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Security Challenges 

•  How to securely authenticate devices 
at low cost? 
–  Keycards, RFIDs, mobile phones 
–  Genuine electronics vs. counterfeits 

•  How to protect sensitive IP on devices that may 
be physically attacked? 
–  Digital content, personal information 
–  Software on mobile/embedded systems, routers, etc 
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Traditional Solution: Authentication Example 

•  Each IC needs to be unique 
–  Embed a unique secret key SK in on-chip non-volatile memory 

•  Use cryptography to authenticate an IC 
–  A verifier sends a randomly chosen number 
–  An IC signs the number using its secret key so that the verifier can 

ensure that the IC possesses the secret key 

•  Cryptographic operations can address other problems such as 
protecting IP or secure communication 

Sends a random number 

Sign the number with a secret key 
 Only the IC’s key can generate 

a valid signature 

IC with 
a secret key 

IC’s Public 
Key 
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BUT… 

•  How to generate and store secret keys on ICs in 
a secure and inexpensive way? 
–  Adversaries may physically extract secret keys 

from non-volatile memory 
–  Trusted party must embed and test secret keys 

in a secure location 

•  What if cryptography is NOT available? 
–  Extremely resource (power) constrained systems 

such as passive RFIDs 
–  Commodity ICs such as FPGAs 
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Physical Unclonable Functions (PUFs) 

•  Extract secrets from a complex physical system 

•  Because of random process variations, no two Integrated 
Circuits even with the same layouts are identical 
–  Variation is inherent in fabrication process 
–  Hard to remove or predict 
–  Relative variation increases as the fabrication process advances 

•  Delay-Based Silicon PUF concept (2002) 
–  Generate secret keys from unique delay characteristics 

of each processor chip

Combinatorial 
Circuit"

Challenge"
n-bits"

Response"
m-bits"
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Why PUFs? 

•  PUF can enable secure, low-cost authentication w/o crypto 
–  Use PUF as a function: challenge  response 
–  Only an authentic IC can produce a correct response for a 

challenge 
–  Inexpensive: no special fabrication technique 

•  PUF can generate a unique secret key / ID 
–  Highly secure: volatile secrets, no need for trusted programming 
–  Can integrate key generation into a secure processor 

•  Physical security: PUF secrets are the delays of wires and 
gates which are harder to extract via microscopy than bits 
in non-volatile memory 

PUF 
n 

(Challenge) Response 
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Main Questions 

•  How to design a PUF circuit for reliability and 
security? 
–  Analog or asynchronous systems are susceptible to 

noise 
–  Need barriers against software modeling attacks 

(equivalent to cryptanalysis) 

•  How to use the PUF for authentication and key 
generation? 

PUF 
n 

(Challenge) Response 



Authentication Using PUFs 
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Low-Cost Authentication 

•  Protect against IC/FPGA substitution and counterfeits 
without using cryptographic operations  

Authentic 
Device A 

PUF 

Untrusted 
Supply 
Chain / 

Environments 

??? 

Challenge Response 

Is this the 
authentic 
Device A? 

=? 

PUF 

Challenge Response’ 

Challenge Response 

Database for Device A 
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101  1000    101101 
0111001    000110 

Record 
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Challenge-Response Pairs 

•  What if an attacker obtains all responses and put them 
into a fake chip with memory? 

•  There must be LOTS of challenge-response-pairs 
–  Use different parts on FPGAs 
–  Use configurable delay paths on ASICs 

Challenge 1 

FPGA FPGA 

Challenge 2 Response 1 Response 2 
(left-bottom, 5 inv, etc.) (right-middle, 3 inv, etc.) 

PUF 

PUF 

Oscillators 
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An Arbiter-Based Silicon PUF 

•  Compare two paths with an identical delay in design 
–  Random process variation determines which path is faster 
–  An arbiter outputs 1-bit digital response 

•  Multiple bits can be obtained by either duplicate the 
circuit or use different challenges 
–  Each challenge selects a unique pair of delay paths 
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Metrics 

•  Security: Show that different PUFs (ICs) generate 
different bits 
–  Inter-chip variation: how many PUF bits (in %) are different 

between PUF A and PUF B?  
–  Ideally, inter-chip variation should be close to 50% 

•  Reliability: Show that a given PUF (IC) can re-generate 
the same bits consistently 
–  Intra-chip variation: how many bits flip when re-generated again 

from a single PUF 
–  Environments (voltage, temperature, etc.) can change  
–  Ideally, intra-chip variation should be 0% 
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Arbiter PUF Experiments: 64 and 512 stages 

64 stage 

512 stage 
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Arbiter PUF is not a PUF (clonable!) 
•  Introduced in 2003 paper, shown in same paper to be 

susceptible to a machine learning model-building attack 

Need to add 
nonlinearity to  
circuit 



•  Also introduced in 2003 paper, conjectured to be 
hard to learn 

•  Shown in 2008 (Koushanfar) and 2009 
(Ruhrmair) to be susceptible to a model-building 
attack based on evolutionary algorithm 
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Feed-forward Arbiter 



XOR Arbiter PUF 

•  Can process and combine outputs of multiple 
PUFs 

•  Simplest version: XOR operation 

PUF 
Circuit 

PUF 
Circuit 

PUF 
Circuit 

PUF 
Circuit 

n-bit"
Challenge"

XOR of k 
PUFs each 

with n stages 
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XOR Arbiter PUF Security 

•  Machine learning complexity appears to grow as 
O(nk) for k-way XOR over n-stage PUFs 
–  Size of circuit grows as O(nk) 

•  N = 64, k = 4 is on the edge of being broken 

•  Can go up to k = 8 with reasonable noise levels 

•  As shown earlier, increasing n decreases noise 
and allows for larger k 



4-way XOR Experiments 
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4-way XOR 

no XOR 



8-way XOR experiments 
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8-way XOR 

4-way XOR 



PUFs as Key Generators 
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Using a PUF as a Key Generator 

•  Are only going to generate a fixed number of bits 
from a PUF 

•  Cannot afford any errors! 

•  Key question: How to correct errors 
guaranteeing limited leakage of information? 
–  Need to quantify entropy of PUF 
–  Need to analyze/quantify leakage due to redundant 

bits; these can be syndrome or mask bits 
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Ring Oscillator 

•  Ring oscillators are widely used in ICs to generate clocks 
or characterize performance 

•  Each ring oscillator has a unique frequency even if many 
oscillators are fabricated from the same mask 

en_n 
out 

even number of inverters 

Ring Oscillator Module 
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“PUF” Key Generator Using Ring Oscillators 

N oscillators 

MUX 
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Implementation Constraints 

•  All ring oscillators must be identical 
–  Any ring oscillator design will work 

•  No additional constraints required 
–  Everything is standard digital logic 
–  No placement/routing constraint outside oscillators 
–  Can be implemented even on standard FPGAs 

1

2

N

Challenge Output 

Identical layout 

No placement / 
routing constraint 
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Key Generation: Initialization 

•  To initialize the circuit, an error correcting syndrome is 
generated from the reference PUF circuit output 
–  Syndrome/error mask is public information 
–  Can be stored on-chip, off-chip, or on a remote server 

•  For example, BCH(127,36,31) code will correct up to 15 
errors out of 127 bits to generate 36-bit secret key 
–  91-bit syndrome gives away 91 bits of codeword 
–  Failure probability will be dependent on PUF error rate 

PUF 
Circuit 

Encoding 
m 

n Before 
First Use: 
Initialization Syndrome/Mask  

(public information) 
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Entropy: How Many Bits Do You Get? 

•  There are P! possible cases for ordering P oscillators 
based on their frequencies 
–  Each ordering is equally likely 
–  For example, 3 oscillators R0, R1, R2 have 6 possible orderings 

(R0, R1, R2), (R0, R2, R1), (R1, R0, R2), (R1, R2, R0), (R2, R0, 
R1), and (R2, R1, R0) 

•  P oscillators can produce log2(P!) independent bits 

–  35 oscillators: 133 bits, 128 oscillators: 716 bits, 256 oscillators: 
1687 bits  

•  For ring oscillator “PUF” adversary can predict 
relationships between PUF output bits if large number of 
bits are generated 
–  Conservative approach is to use P = 2N ring oscillators to 

generate N bits ; no reuse of ring oscillators, no leakage 
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Key Generation: In the Field 

•  In the field, the syndrome will be used to re-generate the 
same PUF reference output from the circuit 

•  Main issue: PUF maximum error rates of 15-20% are 
hard to correct over long code words 
–  Need failure probability to be at part per billion levels 

In the Field: 
Key Generation 

PUF 
Circuit 

Syndrome/ 
Mask 

Decoding 

m 

n n 

 ECC PUF 



Error Correction Complexity 

•  Some examples of BCH codes that are 
necessary to correct “raw” ring oscillator outputs 
–  (127, 36, 31) gives 36 secret bits, corrects 15 errors; 

need to run 4 times to get 128-bit secret 
–  (255, 63, 61) gives 63 secret bits, corrects 30 errors; 

need to run twice 

•  BCH engine complexity grows quadratically with 
code word size 

•  Raw bits from ring oscillator comparisons have  
error rates that are too high for efficient error 
correction 

28 
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Reducing Error Rate in PUFs 

•  Insight: Comparisons between ring oscillators with 
significant difference in frequency are stable even when 
the environment changes 

•  Use “far apart” oscillators or delay paths to produce bits 
–  Mask bits indicate the selection  
–  Need to be careful – mask leaks information! 
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•  PUF output bit may “flip” when environment changes 
significantly 



Index-Based Masking 

•  Idea: Use indices to select PUF bits that are less 
likely to be noisy 

•  1 out of k selection using an index of log2 k bits 
–  Select the most stable bit that corresponds to the two 

ring oscillators whose frequencies are furthest apart 
–  Polarity of bit can be randomly chosen independent of 

the PUF 

•  Need to generate kN bits out of ring oscillator 
“PUF” (and select N bits using indices) 

30 

0 1 1 0 
Choose this bit 

Index      00     01    10     11 



Theoretical Result 

•  Theorem (informal version): Mask does not leak 
information assuming PUF outputs are i.i.d and 
polarities of bits are chosen randomly in 
advance of index-based coding. 

•  Conservative assumption for i.i.d implies 2kN 
ring oscillators to generate N bits so mask does 
not leak information 
–  Open question: Can we make do with fewer ring 

oscillators and still prove an equivalent theorem? 
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FPGA Testing 

•  15 FPGAs (Xilinx) with 1 PUF on each FPGA 

•  +/- 10% voltage variation experiments 

•  -20C to 120C temperature variation in 
test chambers 

•  Combined voltage and temperature variation 
tests 

•  Aging of FPGAs performed and experiments 
re-run 
–  Did not change PUF outputs at all 
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RO “PUF” Characteristics 

•  8000 bits from 1024 oscillators, 1 out of  8 selection 

Average 46.6% 

Maximum 0.6% 



Coding Gain using IBS 
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Maximum 
number 
of 
erroneous 
bits = 23 

Maximum 
number 
of 
erroneous 
bits = 6 

BCH(63, 30, 13)  



PUFs in Secure Processors 
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Private/Public Key Pair Generation 

•  PUF response is used as a random seed to a private/ 
public key generation algorithm 
–  No secret needs to be handled by a manufacturer 

•  A device generates a key pair on-chip, and outputs a 
public key 
–  The public key can be endorsed at any time 
–  No one needs to know private key 

•  FPGA implementation built and tested 

Seed 

Private key 

Public key RSA Key 
Generation 

ECC 
PUF 



Intellectual Property Protection 
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CPU/ASIC/FPGA 
Software Encrypted 

With Symmetric 
Key K 

Public Key PK 
Public Syndrome 

K encrypted with PK 

ECC PUF Private Key (SK) 
(Never leaves the chip) 

Same for 
all designs 

Different for 
every chip 
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Summary 

•  Silicon manufacturing process variations can be turned 
into a feature rather than a problem 

•  PUFs can reliably generate unique and unpredictable 
volatile secrets for each IC 
–  Secure authentication of ICs without cryptographic operations 
–  Generation of both symmetric and asymmetric keys for 

cryptographic operations 

•  PUFs have been demonstrated on FPGAs and ASICs. 
including passive RFIDs 

•  Open questions: 
–  How strong are PUFs for authentication? 
–  How to create circuits with low noise? 
–  How to further enhance physical security through tamper-

resistant layout? 


