
eBACS:

ECRYPT Benchmarking

of Cryptographic Systems

http://bench.cr.yp.to

D. J. Bernstein

University of Illinois at Chicago

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

“I’ve finally finished

my Skein implementation!

Hmmm, how fast is it?”



eBACS:

ECRYPT Benchmarking

of Cryptographic Systems

http://bench.cr.yp.to

D. J. Bernstein

University of Illinois at Chicago

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

“I’ve finally finished

my Skein implementation!

Hmmm, how fast is it?”

Traditional answer:

“I’ll write a timing tool!

I’ll check the clock,

10000� hash 256 bytes,

check the clock again,

subtract, divide by 10000.”



eBACS:

ECRYPT Benchmarking

of Cryptographic Systems

http://bench.cr.yp.to

D. J. Bernstein

University of Illinois at Chicago

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

“I’ve finally finished

my Skein implementation!

Hmmm, how fast is it?”

Traditional answer:

“I’ll write a timing tool!

I’ll check the clock,

10000� hash 256 bytes,

check the clock again,

subtract, divide by 10000.”

Maybe more measurements:

“Oops, lots of overhead

in hashing 256 bytes.

I’ll try 4096 bytes.”



eBACS:

ECRYPT Benchmarking

of Cryptographic Systems

http://bench.cr.yp.to

D. J. Bernstein

University of Illinois at Chicago

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

“I’ve finally finished

my Skein implementation!

Hmmm, how fast is it?”

Traditional answer:

“I’ll write a timing tool!

I’ll check the clock,

10000� hash 256 bytes,

check the clock again,

subtract, divide by 10000.”

Maybe more measurements:

“Oops, lots of overhead

in hashing 256 bytes.

I’ll try 4096 bytes.”

Implementor runs tool on his

favorite hardware (or emulator).

Adds “Results” section

to implementation paper

repeating what the tool says.

Summary:

Cryptographic implementor

is the benchmark implementor

and the benchmark operator.



eBACS:

ECRYPT Benchmarking

of Cryptographic Systems

http://bench.cr.yp.to

D. J. Bernstein

University of Illinois at Chicago

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

“I’ve finally finished

my Skein implementation!

Hmmm, how fast is it?”

Traditional answer:

“I’ll write a timing tool!

I’ll check the clock,

10000� hash 256 bytes,

check the clock again,

subtract, divide by 10000.”

Maybe more measurements:

“Oops, lots of overhead

in hashing 256 bytes.

I’ll try 4096 bytes.”

Implementor runs tool on his

favorite hardware (or emulator).

Adds “Results” section

to implementation paper

repeating what the tool says.

Summary:

Cryptographic implementor

is the benchmark implementor

and the benchmark operator.



eBACS:

ECRYPT Benchmarking

of Cryptographic Systems

http://bench.cr.yp.to

D. J. Bernstein

University of Illinois at Chicago

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

“I’ve finally finished

my Skein implementation!

Hmmm, how fast is it?”

Traditional answer:

“I’ll write a timing tool!

I’ll check the clock,

10000� hash 256 bytes,

check the clock again,

subtract, divide by 10000.”

Maybe more measurements:

“Oops, lots of overhead

in hashing 256 bytes.

I’ll try 4096 bytes.”

Implementor runs tool on his

favorite hardware (or emulator).

Adds “Results” section

to implementation paper

repeating what the tool says.

Summary:

Cryptographic implementor

is the benchmark implementor

and the benchmark operator.



“I’ve finally finished

my Skein implementation!

Hmmm, how fast is it?”

Traditional answer:

“I’ll write a timing tool!

I’ll check the clock,

10000� hash 256 bytes,

check the clock again,

subtract, divide by 10000.”

Maybe more measurements:

“Oops, lots of overhead

in hashing 256 bytes.

I’ll try 4096 bytes.”

Implementor runs tool on his

favorite hardware (or emulator).

Adds “Results” section

to implementation paper

repeating what the tool says.

Summary:

Cryptographic implementor

is the benchmark implementor

and the benchmark operator.



“I’ve finally finished

my Skein implementation!

Hmmm, how fast is it?”

Traditional answer:

“I’ll write a timing tool!

I’ll check the clock,

10000� hash 256 bytes,

check the clock again,

subtract, divide by 10000.”

Maybe more measurements:

“Oops, lots of overhead

in hashing 256 bytes.

I’ll try 4096 bytes.”

Implementor runs tool on his

favorite hardware (or emulator).

Adds “Results” section

to implementation paper

repeating what the tool says.

Summary:

Cryptographic implementor

is the benchmark implementor

and the benchmark operator.

This pattern repeats for

every cryptographic implementor.

Hundreds (thousands?) of

separate ad-hoc timing tools

run on various hardware.



“I’ve finally finished

my Skein implementation!

Hmmm, how fast is it?”

Traditional answer:

“I’ll write a timing tool!

I’ll check the clock,

10000� hash 256 bytes,

check the clock again,

subtract, divide by 10000.”

Maybe more measurements:

“Oops, lots of overhead

in hashing 256 bytes.

I’ll try 4096 bytes.”

Implementor runs tool on his

favorite hardware (or emulator).

Adds “Results” section

to implementation paper

repeating what the tool says.

Summary:

Cryptographic implementor

is the benchmark implementor

and the benchmark operator.

This pattern repeats for

every cryptographic implementor.

Hundreds (thousands?) of

separate ad-hoc timing tools

run on various hardware.

European Union has funded

NESSIE project (2000–2003),

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

NESSIE’s performance evaluators

tuned C implementations

of many cryptographic systems,

all supporting the same API;

wrote a benchmarking toolkit;

ran the toolkit on 25 computers.

Many specific performance results:

e.g., 24 cycles/byte on P4

for 128-bit AES encryption.



“I’ve finally finished

my Skein implementation!

Hmmm, how fast is it?”

Traditional answer:

“I’ll write a timing tool!

I’ll check the clock,

10000� hash 256 bytes,

check the clock again,

subtract, divide by 10000.”

Maybe more measurements:

“Oops, lots of overhead

in hashing 256 bytes.

I’ll try 4096 bytes.”

Implementor runs tool on his

favorite hardware (or emulator).

Adds “Results” section

to implementation paper

repeating what the tool says.

Summary:

Cryptographic implementor

is the benchmark implementor

and the benchmark operator.

This pattern repeats for

every cryptographic implementor.

Hundreds (thousands?) of

separate ad-hoc timing tools

run on various hardware.

European Union has funded

NESSIE project (2000–2003),

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

NESSIE’s performance evaluators

tuned C implementations

of many cryptographic systems,

all supporting the same API;

wrote a benchmarking toolkit;

ran the toolkit on 25 computers.

Many specific performance results:

e.g., 24 cycles/byte on P4

for 128-bit AES encryption.



“I’ve finally finished

my Skein implementation!

Hmmm, how fast is it?”

Traditional answer:

“I’ll write a timing tool!

I’ll check the clock,

10000� hash 256 bytes,

check the clock again,

subtract, divide by 10000.”

Maybe more measurements:

“Oops, lots of overhead

in hashing 256 bytes.

I’ll try 4096 bytes.”

Implementor runs tool on his

favorite hardware (or emulator).

Adds “Results” section

to implementation paper

repeating what the tool says.

Summary:

Cryptographic implementor

is the benchmark implementor

and the benchmark operator.

This pattern repeats for

every cryptographic implementor.

Hundreds (thousands?) of

separate ad-hoc timing tools

run on various hardware.

European Union has funded

NESSIE project (2000–2003),

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

NESSIE’s performance evaluators

tuned C implementations

of many cryptographic systems,

all supporting the same API;

wrote a benchmarking toolkit;

ran the toolkit on 25 computers.

Many specific performance results:

e.g., 24 cycles/byte on P4

for 128-bit AES encryption.



Implementor runs tool on his

favorite hardware (or emulator).

Adds “Results” section

to implementation paper

repeating what the tool says.

Summary:

Cryptographic implementor

is the benchmark implementor

and the benchmark operator.

This pattern repeats for

every cryptographic implementor.

Hundreds (thousands?) of

separate ad-hoc timing tools

run on various hardware.

European Union has funded

NESSIE project (2000–2003),

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

NESSIE’s performance evaluators

tuned C implementations

of many cryptographic systems,

all supporting the same API;

wrote a benchmarking toolkit;

ran the toolkit on 25 computers.

Many specific performance results:

e.g., 24 cycles/byte on P4

for 128-bit AES encryption.



Implementor runs tool on his

favorite hardware (or emulator).

Adds “Results” section

to implementation paper

repeating what the tool says.

Summary:

Cryptographic implementor

is the benchmark implementor

and the benchmark operator.

This pattern repeats for

every cryptographic implementor.

Hundreds (thousands?) of

separate ad-hoc timing tools

run on various hardware.

European Union has funded

NESSIE project (2000–2003),

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

NESSIE’s performance evaluators

tuned C implementations

of many cryptographic systems,

all supporting the same API;

wrote a benchmarking toolkit;

ran the toolkit on 25 computers.

Many specific performance results:

e.g., 24 cycles/byte on P4

for 128-bit AES encryption.

ECRYPT I had five “virtual labs.”

STVL, symmetric-techniques lab,

included four working groups.

STVL WG 1, stream-cipher group,

ran eSTREAM (2004–2008).

De Cannière published

eSTREAM benchmarking toolkit.

Stream-cipher implementations

matching the benchmarking API

were contributed by designers,

published, often tuned;

benchmarked on many computers.

e.g. 18 cycles/byte on P4 for

third-party asm AES in toolkit.



Implementor runs tool on his

favorite hardware (or emulator).

Adds “Results” section

to implementation paper

repeating what the tool says.

Summary:

Cryptographic implementor

is the benchmark implementor

and the benchmark operator.

This pattern repeats for

every cryptographic implementor.

Hundreds (thousands?) of

separate ad-hoc timing tools

run on various hardware.

European Union has funded

NESSIE project (2000–2003),

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

NESSIE’s performance evaluators

tuned C implementations

of many cryptographic systems,

all supporting the same API;

wrote a benchmarking toolkit;

ran the toolkit on 25 computers.

Many specific performance results:

e.g., 24 cycles/byte on P4

for 128-bit AES encryption.

ECRYPT I had five “virtual labs.”

STVL, symmetric-techniques lab,

included four working groups.

STVL WG 1, stream-cipher group,

ran eSTREAM (2004–2008).

De Cannière published

eSTREAM benchmarking toolkit.

Stream-cipher implementations

matching the benchmarking API

were contributed by designers,

published, often tuned;

benchmarked on many computers.

e.g. 18 cycles/byte on P4 for

third-party asm AES in toolkit.



Implementor runs tool on his

favorite hardware (or emulator).

Adds “Results” section

to implementation paper

repeating what the tool says.

Summary:

Cryptographic implementor

is the benchmark implementor

and the benchmark operator.

This pattern repeats for

every cryptographic implementor.

Hundreds (thousands?) of

separate ad-hoc timing tools

run on various hardware.

European Union has funded

NESSIE project (2000–2003),

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

NESSIE’s performance evaluators

tuned C implementations

of many cryptographic systems,

all supporting the same API;

wrote a benchmarking toolkit;

ran the toolkit on 25 computers.

Many specific performance results:

e.g., 24 cycles/byte on P4

for 128-bit AES encryption.

ECRYPT I had five “virtual labs.”

STVL, symmetric-techniques lab,

included four working groups.

STVL WG 1, stream-cipher group,

ran eSTREAM (2004–2008).

De Cannière published

eSTREAM benchmarking toolkit.

Stream-cipher implementations

matching the benchmarking API

were contributed by designers,

published, often tuned;

benchmarked on many computers.

e.g. 18 cycles/byte on P4 for

third-party asm AES in toolkit.



European Union has funded

NESSIE project (2000–2003),

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

NESSIE’s performance evaluators

tuned C implementations

of many cryptographic systems,

all supporting the same API;

wrote a benchmarking toolkit;

ran the toolkit on 25 computers.

Many specific performance results:

e.g., 24 cycles/byte on P4

for 128-bit AES encryption.

ECRYPT I had five “virtual labs.”

STVL, symmetric-techniques lab,

included four working groups.

STVL WG 1, stream-cipher group,

ran eSTREAM (2004–2008).

De Cannière published

eSTREAM benchmarking toolkit.

Stream-cipher implementations

matching the benchmarking API

were contributed by designers,

published, often tuned;

benchmarked on many computers.

e.g. 18 cycles/byte on P4 for

third-party asm AES in toolkit.



European Union has funded

NESSIE project (2000–2003),

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

NESSIE’s performance evaluators

tuned C implementations

of many cryptographic systems,

all supporting the same API;

wrote a benchmarking toolkit;

ran the toolkit on 25 computers.

Many specific performance results:

e.g., 24 cycles/byte on P4

for 128-bit AES encryption.

ECRYPT I had five “virtual labs.”

STVL, symmetric-techniques lab,

included four working groups.

STVL WG 1, stream-cipher group,

ran eSTREAM (2004–2008).

De Cannière published

eSTREAM benchmarking toolkit.

Stream-cipher implementations

matching the benchmarking API

were contributed by designers,

published, often tuned;

benchmarked on many computers.

e.g. 18 cycles/byte on P4 for

third-party asm AES in toolkit.

2006: VAMPIRE, “Virtual

Application and Implementation

Lab,” started eBATS

(“ECRYPT Benchmarking

of Asymmetric Systems”),

measuring efficiency of public-key

encryption, signatures, DH.

Published a new toolkit.

Project is continuing.

Has written, collected, published

55 public-key implementations

matching the benchmarking API.

Benchmarked on many computers.



European Union has funded

NESSIE project (2000–2003),

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

NESSIE’s performance evaluators

tuned C implementations

of many cryptographic systems,

all supporting the same API;

wrote a benchmarking toolkit;

ran the toolkit on 25 computers.

Many specific performance results:

e.g., 24 cycles/byte on P4

for 128-bit AES encryption.

ECRYPT I had five “virtual labs.”

STVL, symmetric-techniques lab,

included four working groups.

STVL WG 1, stream-cipher group,

ran eSTREAM (2004–2008).

De Cannière published

eSTREAM benchmarking toolkit.

Stream-cipher implementations

matching the benchmarking API

were contributed by designers,

published, often tuned;

benchmarked on many computers.

e.g. 18 cycles/byte on P4 for

third-party asm AES in toolkit.

2006: VAMPIRE, “Virtual

Application and Implementation

Lab,” started eBATS

(“ECRYPT Benchmarking

of Asymmetric Systems”),

measuring efficiency of public-key

encryption, signatures, DH.

Published a new toolkit.

Project is continuing.

Has written, collected, published

55 public-key implementations

matching the benchmarking API.

Benchmarked on many computers.



European Union has funded

NESSIE project (2000–2003),

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

NESSIE’s performance evaluators

tuned C implementations

of many cryptographic systems,

all supporting the same API;

wrote a benchmarking toolkit;

ran the toolkit on 25 computers.

Many specific performance results:

e.g., 24 cycles/byte on P4

for 128-bit AES encryption.

ECRYPT I had five “virtual labs.”

STVL, symmetric-techniques lab,

included four working groups.

STVL WG 1, stream-cipher group,

ran eSTREAM (2004–2008).

De Cannière published

eSTREAM benchmarking toolkit.

Stream-cipher implementations

matching the benchmarking API

were contributed by designers,

published, often tuned;

benchmarked on many computers.

e.g. 18 cycles/byte on P4 for

third-party asm AES in toolkit.

2006: VAMPIRE, “Virtual

Application and Implementation

Lab,” started eBATS

(“ECRYPT Benchmarking

of Asymmetric Systems”),

measuring efficiency of public-key

encryption, signatures, DH.

Published a new toolkit.

Project is continuing.

Has written, collected, published

55 public-key implementations

matching the benchmarking API.

Benchmarked on many computers.



ECRYPT I had five “virtual labs.”

STVL, symmetric-techniques lab,

included four working groups.

STVL WG 1, stream-cipher group,

ran eSTREAM (2004–2008).

De Cannière published

eSTREAM benchmarking toolkit.

Stream-cipher implementations

matching the benchmarking API

were contributed by designers,

published, often tuned;

benchmarked on many computers.

e.g. 18 cycles/byte on P4 for

third-party asm AES in toolkit.

2006: VAMPIRE, “Virtual

Application and Implementation

Lab,” started eBATS

(“ECRYPT Benchmarking

of Asymmetric Systems”),

measuring efficiency of public-key

encryption, signatures, DH.

Published a new toolkit.

Project is continuing.

Has written, collected, published

55 public-key implementations

matching the benchmarking API.

Benchmarked on many computers.



ECRYPT I had five “virtual labs.”

STVL, symmetric-techniques lab,

included four working groups.

STVL WG 1, stream-cipher group,

ran eSTREAM (2004–2008).

De Cannière published

eSTREAM benchmarking toolkit.

Stream-cipher implementations

matching the benchmarking API

were contributed by designers,

published, often tuned;

benchmarked on many computers.

e.g. 18 cycles/byte on P4 for

third-party asm AES in toolkit.

2006: VAMPIRE, “Virtual

Application and Implementation

Lab,” started eBATS

(“ECRYPT Benchmarking

of Asymmetric Systems”),

measuring efficiency of public-key

encryption, signatures, DH.

Published a new toolkit.

Project is continuing.

Has written, collected, published

55 public-key implementations

matching the benchmarking API.

Benchmarked on many computers.

2008: VAMPIRE started eBASC

(“ECRYPT Benchmarking

of Stream Ciphers”) for

post-eSTREAM benchmarks.

VAMPIRE also started eBASH

(“ECRYPT Benchmarking

of All Submitted Hashes”).

eBACS (“ECRYPT Benchmarking

of Cryptographic Systems”)

includes eBATS, eBASH, eBASC.

Continues under ECRYPT II.

New toolkit, API; coordinated

with CACE library (NaCl).

AES now 14 cycles/byte on P4.



ECRYPT I had five “virtual labs.”

STVL, symmetric-techniques lab,

included four working groups.

STVL WG 1, stream-cipher group,

ran eSTREAM (2004–2008).

De Cannière published

eSTREAM benchmarking toolkit.

Stream-cipher implementations

matching the benchmarking API

were contributed by designers,

published, often tuned;

benchmarked on many computers.

e.g. 18 cycles/byte on P4 for

third-party asm AES in toolkit.

2006: VAMPIRE, “Virtual

Application and Implementation

Lab,” started eBATS

(“ECRYPT Benchmarking

of Asymmetric Systems”),

measuring efficiency of public-key

encryption, signatures, DH.

Published a new toolkit.

Project is continuing.

Has written, collected, published

55 public-key implementations

matching the benchmarking API.

Benchmarked on many computers.

2008: VAMPIRE started eBASC

(“ECRYPT Benchmarking

of Stream Ciphers”) for

post-eSTREAM benchmarks.

VAMPIRE also started eBASH

(“ECRYPT Benchmarking

of All Submitted Hashes”).

eBACS (“ECRYPT Benchmarking

of Cryptographic Systems”)

includes eBATS, eBASH, eBASC.

Continues under ECRYPT II.

New toolkit, API; coordinated

with CACE library (NaCl).

AES now 14 cycles/byte on P4.



ECRYPT I had five “virtual labs.”

STVL, symmetric-techniques lab,

included four working groups.

STVL WG 1, stream-cipher group,

ran eSTREAM (2004–2008).

De Cannière published

eSTREAM benchmarking toolkit.

Stream-cipher implementations

matching the benchmarking API

were contributed by designers,

published, often tuned;

benchmarked on many computers.

e.g. 18 cycles/byte on P4 for

third-party asm AES in toolkit.

2006: VAMPIRE, “Virtual

Application and Implementation

Lab,” started eBATS

(“ECRYPT Benchmarking

of Asymmetric Systems”),

measuring efficiency of public-key

encryption, signatures, DH.

Published a new toolkit.

Project is continuing.

Has written, collected, published

55 public-key implementations

matching the benchmarking API.

Benchmarked on many computers.

2008: VAMPIRE started eBASC

(“ECRYPT Benchmarking

of Stream Ciphers”) for

post-eSTREAM benchmarks.

VAMPIRE also started eBASH

(“ECRYPT Benchmarking

of All Submitted Hashes”).

eBACS (“ECRYPT Benchmarking

of Cryptographic Systems”)

includes eBATS, eBASH, eBASC.

Continues under ECRYPT II.

New toolkit, API; coordinated

with CACE library (NaCl).

AES now 14 cycles/byte on P4.



2006: VAMPIRE, “Virtual

Application and Implementation

Lab,” started eBATS

(“ECRYPT Benchmarking

of Asymmetric Systems”),

measuring efficiency of public-key

encryption, signatures, DH.

Published a new toolkit.

Project is continuing.

Has written, collected, published

55 public-key implementations

matching the benchmarking API.

Benchmarked on many computers.

2008: VAMPIRE started eBASC

(“ECRYPT Benchmarking

of Stream Ciphers”) for

post-eSTREAM benchmarks.

VAMPIRE also started eBASH

(“ECRYPT Benchmarking

of All Submitted Hashes”).

eBACS (“ECRYPT Benchmarking

of Cryptographic Systems”)

includes eBATS, eBASH, eBASC.

Continues under ECRYPT II.

New toolkit, API; coordinated

with CACE library (NaCl).

AES now 14 cycles/byte on P4.



2006: VAMPIRE, “Virtual

Application and Implementation

Lab,” started eBATS

(“ECRYPT Benchmarking

of Asymmetric Systems”),

measuring efficiency of public-key

encryption, signatures, DH.

Published a new toolkit.

Project is continuing.

Has written, collected, published

55 public-key implementations

matching the benchmarking API.

Benchmarked on many computers.

2008: VAMPIRE started eBASC

(“ECRYPT Benchmarking

of Stream Ciphers”) for

post-eSTREAM benchmarks.

VAMPIRE also started eBASH

(“ECRYPT Benchmarking

of All Submitted Hashes”).

eBACS (“ECRYPT Benchmarking

of Cryptographic Systems”)

includes eBATS, eBASH, eBASC.

Continues under ECRYPT II.

New toolkit, API; coordinated

with CACE library (NaCl).

AES now 14 cycles/byte on P4.

Many advantages of eBACS

over ad-hoc benchmarking:

� >1000 compiler options.

� >100 machine-ABI pairs.

� Many message lengths.

� Very high reliability.

� Public verifiability.

� Real API, not only timing.

� Easy for implementor!

Today have 431 implementations.

Biggest disadvantage:

Report latency is high;

hard to use during development.

: : : but we’re working on this.



2006: VAMPIRE, “Virtual

Application and Implementation

Lab,” started eBATS

(“ECRYPT Benchmarking

of Asymmetric Systems”),

measuring efficiency of public-key

encryption, signatures, DH.

Published a new toolkit.

Project is continuing.

Has written, collected, published

55 public-key implementations

matching the benchmarking API.

Benchmarked on many computers.

2008: VAMPIRE started eBASC

(“ECRYPT Benchmarking

of Stream Ciphers”) for

post-eSTREAM benchmarks.

VAMPIRE also started eBASH

(“ECRYPT Benchmarking

of All Submitted Hashes”).

eBACS (“ECRYPT Benchmarking

of Cryptographic Systems”)

includes eBATS, eBASH, eBASC.

Continues under ECRYPT II.

New toolkit, API; coordinated

with CACE library (NaCl).

AES now 14 cycles/byte on P4.

Many advantages of eBACS

over ad-hoc benchmarking:

� >1000 compiler options.

� >100 machine-ABI pairs.

� Many message lengths.

� Very high reliability.

� Public verifiability.

� Real API, not only timing.

� Easy for implementor!

Today have 431 implementations.

Biggest disadvantage:

Report latency is high;

hard to use during development.

: : : but we’re working on this.



2006: VAMPIRE, “Virtual

Application and Implementation

Lab,” started eBATS

(“ECRYPT Benchmarking

of Asymmetric Systems”),

measuring efficiency of public-key

encryption, signatures, DH.

Published a new toolkit.

Project is continuing.

Has written, collected, published

55 public-key implementations

matching the benchmarking API.

Benchmarked on many computers.

2008: VAMPIRE started eBASC

(“ECRYPT Benchmarking

of Stream Ciphers”) for

post-eSTREAM benchmarks.

VAMPIRE also started eBASH

(“ECRYPT Benchmarking

of All Submitted Hashes”).

eBACS (“ECRYPT Benchmarking

of Cryptographic Systems”)

includes eBATS, eBASH, eBASC.

Continues under ECRYPT II.

New toolkit, API; coordinated

with CACE library (NaCl).

AES now 14 cycles/byte on P4.

Many advantages of eBACS

over ad-hoc benchmarking:

� >1000 compiler options.

� >100 machine-ABI pairs.

� Many message lengths.

� Very high reliability.

� Public verifiability.

� Real API, not only timing.

� Easy for implementor!

Today have 431 implementations.

Biggest disadvantage:

Report latency is high;

hard to use during development.

: : : but we’re working on this.



2008: VAMPIRE started eBASC

(“ECRYPT Benchmarking

of Stream Ciphers”) for

post-eSTREAM benchmarks.

VAMPIRE also started eBASH

(“ECRYPT Benchmarking

of All Submitted Hashes”).

eBACS (“ECRYPT Benchmarking

of Cryptographic Systems”)

includes eBATS, eBASH, eBASC.

Continues under ECRYPT II.

New toolkit, API; coordinated

with CACE library (NaCl).

AES now 14 cycles/byte on P4.

Many advantages of eBACS

over ad-hoc benchmarking:

� >1000 compiler options.

� >100 machine-ABI pairs.

� Many message lengths.

� Very high reliability.

� Public verifiability.

� Real API, not only timing.

� Easy for implementor!

Today have 431 implementations.

Biggest disadvantage:

Report latency is high;

hard to use during development.

: : : but we’re working on this.


