

Higher-order Masking and Shuffling for Software Implementations of Block Ciphers

Matthieu Rivain, Emmanuel Prouff and Julien Doget

Oberthur Technologies, University of Luxembourg, UCL and Paris 8

ecurity Solutions for a Changing World

SCA and Software countermeasures

 Algorithm Processing leaks information about the manipulated data

- Algorithm Processing leaks information about the manipulated data
- Side Channel Analyses (SCA) exploit this leakage: CPA [BrierClavierOlivier04], MIA [GierlichsBatinaTuylsPreneel08], Template Attacks [ChariRaoRohatgi02].

- Algorithm Processing leaks information about the manipulated data
- Side Channel Analyses (SCA) exploit this leakage: CPA [BrierClavierOlivier04], MIA [GierlichsBatinaTuylsPreneel08], Template Attacks [ChariRaoRohatgi02].
- dth order SCA use d different times per trace [Messerges00].

- Algorithm Processing leaks information about the manipulated data
- Side Channel Analyses (SCA) exploit this leakage: CPA [BrierClavierOlivier04], MIA [GierlichsBatinaTuylsPreneel08], Template Attacks [ChariRaoRohatgi02].
- dth order SCA use d different times per trace [Messerges00].

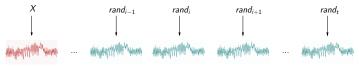
- Algorithm Processing leaks information about the manipulated data
- Side Channel Analyses (SCA) exploit this leakage: CPA [BrierClavierOlivier04], MIA [GierlichsBatinaTuylsPreneel08], Template Attacks [ChariRaoRohatgi02].
- dth order SCA use d different times per trace [Messerges00].
- Software Countermeasures (CM) against d^{th} order SCA

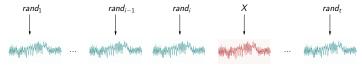
- Algorithm Processing leaks information about the manipulated data
- Side Channel Analyses (SCA) exploit this leakage: CPA [BrierClavierOlivier04], MIA [GierlichsBatinaTuylsPreneel08], Template Attacks [ChariRaoRohatgi02].
- *d*th order SCA use *d* different times per trace [Messerges00].
- Software Countermeasures (CM) against d^{th} order SCA
 - Masking [ChariJultaRaoRohatgi99,GoubinPatarin99].

- Algorithm Processing leaks information about the manipulated data
- Side Channel Analyses (SCA) exploit this leakage: CPA [BrierClavierOlivier04], MIA [GierlichsBatinaTuylsPreneel08], Template Attacks [ChariRaoRohatgi02].
- *d*th order SCA use *d* different times per trace [Messerges00].
- Software Countermeasures (CM) against d^{th} order SCA
 - **Masking** [ChariJultaRaoRohatgi99,GoubinPatarin99].
 - **Shuffling** [HerbstOswaldMangard06].

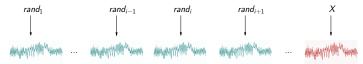
Shuffling Method

• Core Idea: spread the sensitive signal related to X over t different signals S_1, \ldots, S_t leaking at different times.


- Core Idea: spread the sensitive signal related to X over t different signals S_1, \ldots, S_t leaking at different times.
- Select an index at random:


- Core Idea: spread the sensitive signal related to X over t different signals S_1, \ldots, S_t leaking at different times.
- Select an index at random:

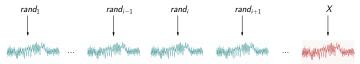
- Core Idea: spread the sensitive signal related to X over t different signals S_1, \ldots, S_t leaking at different times.
- Select an index at random:


- Core Idea: spread the sensitive signal related to X over t different signals S_1, \ldots, S_t leaking at different times.
- Select an index at random:

- Core Idea: spread the sensitive signal related to X over t different signals S_1, \ldots, S_t leaking at different times.
- Select an index at random:

Impact: decreases the SNR of the instantaneous leakage on X by a factor of t

- Core Idea: spread the sensitive signal related to X over t different signals S_1, \ldots, S_t leaking at different times.
- Select an index at random:



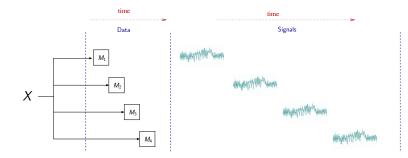
- Impact: decreases the SNR of the instantaneous leakage on X by a factor of t
- Asset: can be straightforwardly adapted to protect any operation Op on X.

- Core Idea: spread the sensitive signal related to X over t different signals S_1, \ldots, S_t leaking at different times.
- Select an index at random:

- Impact: decreases the SNR of the instantaneous leakage on X by a factor of t
- Asset: can be straightforwardly adapted to protect any operation Op on X.
- Issue: t must be very large to have satisfying security.

Masking Method

• Core idea: randomly split X into d + 1 shares $M_0, ..., M_d$ s.t


$$M_0\oplus\cdots\oplus M_d=X$$
.

• Core idea: randomly split X into d + 1 shares $M_0, ..., M_d$ s.t

 $M_0\oplus\cdots\oplus M_d=X$.

• Core idea: randomly split X into d + 1 shares M_0, \dots, M_d s.t

$$M_0\oplus\cdots\oplus M_d=X$$
.

Impact: complexity of d^{th} order SCA grows exponentially with d [CJRR99].

• Core idea: randomly split X into d + 1 shares $M_0, ..., M_d$ s.t

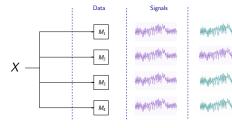
$$M_0\oplus\cdots\oplus M_d=X$$
.

- Impact: complexity of dth order SCA grows exponentially with d [CJRR99].
- Asset: dealing with the propagation of the masks when performing Op(X) is easy when Op is linear.

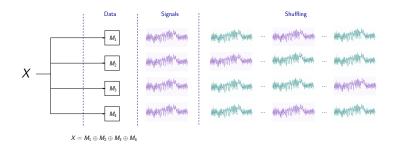
• Core idea: randomly split X into d + 1 shares $M_0, ..., M_d$ s.t

$$M_0\oplus\cdots\oplus M_d=X$$
.

- Impact: complexity of dth order SCA grows exponentially with d [CJRR99].
- Asset: dealing with the propagation of the masks when performing Op(X) is easy when Op is linear.
- Issue: even for small d, dealing with the mask propagation is an issue when Op = S-box.
 - ► Costly solutions exist only for d ≤ 3 [SchramPaar06,RivainDottaxProuff08b].



- Core Idea: combine Masking and Shuffling.
- First Proposal: combine 1st-order masking with shuffling [HOM06,TillichHerbstMangard07].
- Analyses in [THM07] and [TillichHerbst08] show that the resulting security is not good.
- Possible Improvement: involve higher-order masking [this paper]


 $X = M_1 \oplus M_2 \oplus M_3 \oplus M_4$

Shuffling

- an partitient ...
- ... Any Milling was
- delige of the the twee
- any approximation

- Although Anna
- and all the second
- all year that the second
- and the second second

Raises two issues

- 1. How to combine higher-order masking with shuffling?
- 2. How to quantify the security of the resulting scheme?

Advanced SCA have been defined to target each CM *d*th-order Masking: HO-SCA [Mes00]

- *d*th-order Masking: HO-SCA [Mes00]
- tth-order Shuffling: Integrated Attacks

[ClavierCoronDabbous00]

- *d*th-order Masking: HO-SCA [Mes00]
- tth-order Shuffling: Integrated Attacks [ClavierCoronDabbous00]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA [THM07,this paper]

- *d*th-order Masking: HO-SCA [Mes00]
- tth-order Shuffling: Integrated Attacks [ClavierCoronDabbous00]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA [THM07,this paper]
- Note: they all follow the same outlines.

- *d*th-order Masking: HO-SCA [Mes00]
- tth-order Shuffling: Integrated Attacks [ClavierCoronDabbous00]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA [THM07,this paper]

Note: they all follow the same outlines.

1. Input: set of signals $(S_i)_i$ related to a sensitive data X

- *d*th-order Masking: HO-SCA [Mes00]
- tth-order Shuffling: Integrated Attacks [ClavierCoronDabbous00]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA [THM07,this paper]

Note: they all follow the same outlines.

- 1. Input: set of signals $(S_i)_i$ related to a sensitive data X
- 2. Process a function f to the S_i 's

- *d*th-order Masking: HO-SCA [Mes00]
- tth-order Shuffling: Integrated Attacks [ClavierCoronDabbous00]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA [THM07,this paper]

Note: they all follow the same outlines.

- 1. Input: set of signals $(S_i)_i$ related to a sensitive data X
- 2. Process a function f to the S_i 's
- 3. For every hypothesis \tilde{X} on X, estimate

$$\rho_{\tilde{X}} = |\rho(\operatorname{H}(\tilde{X}), f((S_i)_i))|$$
.

Advanced SCA have been defined to target each CM

- *d*th-order Masking: HO-SCA [Mes00]
- tth-order Shuffling: Integrated Attacks [ClavierCoronDabbous00]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA [THM07,this paper]

Note: they all follow the same outlines.

- 1. Input: set of signals $(S_i)_i$ related to a sensitive data X
- 2. Process a function f to the S_i 's
- 3. For every hypothesis \tilde{X} on X, estimate

$$\rho_{\tilde{X}} = |\rho(\operatorname{H}(\tilde{X}), f((S_i)_i))|$$
.

4. Select the hypothesis that maximizes $\rho_{\tilde{\chi}}$.

Advanced SCA have been defined to target each CM

- *d*th-order Masking: HO-SCA [Mes00]
- tth-order Shuffling: Integrated Attacks [ClavierCoronDabbous00]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA [THM07,this paper]

Note: they all follow the same outlines.

- 1. Input: set of signals $(S_i)_i$ related to a sensitive data X
- 2. Process a function f to the S_i 's
- 3. For every hypothesis \tilde{X} on X, estimate

$$\rho_{\tilde{X}} = |\rho(\operatorname{H}(\tilde{X}), f((S_i)_i))|$$
.

4. Select the hypothesis that maximizes $\rho_{\tilde{\chi}}$.

Single difference: the function f.

Goal: Investigate relation between d and t and attack efficiencies.

Goal: Investigate relation between d and t and attack efficiencies. Need a few assumptions:

Goal: Investigate relation between d and t and attack efficiencies. Need a few assumptions:

The correlation coefficient ρ_X corresponding to the correct hypothesis is a sound estimator of the attack efficiency [MangardOswaldPopp06,ProuffRivainBévan09,SP06]

Goal: Investigate relation between d and t and attack efficiencies. Need a few assumptions:

- The correlation coefficient ρ_X corresponding to the correct hypothesis is a sound estimator of the attack efficiency [MangardOswaldPopp06,ProuffRivainBévan09,SP06]
- [Hamming Weight Leakage Model] the leakage signal S_i produced by the processing of a variable D_i satisfies:

$$S_i = \delta_i + eta_i \cdot \operatorname{H}(D_i) + N_i$$
 with $N_i \sim \mathcal{N}(0,\sigma)$.

HO-SCA against Higher Order Masking

Context: a sensitive variable X is split into d + 1 shares M_0 , ..., M_d

Context: a sensitive variable X is split into d + 1 shares $M_0, ..., M_d$ Notation: S_i is the signal related to M_i .

Context: a sensitive variable X is split into d + 1 shares $M_0, ..., M_d$ Notation: S_i is the signal related to M_i .

Function *f* is a normalized product:

$$f(S_0,\cdots,S_d)=C_d(X)=\prod_{i=0}^d \left(S_i-\operatorname{E}\left[S_i\right]\right) \ .$$

Context: a sensitive variable X is split into d + 1 shares $M_0, ..., M_d$ Notation: S_i is the signal related to M_i .

Function f is a normalized product:

$$f(S_0,\cdots,S_d)=C_d(X)=\prod_{i=0}^d \left(S_i-\operatorname{E}\left[S_i\right]\right) \ .$$

In the Hamming Weight Model, the efficiency satisfies:

$$\rho_X = \frac{cst_1}{\left(\sqrt{1 + cst_2 \cdot \sigma^2}\right)^{d+1}} \; .$$

It is denoted by $\rho(d, \sigma)$.

Context: the signal S containing information about X is randomly spread over t different signals $S_1, ..., S_t$.

Context: the signal S containing information about X is randomly spread over t different signals $S_1, ..., S_t$.

Function *f* is an Integrated signal:

$$f(S_1,\cdots,S_t)=S_1+S_2+\ldots+S_t$$

Note: the sum always contains the term S.

Context: the signal S containing information about X is randomly spread over t different signals $S_1, ..., S_t$.

Function *f* is an Integrated signal:

$$f(S_1, \cdots, S_t) = S_1 + S_2 + ... + S_t$$

Note: the sum always contains the term S.

In the Hamming Weight Model, the efficiency satisfies:

$$\rho_X = \frac{1}{\sqrt{t}\sqrt{1 + cst_2 \cdot \sigma^2}}$$

Advanced SCA vs Masking-and-Shuffling

Context: X is split into d + 1 shares M_0 , M_1 , ..., M_d whose manipulations are randomly spread over t different times.

Context: X is split into d + 1 shares M_0 , M_1 , ..., M_d whose manipulations are randomly spread over t different times.

Function *f* is a Combined-and-Integrated Signal:

$$f((S_i)_i) = \sum_{(i_0,...,i_d) \in I} C(S_{i_0},\cdots,S_{i_d})$$
.

Note: the sum always contains the term $C_d(X)$.

Context: X is split into d + 1 shares M_0 , M_1 , ..., M_d whose manipulations are randomly spread over t different times.

Function *f* is a Combined-and-Integrated Signal:

$$f((S_i)_i) = \sum_{(i_0,...,i_d) \in I} C(S_{i_0},\cdots,S_{i_d})$$
.

Note: the sum always contains the term $C_d(X)$.

In the Hamming Weight Model, the efficiency satisfies:

$$\rho_X = \frac{1}{\sqrt{\#I}}\rho(d,\sigma) \; .$$

Iterated Block Cipher

Goal: protect block ciphers iterating round function in the form:

$$\lambda \circ \gamma [p \oplus k]],$$

- k: round key
- *p*: intermediate state of the ciphering
- γ : non-linear layer composed of S-boxes
- λ : linear layer composed of L atomic operations.

Outlines of the Scheme

• Linear Layer λ

- Linear Layer λ
 - Masking: large d (masking is efficient in linear context)

- Linear Layer λ
 - Masking: large d (masking is efficient in linear context)
 - Shuffling: small order is sufficient deterministic function of d

- Linear Layer λ
 - Masking: large d (masking is efficient in linear context)
 - Shuffling: small order is sufficient deterministic function of d

Non-linear layer γ :

- Linear Layer λ
 - Masking: large d (masking is efficient in linear context)
 - Shuffling: small order is sufficient deterministic function of d
- Non-linear layer γ:
 - Masking: small d' (masking only exist for $d' \leq 3$).

- Linear Layer λ
 - Masking: large d (masking is efficient in linear context)
 - Shuffling: small order is sufficient deterministic function of d
- Non-linear layer γ:
 - Masking: small d' (masking only exist for $d' \leq 3$).
 - Shuffling: great *t* is required.

- Linear Layer λ
 - Masking: large d (masking is efficient in linear context)
 - Shuffling: small order is sufficient deterministic function of d
- Non-linear layer γ :
 - Masking: small d' (masking only exist for $d' \leq 3$).
 - Shuffling: great t is required.
- Interface between λ and γ :

- Linear Layer λ
 - Masking: large d (masking is efficient in linear context)
 - Shuffling: small order is sufficient deterministic function of d
- Non-linear layer γ :
 - Masking: small d' (masking only exist for $d' \leq 3$).
 - Shuffling: great *t* is required.
- Interface between λ and γ :
 - ▶ Beginning of γ : convert *d*-masking of data into *d'*-masking.

- Linear Layer λ
 - Masking: large d (masking is efficient in linear context)
 - Shuffling: small order is sufficient deterministic function of d
- Non-linear layer γ :
 - Masking: small d' (masking only exist for $d' \leq 3$).
 - Shuffling: great t is required.
- Interface between λ and γ :
 - Beginning of γ : convert *d*-masking of data into *d'*-masking.
 - End of γ : convert d'-masking of data into d-masking.

Complexity

Input: block cipher specifications + implem. characteristics

Input: block cipher specifications + implem. characteristics Three security parameters:

- t: shuffling order
- d: masking order for linear layers
- *d*': masking order for S-box computations

Input: block cipher specifications + implem. characteristics Three security parameters:

- t: shuffling order
- d: masking order for linear layers
- d': masking order for S-box computations

Complexity for one round

- Precomputations (random permutations,lookup-tables): PreComp(t, d, d')
- Protected Round (layers γ and λ): RoundSec(t, d, d')
- Protected Block Cipher:

 $PreComp(t, d, d') + RoundSec(t, d, d') \times nbr$ of rounds

Security

Input: block cipher specifications + implem. characteristics

Security

Input: block cipher specifications + implem. characteristics Three complexity parameters:

- t: shuffling order
- d: masking order for linear layers
- *d*′: masking order for S-box computations

Security

Input: block cipher specifications + implem. characteristics Three complexity parameters:

- t: shuffling order
- d: masking order for linear layers
- d': masking order for S-box computations

4 attack pathes have been identified.

Targeting the tthorder shuffled dth-masking

- For γ : $\rho_1(t, d) = \frac{1}{\sqrt{t}}\rho(d, \sigma)$
- For λ (split into L sub-layers): $\rho_2(t, d') = \frac{1}{\sqrt{\binom{(d+1)\cdot L}{d+1}}}\rho(d, \sigma)$
- Targeting the tthorder shuffled d'th-masking
 - ► Target the d' shares simultaneously: $\rho_3(t, d') = \frac{1}{\sqrt{t}}\rho(d', \sigma)$

► Target 2 masked data, masked with the same sum of masks: $\rho_4(t) = \frac{1}{\sqrt{t \cdot (t-1)}} \rho(2, \sigma)$.

Fix an upper bound ρ^* [Security Bound]

- Fix an upper bound ρ^* [Security Bound]
- Generate the triplets (d, d', t) s.t.:

 $\max(\rho_1(t, d), \rho_2(t, d'), \rho_3(t, d'), \rho_4(t)) \leqslant \rho^*$. (1)


- Fix an upper bound ρ^* [Security Bound]
- Generate the triplets (d, d', t) s.t.:

$$\max(\rho_1(t, d), \rho_2(t, d'), \rho_3(t, d'), \rho_4(t)) \leqslant \rho^* .$$
 (1)

 Among the 3-tuples (d, d', t) satisfying (1), chose one that minimizes

 $PreComp(t, d, d') + RoundSec(t, d, d') \times nbr$ of rounds

Table: Optimal parameters and timings according to SNR and ρ^* .

	$\mathrm{SNR}=1$				$SNR = \frac{1}{4}$			
ρ^*	t	d	ď	timings	t	d	ď	timings
10^1	16	1	1	$3.66 imes10^4$	16	1	0	$2.94 imes10^4$
10 ⁻²	20	2	2	$6.39 imes10^4$	16	1	1	$3.66 imes10^4$
10 ⁻³	123	3	3	$3.13 imes10^5$	16	2	2	$5.75 imes10^4$
10 ⁻⁴	12208	4	3	$3.15 imes 10^7$	19	3	3	8.35×10^4

Thank you! Questions and/or Comments?

Scheme – Linear Layer

Scheme – Linear Layer

Input: $[d^{\text{th}}\text{-masking}]$ state $\gamma(p+k)$ masked with d new shares m'_i .

Input: $[d^{\text{th}}\text{-masking}]$ state $\gamma(p+k)$ masked with d new shares m'_i .

Linear layer λ : [t^{th} -shuffling and d^{th} -masking]

- Signals corresponding to shares are spread over *t* random signals.
 - Atomic operations of λ are performed for every share

Note: no need for conversion d-masking into d'-masking.

Input: $[d^{\text{th}}\text{-masking}]$ state $\gamma(p+k)$ masked with d new shares m'_i .

Linear layer λ : [tth-shuffling and dth-masking]

- Signals corresponding to shares are spread over t random signals.
 - Atomic operations of λ are performed for every share

Note: no need for conversion *d*-masking into *d'*-masking. Output: $[d^{\text{th}}\text{-masking}]$ state $[\lambda \circ \gamma](p + k)$ split into *d* shares $\lambda(m'_i)$

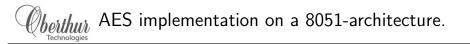


Table: Cycles Numbers for the different steps of the scheme for an AES implementation on a 8051-architecture.

T Generation	$C_T = 112 + t \left(6 + 9 \sum_{i=0}^{15} \frac{1}{t-i} \right)$				
T' Generation	${\cal C}_{{\cal T}'}=3q+2^q(15+14q)$				
Masked S-box Generation	$\mathcal{C}_{MS}=4352d'$				
Pre-computations	$\mathcal{C}_T + \mathcal{C}_{T'} + \mathcal{C}_{MS}$				
γ	$\mathcal{C}_{SL} = t(55+37d+18d')$				
Linear Layer	$\mathcal{C}_{LL}=676(d+1)$				
Protected Round	$\mathcal{C}_{SL} + \mathcal{C}_{LL}$				
Unprotected Round	432				

Complexity

Input: block cipher specifications + implem. characteristics

Complexity

Input: block cipher specifications + implem. characteristics Three security parameters:

- t: shuffling order
- *d*: masking order for linear layers
- *d*′: masking order for S-box computations

Complexity

Input: block cipher specifications + implem. characteristics Three security parameters:

- t: shuffling order
- *d*: masking order for linear layers
- *d*′: masking order for S-box computations

Complexity for one round

Rand. Gen. [Shuffling γ]	$\mathcal{C}_{\mathcal{T}}(t)$			
Rand. Gen. [Shuffling λ]	${\mathcal C}_{T'}(d)$			
Masked S-box Generation	$\mathcal{C}_{MS}(d')$			
Pre-computations	$\mathcal{C}_{\mathcal{T}}(t) + \mathcal{C}_{\mathcal{T}'}(d) + \mathcal{C}_{MS}(d')$			
γ	$\mathcal{C}_{SL}(d,d')$			
λ	$C_{LL}(d)$			
Protected Round	$\mathcal{C}_{SL}(d',d) + \mathcal{C}_{LL}(d)$			

