor Miller in
1985

Useful for key exchange, encryption and digital signature
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Scalar Multiplication

Definition
Given scalar k and a point PPP, compute [k]PPP = PPP+PPP+ · · ·+PPP︸ ︷︷ ︸

k times

ECDLP Given PPP and QQQ = [k]PPP, recover k
no subexponential algorithms are known to solve the ECDLP
(in the general case)
smaller key sizes can be used

Bit security
80 112 128 192 256

ECC 160 224 256 384 512
RSA 1024 2048 3072 8192 15360
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This Talk

Goal
Implementation of the Montgomery ladder and of its dual version
using efficient co-Z formulæ

binary scalar multiplication algorithms

suitable for memory-constrained devices

4 / 22



Outline

1 Arithmetic on Elliptic Curves
Jacobian coordinates
Co-Z point addition

2 Binary Scalar Multiplication Algorithms
Left-to-right methods
Right-to-left methods

3 New Implementations
Binary ladders with co-Z trick
Point double-add operation

4 Discussion
Performance analysis
Security analysis

5 Conclusion
5 / 22



Outline

1 Arithmetic on Elliptic Curves
Jacobian coordinates
Co-Z point addition

2 Binary Scalar Multiplication Algorithms
Left-to-right methods
Right-to-left methods

3 New Implementations
Binary ladders with co-Z trick
Point double-add operation

4 Discussion
Performance analysis
Security analysis

5 Conclusion



Elliptic Curves

Weierstraß equation (affine coordinates)

Let E : y2 = x3 +ax+b define over Fq (char 6= 2,3) with discriminant
∆ =−16(4a3 + 27b2) 6= 0
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Jacobian Coordinates

To avoid computation of inverse in Fq

affine point (x,y) → projective point (X : Y : Z) such that
x = X/Z2 and y = Y/Z3

Weierstraß equation (projective Jacobian coordinates)

Let E : Y2 = X3 +aXZ4 +bZ6 define over Fq (char 6= 2,3) with
discriminant ∆ =−16(4a3 + 27b2) 6= 0

Point at infinity OOO = (1 : 1 : 0)

If PPP = (X1 : Y1 : Z1) ∈ E then −PPP = (X1 :−Y1 : Z1)
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Co-Z Point Addition (ZADD)

Introduced by Meloni [WAIFI 2007]

Addition of two distinct points with the same Z-coordinate

Co-Z point addition

Let PPP = (X1 : Y1 : Z) and QQQ = (X2 : Y2 : Z). Then PPP+QQQ = (X3 : Y3 : Z3)
where

X3 = D−W1−W2, Y3 = (Y1−Y2)(W1−X3)−A1, Z3 = Z(X1−X2)

with A1 = Y1(W1−W2), W1 = X1C, W2 = X2C, C = (X1−X2)2 and
D = (Y1−Y2)2

Cost of ZADD: 5M + 2S
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Co-Z Point Addition with Update (ZADDU)

Main advantage of Meloni’s addition

Equivalent representation of PPP

Evaluation of RRR = ZADD(PPP,QQQ) yields for free

P′P′P′ =
(
X1(X1−X2)2 : Y1(X1−X2)3 : Z3

)
= (W1 : A1 : Z3)∼ PPP

that is, Z(P′P′P′) = Z(RRR)

Notation: (RRR,P′P′P′) = ZADDU(PPP,QQQ)

Cost of ZADDU: 5M + 2S
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Left-to-Right Methods

Algorithm 1 Left-to-right binary method

Input: PPP ∈ E(Fq) and k= (kn−1, . . . ,k0)2 ∈ N
Output: QQQ = kPPP

1: R0R0R0←OOO; R1R1R1← PPP
2: for i= n−1 down to 0 do
3: R0R0R0← 2R0R0R0
4: if (ki = 1) then R0R0R0← R0R0R0 +R1R1R1
5: end for
6: return R0R0R0

Subject to SPA-type attacks
Inserting dummy addition
prevents SPA

subject to safe-error
attacks

Algorithm 2 Montgomery ladder

Input: PPP ∈ E(Fq) and k= (kn−1, . . . ,k0)2 ∈ N
Output: QQQ = kPPP

1: R0R0R0←OOO; R1R1R1← PPP
2: for i= n−1 down to 0 do
3: b← ki; R1−bR1−bR1−b← R1−bR1−bR1−b+RbRbRb
4: RbRbRb← 2RbRbRb
5: end for
6: return R0R0R0

Regular structure, no dummy
operations

Naturally resistant against
SPA and safe-error attacks

2 registers
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Right-to-Left Methods

Algorithm 3 Right-to-left binary method

Input: PPP ∈ E(Fq) and k= (kn−1, . . . ,k0)2 ∈ N
Output: QQQ = kPPP

1: R0R0R0←OOO; R1R1R1← PPP
2: for i= 0 to n−1 do
3: if (ki = 1) then R0R0R0← R0R0R0 +R1R1R1
4: R1R1R1← 2R1R1R1
5: end for
6: return R0R0R0

Idem left-to-right method

(SPA-type attacks, safe-error
attacks)

Algorithm 4 Joye’s double-add

Input: PPP ∈ E(Fq) and k= (kn−1, . . . ,k0)2 ∈ N
Output: QQQ = kPPP

1: R0R0R0←OOO; R1R1R1← PPP
2: for i= 0 to n−1 do
3: b← ki
4: R1−bR1−bR1−b← 2R1−bR1−bR1−b+RbRbRb
5: end for
6: return R0R0R0

Idem Montgomery ladder

(regular structure, no dummy
operations, 2 registers)
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Conjugate co-Z Point Addition (ZADDC)

New co-Z point operation
using caching techniques

Conjugate co-Z point addition

From −QQQ = (X2 :−Y2 : Z2), evaluation of RRR = ZADD(PPP,QQQ) allows one
to get SSS := PPP−QQQ = (X3,Y3,Z3) where

X3 = (Y1 +Y2)2−W1−W2, Y3 = (Y1 +Y2)(W1−X3)

with an additional cost of 1M + 1S

Notation: (PPP+QQQ ,PPP−QQQ) = ZADDC(PPP,QQQ)

Total cost of ZADDC: 6M + 3S
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Left-to-Right Binary Ladder With co-Z Trick

Algorithm 5 Montgomery ladder with co-Z formulæ
Input: PPP ∈ E(Fq) and k = (kn−1, . . . ,k0)2 ∈ N with kn−1 = 1
Output: QQQ = kPPP

1: R0R0R0←OOO; R1R1R1← PPP
2: for i = n−1 down to 0 do
3: b← ki; R1−bR1−bR1−b← R1−bR1−bR1−b +RbRbRb
4: RbRbRb← 2RbRbRb
5: end for
6: return R0R0R0
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(2PPP,P′P′P′) = DBLU(PPP) where P′P′P′ ∼ PPP and Z(P′P′P′) = Z(2PPP)
Cost: 1M + 5S
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Right-to-Left Binary Ladder With co-Z Trick

Algorithm 6 Joye’s double-add with co-Z formulæ
Input: PPP ∈ E(Fq) and k = (kn−1, . . . ,k0)2 ∈ N with k0 = 1
Output: QQQ = kPPP

1: R0R0R0←OOO; R1R1R1← PPP
2: for i = 0 to n−1 do
3: b← ki;
4: R1−bR1−bR1−b← 2R1−bR1−bR1−b +RbRbRb
5: end for
6: return R0R0R0
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R0R0R0 and R1R1R1 now have the same Z-coordinate but are not different (!)
=⇒ start for-loop at i = 2
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Right-to-Left Binary Ladder With co-Z Trick
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5: end for
6: return R0R0R0

(3PPP,P′P′P′) = TPLU(PPP) where P′P′P′ ∼ PPP and Z(P′P′P′) = Z(3PPP)
Cost: 6M + 7S
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5: end for
6: return R0R0R0

Can be rewritten as TTT← R1−bR1−bR1−b +RbRbRb; R1−bR1−bR1−b← TTT +R1−bR1−bR1−b

14 / 22



Right-to-Left Binary Ladder With co-Z Trick
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+ update of RbRbRb (cost: 3M)
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Point Doubling-Addition

Point doubling-addition evaluates: RRR← 2PPP+QQQ

TTT← PPP+QQQ followed by

{
RRR← TTT +PPP
QQQ ← TTT−PPP

(TTT,PPP)← ZADDU(PPP,QQQ); (RRR,QQQ)← ZADDC(TTT,PPP)
cost: 11M + 5S

Combined operation

Co-Z point doubling-addition with update

(RRR,QQQ)← ZDAU(PPP,QQQ)

trades 2M against 2S
cost: 9M + 7S
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Application

Algorithm 7 Joye’s double-add with co-Z formulæ
Input: PPP ∈ E(Fq) and k = (kn−1, . . . ,k0)2 ∈ N with k0 = 1
Output: QQQ = kPPP

1: b← k1; RbRbRb← PPP; (R1−bR1−bR1−b,RbRbRb)← TPLU(RbRbRb)
2: for i = 2 to n−1 do
3: b← ki
4: (R1−bR1−bR1−b,RbRbRb)← ZDAU(R1−bR1−bR1−b,RbRbRb)
5: end for
6: return R0R0R0

Cost per bit: 9M + 7S

(Similar saving applies to Montgomery ladder)
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Performance: Addition Formulæ

Operation Notation Cost

Point addition:
− general addition ADD 11M + 5S
− co-Z addition ZADD 5M + 2S
− co-Z addition with update ZADDU 5M + 2S
− general conjugate addition ADDC 12M + 6S
− conjugate co-Z addition ZADDC 6M + 3S

Point doubling-addition:
− general version DA 13M + 8S
− mixed version mDA 11M + 7S
− co-Z version with update ZDAU 9M + 7S

Comparison
very efficient co-Z formulæ
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Performance: Scalar Multiplication

Algorithm Operations Cost per bit

Joye’s double-add:
− basic version DA 13M + 8S
− co-Z version ZDAU 9M + 7S

Montgomery ladder:
− basic version DBL and ADD 14M + 10S
− X-only version XDBL and XADD 9M + 7S †

− co-Z version ZDAU′ 9M + 7S
† assuming that multiplications by a have negligible cost

Comparison
co-Z versions are always faster
cost is independent of the curve parameters

Latest news: cost reduced to 8M + 6S with new ZACAU′ op.
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Security Analysis

Proposed co-Z implementations are built on highly regular
scalar multiplication algorithms

inherit similar security features
naturally resistant against

SPA-type attacks
safe-error attacks

Can be combined with existing DPA-type countermeasures
Output complete point representation

possible to check redundant relations
e.g., output point belongs to the curve

useful feature against (regular) fault attacks
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Summary

New strategies for evaluating scalar multiplications on elliptic
curves using co-Z arithmetic

nicely combine with certain binary ladders
Efficient co-Z conjugate point addition formula (as well as
other companion co-Z formulæ)

require 7 or 8 registers
suitable for memory constrained devices

Full version available at http://eprint.iacr.org/2010/309
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