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Many advantages of eBACS

over ad-hoc benchmarking:

� >1000 compiler options.

� >100 machine-ABI pairs.

� Many message lengths.

� Very high reliability.

� Public verifiability.

� Real API, not only timing.

� Easy for implementor!

Today have 431 implementations.

Biggest disadvantage:

Report latency is high;

hard to use during development.

: : : but we’re working on this.
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