
1

Physical Unclonable Functions (PUFs)
and Secure Processors

Srini Devadas

Department of EECS and CSAIL

Massachusetts Institute of Technology

2

Security Challenges

•  How to securely authenticate devices
at low cost?
–  Keycards, RFIDs, mobile phones
–  Genuine electronics vs. counterfeits

•  How to protect sensitive IP on devices that may
be physically attacked?
–  Digital content, personal information
–  Software on mobile/embedded systems, routers, etc

3

Traditional Solution: Authentication Example

•  Each IC needs to be unique
–  Embed a unique secret key SK in on-chip non-volatile memory

•  Use cryptography to authenticate an IC
–  A verifier sends a randomly chosen number
–  An IC signs the number using its secret key so that the verifier can

ensure that the IC possesses the secret key

•  Cryptographic operations can address other problems such as
protecting IP or secure communication

Sends a random number

Sign the number with a secret key
 Only the IC’s key can generate

a valid signature

IC with
a secret key

IC’s Public
Key

4

BUT…

•  How to generate and store secret keys on ICs in
a secure and inexpensive way?
–  Adversaries may physically extract secret keys

from non-volatile memory
–  Trusted party must embed and test secret keys

in a secure location

•  What if cryptography is NOT available?
–  Extremely resource (power) constrained systems

such as passive RFIDs
–  Commodity ICs such as FPGAs

5

Physical Unclonable Functions (PUFs)

•  Extract secrets from a complex physical system

•  Because of random process variations, no two Integrated
Circuits even with the same layouts are identical
–  Variation is inherent in fabrication process
–  Hard to remove or predict
–  Relative variation increases as the fabrication process advances

•  Delay-Based Silicon PUF concept (2002)
–  Generate secret keys from unique delay characteristics

of each processor chip

Combinatorial
Circuit"

Challenge"
n-bits"

Response"
m-bits"

6

Why PUFs?

•  PUF can enable secure, low-cost authentication w/o crypto
–  Use PUF as a function: challenge response
–  Only an authentic IC can produce a correct response for a

challenge
–  Inexpensive: no special fabrication technique

•  PUF can generate a unique secret key / ID
–  Highly secure: volatile secrets, no need for trusted programming
–  Can integrate key generation into a secure processor

•  Physical security: PUF secrets are the delays of wires and
gates which are harder to extract via microscopy than bits
in non-volatile memory

PUF
n

(Challenge) Response

7

Main Questions

•  How to design a PUF circuit for reliability and
security?
–  Analog or asynchronous systems are susceptible to

noise
–  Need barriers against software modeling attacks

(equivalent to cryptanalysis)

•  How to use the PUF for authentication and key
generation?

PUF
n

(Challenge) Response

Authentication Using PUFs

8

9

Low-Cost Authentication

•  Protect against IC/FPGA substitution and counterfeits
without using cryptographic operations

Authentic
Device A

PUF

Untrusted
Supply
Chain /

Environments

???

Challenge Response

Is this the
authentic
Device A?

=?

PUF

Challenge Response’

Challenge Response

Database for Device A

100  1010 010101
101  1000 101101
0111001 000110

Record

10

Challenge-Response Pairs

•  What if an attacker obtains all responses and put them
into a fake chip with memory?

•  There must be LOTS of challenge-response-pairs
–  Use different parts on FPGAs
–  Use configurable delay paths on ASICs

Challenge 1

FPGA FPGA

Challenge 2 Response 1 Response 2
(left-bottom, 5 inv, etc.) (right-middle, 3 inv, etc.)

PUF

PUF

Oscillators

11

An Arbiter-Based Silicon PUF

•  Compare two paths with an identical delay in design
–  Random process variation determines which path is faster
–  An arbiter outputs 1-bit digital response

•  Multiple bits can be obtained by either duplicate the
circuit or use different challenges
–  Each challenge selects a unique pair of delay paths

…"

n-bit"
Challenge"

Rising  
Edge"

1 if top"
path is "
faster,"
else 0"

D Q
1

1

0

0

1

1

0

0

1

1

0

0

1 0 1 0 0 1

0 1

G
Response"

12

Metrics

•  Security: Show that different PUFs (ICs) generate
different bits
–  Inter-chip variation: how many PUF bits (in %) are different

between PUF A and PUF B?
–  Ideally, inter-chip variation should be close to 50%

•  Reliability: Show that a given PUF (IC) can re-generate
the same bits consistently
–  Intra-chip variation: how many bits flip when re-generated again

from a single PUF
–  Environments (voltage, temperature, etc.) can change
–  Ideally, intra-chip variation should be 0%

13

Arbiter PUF Experiments: 64 and 512 stages

64 stage

512 stage

14

Arbiter PUF is not a PUF (clonable!)
•  Introduced in 2003 paper, shown in same paper to be

susceptible to a machine learning model-building attack

Need to add
nonlinearity to
circuit

•  Also introduced in 2003 paper, conjectured to be
hard to learn

•  Shown in 2008 (Koushanfar) and 2009
(Ruhrmair) to be susceptible to a model-building
attack based on evolutionary algorithm

15

Feed-forward Arbiter

XOR Arbiter PUF

•  Can process and combine outputs of multiple
PUFs

•  Simplest version: XOR operation

PUF
Circuit

PUF
Circuit

PUF
Circuit

PUF
Circuit

n-bit"
Challenge"

XOR of k
PUFs each

with n stages

16

17

XOR Arbiter PUF Security

•  Machine learning complexity appears to grow as
O(nk) for k-way XOR over n-stage PUFs
–  Size of circuit grows as O(nk)

•  N = 64, k = 4 is on the edge of being broken

•  Can go up to k = 8 with reasonable noise levels

•  As shown earlier, increasing n decreases noise
and allows for larger k

4-way XOR Experiments

18

4-way XOR

no XOR

8-way XOR experiments

19

8-way XOR

4-way XOR

PUFs as Key Generators

20

Using a PUF as a Key Generator

•  Are only going to generate a fixed number of bits
from a PUF

•  Cannot afford any errors!

•  Key question: How to correct errors
guaranteeing limited leakage of information?
–  Need to quantify entropy of PUF
–  Need to analyze/quantify leakage due to redundant

bits; these can be syndrome or mask bits

21

22

Ring Oscillator

•  Ring oscillators are widely used in ICs to generate clocks
or characterize performance

•  Each ring oscillator has a unique frequency even if many
oscillators are fabricated from the same mask

en_n
out

even number of inverters

Ring Oscillator Module

23

“PUF” Key Generator Using Ring Oscillators

N oscillators

MUX

counter

counter

>?
Output

Input

Compare frequencies of two oscillators The faster oscillator is
randomly determined by manufacturing variations

0 or 1

2467MHz

2453MHz

2519MHz

Top Bot. Out

1 2 0
1 N 1
2 N 1

1

2

N

24

Implementation Constraints

•  All ring oscillators must be identical
–  Any ring oscillator design will work

•  No additional constraints required
–  Everything is standard digital logic
–  No placement/routing constraint outside oscillators
–  Can be implemented even on standard FPGAs

1

2

N

Challenge Output

Identical layout

No placement /
routing constraint

25

Key Generation: Initialization

•  To initialize the circuit, an error correcting syndrome is
generated from the reference PUF circuit output
–  Syndrome/error mask is public information
–  Can be stored on-chip, off-chip, or on a remote server

•  For example, BCH(127,36,31) code will correct up to 15
errors out of 127 bits to generate 36-bit secret key
–  91-bit syndrome gives away 91 bits of codeword
–  Failure probability will be dependent on PUF error rate

PUF
Circuit

Encoding
m

n Before
First Use:
Initialization Syndrome/Mask

(public information)

26

Entropy: How Many Bits Do You Get?

•  There are P! possible cases for ordering P oscillators
based on their frequencies
–  Each ordering is equally likely
–  For example, 3 oscillators R0, R1, R2 have 6 possible orderings

(R0, R1, R2), (R0, R2, R1), (R1, R0, R2), (R1, R2, R0), (R2, R0,
R1), and (R2, R1, R0)

•  P oscillators can produce log2(P!) independent bits

–  35 oscillators: 133 bits, 128 oscillators: 716 bits, 256 oscillators:
1687 bits

•  For ring oscillator “PUF” adversary can predict
relationships between PUF output bits if large number of
bits are generated
–  Conservative approach is to use P = 2N ring oscillators to

generate N bits ; no reuse of ring oscillators, no leakage

27

Key Generation: In the Field

•  In the field, the syndrome will be used to re-generate the
same PUF reference output from the circuit

•  Main issue: PUF maximum error rates of 15-20% are
hard to correct over long code words
–  Need failure probability to be at part per billion levels

In the Field:
Key Generation

PUF
Circuit

Syndrome/
Mask

Decoding

m

n n

 ECC PUF

Error Correction Complexity

•  Some examples of BCH codes that are
necessary to correct “raw” ring oscillator outputs
–  (127, 36, 31) gives 36 secret bits, corrects 15 errors;

need to run 4 times to get 128-bit secret
–  (255, 63, 61) gives 63 secret bits, corrects 30 errors;

need to run twice

•  BCH engine complexity grows quadratically with
code word size

•  Raw bits from ring oscillator comparisons have
error rates that are too high for efficient error
correction

28

29

Reducing Error Rate in PUFs

•  Insight: Comparisons between ring oscillators with
significant difference in frequency are stable even when
the environment changes

•  Use “far apart” oscillators or delay paths to produce bits
–  Mask bits indicate the selection
–  Need to be careful – mask leaks information!

Fr
eq

ue
nc

y

Temperature

Blue > Green

Green >
Blue

Temperature

Blue > Green

Blue >
Green

Fr
eq

ue
nc

y

•  PUF output bit may “flip” when environment changes
significantly

Index-Based Masking

•  Idea: Use indices to select PUF bits that are less
likely to be noisy

•  1 out of k selection using an index of log2 k bits
–  Select the most stable bit that corresponds to the two

ring oscillators whose frequencies are furthest apart
–  Polarity of bit can be randomly chosen independent of

the PUF

•  Need to generate kN bits out of ring oscillator
“PUF” (and select N bits using indices)

30

0 1 1 0
Choose this bit

Index 00 01 10 11

Theoretical Result

•  Theorem (informal version): Mask does not leak
information assuming PUF outputs are i.i.d and
polarities of bits are chosen randomly in
advance of index-based coding.

•  Conservative assumption for i.i.d implies 2kN
ring oscillators to generate N bits so mask does
not leak information
–  Open question: Can we make do with fewer ring

oscillators and still prove an equivalent theorem?

31

32

FPGA Testing

•  15 FPGAs (Xilinx) with 1 PUF on each FPGA

•  +/- 10% voltage variation experiments

•  -20C to 120C temperature variation in
test chambers

•  Combined voltage and temperature variation
tests

•  Aging of FPGAs performed and experiments
re-run
–  Did not change PUF outputs at all

33

RO “PUF” Characteristics

•  8000 bits from 1024 oscillators, 1 out of 8 selection

Average 46.6%

Maximum 0.6%

Coding Gain using IBS

34

Maximum
number
of
erroneous
bits = 23

Maximum
number
of
erroneous
bits = 6

BCH(63, 30, 13)

PUFs in Secure Processors

35

36

Private/Public Key Pair Generation

•  PUF response is used as a random seed to a private/
public key generation algorithm
–  No secret needs to be handled by a manufacturer

•  A device generates a key pair on-chip, and outputs a
public key
–  The public key can be endorsed at any time
–  No one needs to know private key

•  FPGA implementation built and tested

Seed

Private key

Public key RSA Key
Generation

ECC
PUF

Intellectual Property Protection

37

CPU/ASIC/FPGA
Software Encrypted

With Symmetric
Key K

Public Key PK
Public Syndrome

K encrypted with PK

ECC PUF Private Key (SK)
(Never leaves the chip)

Same for
all designs

Different for
every chip

38

Summary

•  Silicon manufacturing process variations can be turned
into a feature rather than a problem

•  PUFs can reliably generate unique and unpredictable
volatile secrets for each IC
–  Secure authentication of ICs without cryptographic operations
–  Generation of both symmetric and asymmetric keys for

cryptographic operations

•  PUFs have been demonstrated on FPGAs and ASICs.
including passive RFIDs

•  Open questions:
–  How strong are PUFs for authentication?
–  How to create circuits with low noise?
–  How to further enhance physical security through tamper-

resistant layout?

